
 

 
Abstract—The paper presents an algorithm for generation of 

Instruction List (IL) code from Programmable Logic 
Controllers (PLC) Ladder Diagram (LD) based on treating LD 
as a tree with single root left bar and treating LD components 
separately in accordance with their type. In this algorithm we 
use virtual nodes, and they play a central role in the whole 
algorithm implementation. The LD is presented as an activity 
on vertex (AOV) diagraph. Then we establish activity on a 
vertex to transform LD to IL. Nodes are treated according to 
their type and the topological sorting of the AOV diagraph. The 
algorithm is a general transformation algorithm for 
transformation from any complex LD to IL. It has been applied 
in the design of a software PLC and successfully compiled to IL. 
 

Index Terms— AOV diagraph, IEC 61131-3 standard, 
Instruction list, programmable logic controllers PLC, 
unrestricted ladder diagram 
 

I. INTRODUCTION 

programmable logic controller (PLC) is a digital logic 
device and has been in use since the 1960s. At that time 
it was meant to replace hard wired electromechanical 

switches and circuits from the automation industry. The 
initial programming language therefore resembles to circuit 
diagram and is known as Ladder Diagram (LD). Today there 
are various low programming languages among these is the 
low level Instruction List (IL) which has assembly language 
mnemonics and is used on embedded platforms as it can be 
converted directly to binary code. The IEC 61131-3 standard 
is an international standard meant to unify the programming 
languages on PLC. Both LD and IL are contained in this 
standard.  

This paper proposes an algorithm for code generation from 

 
Manuscript received February 22, 2011; revised March 23, 2011.  
Kando Hamiyanze Moonga  was with Otis Elevators, Zambia,  he is now a 

Staff Development Fellow at the University of Zambia, Lusaka,  Zambia, and 
a masters student in automation at South China University of  Technology, 
Guangzhou, 510640 China  (phone: 02-038672340; e-mail: 
moonga2002@yahoo.com).  

You Linru is a Professor in the School of Automation at South China 
University of Technology, Guangzhou, 510640 China (e-mail: 
aulryou@scut.edu.cn). 

Liu Shaojun is an Assistant Professor in the School of Automation, South 
China University of Technology, Guangzhou, 510640 China (e-mail: 
shjliu@scut.edu.cn). 

 
 
 
 
 
 

LD to IL code on an unrestricted LD. The only restrictions if 
any are made during LD network to topological network 
conversion.  

We propose a Two Stack Depth First Search (TSDFS) 
algorithm to traverse the LD tree as presented in this paper. 
The TSDFS algorithm uses virtual nodes, which are merging 
and splitting points, and takes advantage of LD semantics and 
IL semantics relationships to traverse a LD diagraph and 
convert it to IL code. It requires a parser to convert the LD 
network to a format that can easily be traversed by the 
algorithm. 

The algorithm is very simple but extremely effective in 
code generation. It does not need to convert the LD 
topological map into any other tree. It loads the LD 
topological map and output IL code to file. 

The semantics of LD and IL does not necessitate a binary 
tree to compile to IL. The two program semantics, the LD and 
IL networks have a very close relationship which makes code 
generation very interesting and can be converted between the 
two. 

II. GRAPH THEORY AND DATA STRUCTURES 

From computer science theory, a graph G = (V, E) is 
defined by a set of vertices V, and a set of edges E. In 
modeling networks the vertices may represent various 
entities such as cities and junctions in road networks. There 
are different types of graphs: directed and undirected graphs, 
weighted and un weighted graphs, cyclic and acyclic graphs. 
Trees are connected acyclic undirected graphs. A graph can 
be represented as using a matrix M with adjacency matrix or 
adjacency list. 

A directed acyclic graph (DAG) is a digraph that has no 
directed cycles. A topological ordering of a digraph is a 
numbering v1, ..., vn of the vertices such that for every edge 
(vi , vj), we have i < j Therefore a topological ordering 
satisfies the vertex precedence constraints. 

The in degree of a vertex is the number of edges incident to 
the vertex and the out degree is the number of edges from the 
vertex. 
 
Theorem 

A digraph admits a topological ordering if and only if it is a 
DAG. 
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III. SEMANTIC REPRESENTATION OF LADDER DIAGRAM 

Figure 1 gives a semantic representation of ladder diagram. 
Details on LD semantics are analyzed in [1]. 
 

 
 

Fig. 1.  Ladder Diagram with Two Networks or Rungs 

 
Since LD networks were adopted from circuit theory, the 
rules that would apply are similar to those of electric current 
and therefore reverse current is not allowed as done in 
circuits where diodes direct current direction. The LD 
network restricts current direction where we get the left bar 
as source and we traverse as indicated by arrows or adjacency 
when presented as a graph. 
 

