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1 Abstract—To test the effectiveness of GHM multiwavelets 
in fingerprint classification with respect to scalar 
Daubechies wavelets, we study the evolutionary-based 
algorithm to evaluate the performance of each subset of 
selected feature. Comparatively studies suggest that the 
former transform features apparently contain more 
fingerprint information for discrimination than the latter.  
 

Index Terms—GHM multiwavelt, Daubechies wavelet, 
fingerprint classification, evolutionary-based algorithm 

 
 

I.  INTRODUCTION 

 

ULTIWAVELETS have recently attracted a lot of 
theoretical attention and provided a good 
indication of a potential impact on signal 

processing [1]. In this paper, a novel fingerprint 
classification scheme is proposed both to extend the 
experimentation made in [1] and to test the 
effectiveness of the Geronimo-Hardin-Massopust 
(GHM) discrete multiwavelet transform (DMWT) [2] 
with respect to the scalar Daubechies wavelet [3]. 
Moreover, a point in genetic wavelet fingerprint 
analysis is that the chromosomes interact only with 
the fitness function, but not with each other. This 
method precludes the evolution of collective solutions 
to problems, which can be very powerful [4]. We 
further present an evolutionary framework for feature 
selection in which successive generations adaptively 
develop behavior in accordance with their natural 
needs. In the following sections, we give details of the 
propose fingerprint classification approach. The 
performance of the proposed method has been 
validated through experiments on the NIST special 
fingerprint database 4 (NIST-4) [5].  

In the following sections, we give details of the 
propose fingerprint classification approach. Section II 
presents the example transformations for a fingerprint 
image. Section III describes the proposed 
coevolutionary feature selection scheme for 
classification. In section IV, we present our 
experimental results tested on the NIST-4. Section V 
concludes the paper. 
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II.   DISCRETE MULTIWAVELET TRANSFORMS 

 

For a multiresolution analysis of multiplicity r > 1, 
(MRA), an orthonormal compact support 
multiwavelet system consists one multiscaling 

function vector ))(..., ),(()( 1 xxxΦ r
T  and one 

multiwavelet function vector 

))(..., ),(()( 1 xxxΨ r
T . Both Φ and Ψ satisfy the 

following two-scale relations: 
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Note that multifilters }{H k  and }{Gk are finite 

sequences of  r × r matrices for each integer k. Let V j , 

j  Z, be the closure of the linear span of 
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lkjl   , l = 1, 2,…, r. By exploiting 

the properties of the MRA, as in the scalar case, any 
continuous-time signal f(x)  V 0  can be expanded as 
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For the two-dimensional discrete multiwavelet 
transform, a 2-D MRA of multiplicity N for )( 22 RL  
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can be obtained by using the tensor product of two 
MRA’s of multiplicity N of )(2 RL . Fig. 1 shows a 
fingerprint image of size 512512 and its one-level 
decomposition with the D4 wavelet transform and the 
GHM multiwavelet transform, respectively. 
 

III.   FEATURE SELECTION ALGORITHM 
 

In the proposed method that is derived from the 
principles of the natural species evolution theory [6], 
individuals grouped in populations and thereafter 
referred to as inter population Pb  and intra 

population Pw  are randomly created. The two 

populations have interdependent evolutions 
(coevolution). The term inter reflects the reluctance of 
this individual for the opposite class. This reluctance 
is quantified by the mean square distance between 
pattern points that belong to different classes. An 
individual of the population Pb , I x , will compete 

with each individual of the population kernel K b  

which is the collection of individuals with best inter 
distances. The term Inter is formulated as follows: 
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where Db  is the Euclidean distance between classes 

and p  is a penalty. Conversely, the term Intra reflects 

the attraction of this individual for its own class. An 
individual of population Pw , I x , will compete with 

each individual of the population kernel K w  which is 
the collection of individuals with best intra distances. 
A best individual of the population kernel K b  will 
compete with each of the best individuals of the 
opposite population kernel K w . The combined results 
of these competitions directly provide the fitness 
function, and therefore the fitness function  is 
defined as a number composed of two terms: 

 
 = ( 1 -  ．  )．( [Inter] – [Intra] ),    (9) 

 
where   is the weighting constant greater or equal to 

one,   is the number of features selected,   is the 

number of training samples. The evaluation process of 
 is randomly combined with the Inter individual of 
the population kernel K b  and the Intra individual of 

the population kernel K w . 