IV. LADDER DIAGRAM AS A GRAPH OR TOPOLOGICAL 

NETWORK 

LD semantics simplifies the analysis of a graph created 
based on LD.  A graph created directly from LD semantics 
assumes diagraph as shown in Fig.2. Taking the left bar as a 
source node, it will have only one source node, the left bar to 
traverse the entire graph. It can have several sink nodes as the 
application allows, but these have out degree equal to zero 
and in degree equal to one, the source has in degree equal to 
zero and can have plenty of out degree depending on your 
application. Then all the other nodes have in degree and out 
degree equal to one. Then virtual nodes are required to 
represent the interconnection for parallel network. Virtual 
nodes have in degree or out degree greater than or equal to 
one. Given the source then we can begin to generate code by 
depth first traversal till we reach a virtual node. 

Most algorithms are based on converting the LD graph to a 
binary tree [7], [2], and use binary tree traversal algorithms 
such as postorder. Others [3] have used Two Terminal Series 
Parallel, TTSP algorithm and then binary decomposition tree. 
In binary tree form, all the nodes are considered as leaves. 
“The left bar is the root of the binary tree. It is characterized 

by the fact that any node can have utmost two branches.  If 
the out degree in an AOV diagraph is 1, representing the 
series ‘AND’ relations between the vertex and its successor 
vertices, then we should create an ‘AND’ node in binary tree. 
If the out degree of a vertex in an AOV diagraph is equal or 
greater than 2, representing the parallel ‘OR’ relations 
between the vertex and its successor vertices, then we should 
create an ‘OR’ node in binary tree. Finally the binary tree is 
traversed by postorder algorithm and each leaf node forms an 
IL program, but the leaf node which corresponds to a virtual 
node in the AOV diagraph can not form any instruction”.  In 
[4] an AOV diagraph is used to compile directly from LD to 
Structured Text Language, STL. 
 

In this paper we compile LD to IL code directly from the 
AOV diagraph. With this algorithm we relax the restrictions 
on LD to compile to IL and we develop a clear and concise 
direct relationship between the two languages which has in 
the past hampered the flexibility on compiling from ladder 
diagram to IL as noted in [3] or instruction list to LD. We use 
depth first search (dfs) to traverse the graph and generate IL. 
The algorithm uses the fact that no any node has in degree or 
out degree greater than one. Only virtual nodes will have out 
degree or in degree greater than one, these are therefore used 
to control the dfs algorithm for parallel networks. Fig.2 is 
based on the LD in Fig.1 and gives the designation for 
various nodes used in this paper. 

This paper will use the following notations: Source nodes 
will be denoted as sNODE, terminal or sink node as tNODE, 
virtual nodes as xNODE and function blocks as fNODEs, 
contact nodes as bNODEs. We also have special node types 
these are ftNODEs and fsNODEs. These nodes are associated 
with function blocks, and are very important to correctly 
generate the code for complex networks with various types of 
function blocks including non standard function blocks. The 
xNODEs, sNODEs, ftNODEs and fsNODEs help to make 
decisions during graph traversal and code generation. 

 

V. LD NETWORK (GRAPH) AS A LD TREE 

A LD presented as a diagraph can be considered as a tree 
with the root as a single entity left bar. 

In this paper we present a different notion of a tree as 
opposed to general computer science theory on trees as 
branches will be allowed to merge and split. This is what we 
shall mean here by a tree: 
1) The left bar holds roots or it’s the ground that hold the 

roots, like all natural trees grow from the ground, but the 
ground is one entity. All roots are found in this same 
ground. Given a forest therefore, though naturally roots 
will be different, the ground is still the same and it 
supplies water to all the branches and leaves of all the 
trees in a forest. This is true with the left bar on LD 
networks and therefore true on any graph drawn from the 
LD network no matter how complex the LD maybe, 
taking note of item 3 below. With this approach 
therefore, a LD network can never be a forest, but can be 
a complex tree with one root. The root has in degree 
zero. 

2) As opposed to binary tree representation where all nodes 

   

 

  

 
J 

Netw2

  Interval 

 

  Netw1 

Proceedings of the World Congress on Engineering 2011 Vol II 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011



 

are leaves including virtual nodes, here the output nodes 
on LD are considered as leaves, and that’s the furthest 
we can go in the tree from the root. These nodes have out 
degree zero. 

3) The virtual nodes allow merging of branches and 
splitting of branches. Split branches will also lead to 
other leaves which are terminal nodes. Therefore the LD 
graph has trees and branches merging or splitting. 

4) Traversal within a branch is allowed only from the root 
to towards the leaves just as water moves from the roots 
towards leaves through branches. 

5) All leaves are reachable from the root, or otherwise 
error; graph does not meet the LD semantics. 

6) All nodes along a simple branch have in degree one and 
out degree one. 

 
Secondly we add constraints to satisfy LD semantic. 
 
 
 
 
 
 

 
 

VI. TWO STACK DEPTH FIRST SEARCH IL CODE GENERATION 

ALGORITHM 

We now propose a Two Stack Depth First Traversal 
algorithm to generate instruction list. This algorithm uses the 
power of recursion to traverse the given tree and two stacks; 
one for start nodes and one for end node.  
 

Input: LD Topological map or AOV  diagraph 
Output: IL 

 
1. Initialize:  
   Start node Stack:=empty 
   End node Stack:=empty 
   All other variables initialized. 
   Load the Root ID into Start node Stack equivalent to sNODE out  
   degree each time incrementing the start index. Start index to point 
    to  sNODE the Root, on top of stack. Now pop the top of stack 
and    assign to the Depth First Search (DFS) proceed to 2.  
 
2. begin (At start node Get the unvisited  adjacent ) 
    while (there are bNODEs proceed with   DFS algorithm and  
    generate IL  code for the branch till you reach  a tNODE or  
    xNODE)  
   if  ( xNODE  proceed to 3) 
   else if  ( tNODE go to 7) 
   else go to 10 
 
3.    At xNODE check node status;  

  if  (we are meeting this xNODE for the first time) go to 4 
  else (top of end index points to this xNODE pop End node Stack 
and    go to 5) 

 
4.    Make this xNODE as an end node  and put it’s ID on End 
node      Stack equivalent to its  in degree each  time incrementing 
 the     end index. Then  go to 5 
 
5.    Process this xNODE and  increment the in degree processing 
    count for this node.  

  if（the in degree processing count equal to the xNODE in degree）
    go to 6  
  else if  (Start node Stack not empty) get   the start node ID from 
   stack by  popping  Start node Stack assign ID to DFS then go to 
2  
  else go to10. 
 

6.    Make this node a start node, put  its ID on Start node Stack  
    equivalent to its out degree  

  if  (Start node Stack not empty,) pop the   Start node Stack 
assign    ID to DFS and then go to 2   
  else go to 10. 

 
7.    Process this tNODE then  

  if  (Start node Stack is empty ) proceed to 8  
  else pop the Start node Stack assign to DFS and then go  to 2 

 
8.   if  (End node Stack empty and  statistic check correct)  proceed 
    to 9  

  else go to 10 
 
9.    Code generation successful  

 exit (Normal) 
 
10.    Code generation failure.  Encountered an error,  

 exit (error) 
 

 
Fig.3 Two Stack Depth First Search Algorithm 

 
During loading entries on end stack, if End node Stack is 

an array, and the xNODE index is 5, and the xNODE has in 
degree equal to 3, then we put 3 entries in the End node Stack 
each time incrementing the End node Index, which is used to 
index the array. If using pointers, then three entries have to be 
entered and the pointer incremented each time we do an entry 
to point to top of stack. Then you need to pop three times in 
order to exhaust the entries from stack for this xNODE. 
Similarly you do the same for the start nodes for the entries in 
the Start node Stack.  

In the algorithm the word process implies write the label, 
opcode, operand\s and comments to file for the IL instruction. 
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Fig.2. Ladder Diagram AOV diagraph as Interconnected Trees with 
Merging Branches  
 
 
The vertical bar for the sNODE in Fig.2 implies that you can have many 
other complex branches rooted at sNODE, but the the algorithm still 
stands and it will terminate correctly at the last branch on the furthest 
leaf that is the tNODE from the source. Termination of code 
generation is done at a terminal node and not at any other 
node, otherwise error.  

    ftNODE 
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In addition to this algorithm there are a few control boolean 
variables to ensure we get the correct semantics for the IL. 
These they help to make decisions about what opcode and 
operand to use, especially at the sNODE and xNODE but 
they are not relevant for this paper. Decisions are such as ‘LD 
helper’, or ‘LD %B0’. Each node keeps its element type. 
These are LD element types such as input, input not, jump,etc. 
Then the code generation can be embedded into a switch 
statement.  Opcodes such as OR and or with modifiers as 
specified in IEC61131-3 are found at xNODEs; ST, STN and 
JMP etc are found at tNODEs; AND, ANDN are met along a 
particular branch. The CAL and CALC are found at fNODEs. 
Additional commands are embedded in function blocks; such 
as ADD, MUL, SQRT, DIV,GT,GE etc these could be 
mathematical expressions as explained in section 8. It could 
also be a sub program or routine or data structures such as 
arrays.  