 After computation of the fitness function for all the 
combination of the two kernel individuals, a feature 
selection step is activated for choosing the individuals 

allowed reproducing at the next generation. The 
strategy of feature selection involves selecting the best 
subset q , 

 

q = } ; ..., ,1 {   uu qu          (10) 

 
from an original feature set  , 
 

 = }..., ,1 { Qvv  , Q > q.           (11) 

 
In other words, the combination of q features from 
q  will maximize equation (9) with respect to any 

other combination of q features taken from Q, 
respectively. The new feature  v  is chosen as the 

(+1)st feature if it yields 
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where  u   ,  v   , and 

Δ ) ( ,  u vInter][ = ) ( ,  u vInter][   )( uInter][ . 

)( uInter][  is the evaluation value of equation (8) 

while the feature  u  is selected and ) ( , u vInter][ is 

the evaluation value of equation (8) while the 
candidate  v  is added to the already selected feature 

 u . In a similar way, the feature selection mechanism 

minimizes intra measure and helps to facilitate 
classification by removing redundant features that 
may impede recognition. The proposed schemes 
consider both the accuracy of classification and the 
cost of performing classification. 
 To speed up such a selection process, we present a 
packet-tree selection scheme that is based on fitness 
value of equation (9) to locate dominant wavelet 
subbands. Following this innovative idea, the 
decomposed subbands at the current level, which can 
be viewed as the parent and children nodes in a tree, 
will be selected only if the predecessor at the previous 
level was selected. Otherwise, the scheme skips the 
successors and considers the next subbands. For each 
textured fingerprint, a representative tree by averaging 
the selected feature vectors over all the training 
samples is generated. 
 

IV. GENETIC OPERATIONS 
 

With a direct encoding scheme, the genetic 
representation is used to evolve potential solutions 
under a set of five-class 512 × 512 images with 256 
gray levels (see Fig. 2) found in the NIST-4 database. 
According to the roulette wheel selection strategy [7], 
the combination of populations Pb  and Pw  

individuals with higher fitness value in equation (9) 
will survive more at the next generation. The 
combinative individuals selected in the previous step 
are used to as the parent individuals and then their 
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chromosomes are combined by the following 
proposed combinative crossover criterion so as to 
toward the chromosomes of two offspring individuals. 
If the i-th genes of the inter and intra individuals are 
the same, then the i-th gene of the offspring individual 
is set as either individual. If not, the i-th gene of the 
offspring individual will be set as either individual at 
random. The size of each of the population remains 
constant during evolution. The mutation operation 
randomly changes a bit of the chromosome.  
 

V.  EXPERIMENTS RESULTS AND DISCUSSIONS 
 

The reported results have the following parameter 
settings: population size = 20, number of generation = 
1000, and the probability of crossover = 0.5. A 
mutation probability value starts with a value of 0.9 
and then varied as a step function of the number of 
iterations until it reaches a value of 0.01. Due to the 
curse of dimensionality, one hundred 256 × 256 
overlapping subimages each class as training samples 
are used for the D4 wavelet and one thousand samples 
are used for the GHM multiwavelet. Textural features 
are given by the extrema number of wavelet 
coefficients [8], which can be used as a measure of 
coarseness of the fingerprint at multiple resolutions. 
Then, fingerprint classifications with feature selection 
were performed using the simplified Mahalanobis 
distance measure [9] to discriminate fingerprint 
textures and to optimize classification by searching for 
near-optimal feature subsets. The mean and variance 
of the decomposed subbands are calculated with the 
leave-one-out algorithm [9] in classification. 
 The performance of the classifier was evaluated 
with three different randomly chosen training and test 
sets. Algorithms based on the two types of wavelets 
have been shown to work well in fingerprint 
discrimination. The classification errors in Tables 1 
and 2 mostly decrease when the used features are 
selectively removed from all the features at the 
decomposed levels 4 and 3, respectively. This 
decrease is due to the fact that less parameter used in 
place of the true value of the class conditional 
probability density functions need to be estimated 
from the same number of samples. The smaller the 
number of the parameters that need to be estimated, 
the less severe the curse of dimensionality can 
become. In the meanwhile, we also noticed that the 
multiwavelet outperforms the scalar wavelet with the 
packet-tree feature selection. This is because the 
extracted features in the former are more 
discriminative than the latter and, therefore, the 
selection of a subband for discrimination is not only 
dependent on the wavelet bases, wavelet 
decompositions, and decomposed levels but also the 
fitness function. 
 To explore the performance of the proposed 
system, we report classification results on NIST-4 
database with seven categories: right loop (437 