VII. STATISTICS CHECK FOR CONFORMANCE TO LD SEMANTICS 

Once we begin the traversal, successful exit is only 
allowed at a tNODE, unless we encountered an error.  During 
code generation if the start stack becomes empty and end 
stack is also empty and we are at a terminal node, tNODE, 
then this implies we have traversed the entire graph and 
reached all the nodes and therefore each time we reach a 
terminal node we check whether our start stack and end stack 
are empty. In fact checking of stacks is done each time we 
pop from stack. Both must be empty at the same time when 
we are at a tNODE. If not we pop the start node and go to that 
node and traverse the unvisited branch using DFS. Of course 
you can add other error checking mechanism, but the ones 
presented here ensure that the traversal was done correctly 
and the graph was drawn to LD semantics, otherwise the 
graph does not meet LD semantics. 

At termination all statistics are checked to ensure the graph 
was correct and the generated code is correct. We carry out a 
count of all the processed node types, that’s fNODEs, 
bNODEs, tNODEs, fsNODEs, ftNODEs and sNODEs. Then 
we compare with the statistics generated by the LD to graph 
parser and should tally otherwise error. As an example if you 
have an unconnected node from Ladder diagram, then it 
won’t be reached from the root, and if the node count is 
correct from the LD to graph parser, then the node count from 
the TSDFS will be less by that particular node. If there are 
any reductions required for the network are done by the LD 
to graph parser, and the final result presented to the TSDFS is 
as required for the IL code. It is worth also to note that though 
termination is done at a tNODE, further check of the entire 
code is required to ensure correctness. For example a tNODE 
could be a JMP statement and the label operand to the JMP 
opcode might not exist therefore a warning should be issued 
by the compiler, jumping to a non existent label. 

Function blocks present a challenge and therefore these 
should be presented in the correct way in order to produce 
correct code. In the next section we present an analysis on the 
function blocks for the code generation based on the TSDFS 
algorithm. 

VIII. GENERATING IL CODE FROM FUNCTION BLOCKS AND 

MATHEMATICAL EXPRESSIONS 

Mathematical expressions are considered as function 
blocks. This separates the code that transverse the graph from 
the code embedded in the function blocks or mathematical 
expressions. In this way then a mathematical expression is 
simply a node and at first can be considered to be a black box 
except its instance designation and if using EN and ENO 
boolean variables. EN is considered as a special terminal 
node, ftNODE which points to a particular function block 
instance. It is considered as a terminal node in IL code while 
non terminal as regards to TSDFS algorithm as it has out 
degree equal to one and it’s adjacent is the function block. 
Therefore an fNODE is preceded by at least one ftNODE and 
succeeded by at least one fsNODE. The ftNODEs and 
fsNODEs could be more than one on a function block. When 
this is the case the function block will be treated like an 
xNODE all the in degree is processed and then finally we call 
the function block then we proceed to execute on its out 
degree. 

Only one ftNODE should point to the function block, this 
is the node that invokes the function block. 
Certain function blocks are independent from the rest of the 
network. These connect direct to the root and can be called 
even at the beginning of scan cycle depending on 
implementation, by unconditional call, CAL. 

The example code given in Fig.4 was generated from the 
Ladder diagram in Fig.1. %DT0.Q is considered as a special 
source node, fsNODE it succeeds the function block node 
and the function block node designation will point to this 
node, and each node keeps all the necessary variables for 
invocation. %DT0.Q is a derived variable from the instance 
name and it’s an output variable. With regard to IL code 
semantics it is a source node, while with regard to TSDFS it’s 
not a source node as it has in degree equal to one. Other 
functions will have other data types and variables as inputs 
and out puts but the reasoning remains the same. Separate 
algorithms then evaluate the mathematical expressions and 
the code is appended to the instruction list to have a complete 
code generation. Part of the code could be from library 
functions. 

%DT0 is an instance of a library function. The function 
instance is established by invoking the function block with 
parameters to execute. Whilst in ladder you need to draw 
these instances separately, on IL you just provide parameters 
and space to keep these parameters and that creates this 
instance. Assuming on your software PLC you have the 
given library function.  

In [3, Fig 5] is a similar network to Netw2. Such a network 
could not be easily converted into IL using the TTSP 
algorithm used in that paper. In this paper we generate the 
code for such networks. In fact Netw1 is even more complex. 
The algorithm enters at the root, meets %I0 line 1 and exits at 
output %Q3, line 48 with the IL code. 