images), left loop (484 images), tented (149 images), 
arch (530 images), S-type (twin loop) (110 images), 
whorl (241 images), and eddy (49 images).  We 
compare our method to a few modern techniques as 
shown in Table 3. Our method not only achieves more 
accuracy in 4 and 5 classes than referred methods 
[10]-[13] with lower rejection rate, 7-class offers new 
report in classifying whorl, S-type, and eddy types, as 
well. On the other hand, we notice that there are some 
failures occurred in the experiments and the reasons 
can be summarized as the following. The indistinct 
ridges and valleys due to bad quality of the fingerprint 
image may lead to the fatal errors of wavelet extrema 
detection. 
 

VI. CONCLUSIONS 
 

This paper introduces a promising evolutionary 
algorithm approach for solving the fingerprint 
classification problem with the coevolving concept. 
While much of the researches are fighting to work out 
on the classification of four or five categories, even 
one or two seven classes, we have not joined the drive 
instead of reporting a new result on whorl, S-type, and 
eddy classes except general arch, tented arch, right 
and left loops. 
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Fig. 1.  One-level decomposition for the NIST-4 fingerprint: (a) D4, (b) GHM. 

 

 

 
 
Fig. 2.  Fingerprint examples defined in Henry system: (a) right loop, (b) left loop, (c) tented arch, (d) arch, (e) whorl, (f) S-type 
(twin loop), (g) Eddy. 
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TABLE 1 
CLASSIFICATION RESULTS (CORRECT RATE IN %) USING THE D4 WAVELET PACKET DECOMPOSITION WITH COEVOLUTIONARY 

FEATURE SELECTION 
 

Sample Set   = 1   = 2   = 3   = 4   = 5 

1 90.47 90.48 90.29 90.49 90.43 

2 90.41 90.38 90.62 90.29 90.49 

3 90.41 90.43 90.38 90.51 90.49 

Average 90.43 90.43 90.43 90.43 90.47 
 
 
 

TABLE 2 
CLASSIFICATION RESULTS (CORRECT RATE IN %) USING THE GHM MULTIWAVELET PACKET DECOMPOSITION WITH 

COEVOLUTIONARY FEATURE SELECTION 

 
Sample Set   = 1   = 2   = 3   = 4   = 5 

1 90.83 90.80 90.54 90.82 90.58 

2 90.85 90.72 90.80 90.71 90.66 

3 90.96 90.73 90.90 90.79 90.73 

Average 90.88 90.75 90.75 90.77 90.79 
 
 
 
 

TABLE 3   
CLASSIFICATION RESULTS (CORRECT RATE IN %) COMPARED TO THE RELATED WORKS 

 

Fingerprint 
class 

Wang Jain et al.[10] Yao et al.[11] 
Zhang and 
Yan [12] 

Li et al. [13] 

7-class 90.88% (2.3%) * * * * 

5-class 94.71% 
90% 

(1.8%) 
90% 

(1.8%) 
84.3% 93.5% 

4-class 95.36% 95.8% 94.7% 92.7% 95% 

* Unavailable 
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