Proceedings of the World Congress on Engineering 2011 Vol II 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011



 

1 Netw1: LDN  %I0    36 Netw2: LD    %I7 
2    OR  (     37      AND   %I8 
3    LDN   %I6   38      OR  ( 
4    OR      (     39      LD    %I9 
5    LD   %I4    40     ST     helper3 
6    ANDN  %I5   41     AND   %I10 
7         )      42         ) 
8    ANDN  %I1   43     AND   %B10 
9         )      44     OR  ( 
10    OR  (     45     LD    helper3 
11    LD   %I2    46      AND   %I13 
12    ST helper1   47      ) 
13    AND   %I3   48       ST     %Q3 
14         )   
15    ST helper2 
16    ANDN  %B0 
17    OR  ( 
18    LD   helper2 
19    ANDN  %B2 
20    AND   %B1 
21         ) 
22    ST  %Q0 
23    ANDN  %B4 
24    OR  ( 
25    LD   helper2 
26    ANDN  %B3 
27    OR  ( 
28    LD   helper1 
29    AND   %I15 
30         ) 
31    ST    EN 
32    CALC %DT0 (PDT: =T#1268976547s, interval: =T#3600s) 
33    LD    %DT0.Q 
34         ) 
35    JMP Netw3 
 
 
Fig.4 Generated Instruction List 

 
The algorithm uses a ‘Look ahead’ function which returns 

the number of nodes from a given starting node (sNODE or 
xNODE) to a given end node (xNODE) or till we meet a 
tNODE. The returned value helps to decide the opcode and 
operand to use at the start of another branch in parallel 
branches, whether to use ‘OR’ without modifier or ‘OR ‘and 
‘(‘modifier or ‘OR’ and ‘N’ modifier. Also when the out 
degree is greater than one at an xNODE, we need to decide 
whether to ‘ST helper’ or not when moving away from an 
xNODE. 

In Fig.4 line 21 the ‘OR’ branch ends and the parallel 
network ends but another parallel network begins on the out 
degree of the xNODE. By help of a ‘Look ahead’, we do not 
‘ST helper’ though out degree is two. The code on line 22 
implies store Current Result (CR) to %Q0 and retain the 
contents of CR. %Q0 <— CR, CR does not change, then we 
‘ANDN’ CR with the next operand %B4 on line 23, this 
changes the contents of CR. 

Line 31 is useless in this code snippet since invoking the 
function block is based on the CR for a conditional call and 
EN is not used anywhere else rendering it useless. Could be 
useful if we had had other Boolean variables to be processed 
as inputs to the function block after line 31 and then we can 
use LD EN then CALC %DT0. Since the function block is 
preceded by a complex network it’s given a conditional call. 
Therefore line 31 can be deleted.  

In the next section we give an analysis of function blocks 
and the use of EN and ENO and non standard function 
blocks. 

IX. IMPLEMENTATION OF NON STANDARD FUNCTION BLOCKS 

TO COMPLY WITH IEC61131-3 STANDARD. 

In this section we shall interchangeably use function and 
function block. The difference between a function and a 
function block is the former has no memory while the latter 
has memory.  

The use of function blocks on LD allows highly complex 
manipulation of non Boolean data to be done on LD networks. 
Since LD is Boolean, a function or function block must be 
preceded by at least one Boolean input and at least one 
Boolean output. These allow LD to give a call to the function 
block and present a Boolean output based on the result of the 
evaluation to the function block. The IEC 61131-3 standard 
introduced EN as input variable and ENO as output variable 
for standard function blocks. When EN is true, then the 
function block will be executed. A successful evaluation of 
the function will set ENO. IEC 61131-3 allows non standard 
function blocks as well. Other Boolean variables can be 
added to functions or function blocks and then these can be 
connected to the rest of the LD thereby creating a complex 
network.  
 
(*system dependent implementation of absolute time, say linux epoch*) 
 
FUNCTION_BLOCK D_TOD   
VAR_INPUT 
 interval: TIME;    (*in seconds*) 
 PDT: TIME;    (*Preset date and time as absolute  
         time in seconds, ref system epoch*) 
END_VAR 
 LD  %SW0     (*system abs time in s*) 
 GT PDT 
 ST Q    (*Boolean variable*) 
 JMPC LABEL  
 RET 
LABEL:LD PDT 
 ADD interval 
 ST PDT 
END_FUNCTION_BLOCK 
 
%DT0: D_TOD; 

 
Fig.5 Example of a Library Function 

 
All non Boolean calculations are done by the system on 

which the LD is running. Code from any of these function 
blocks is generated separately and then appended. For 
embedded systems it can be assumed therefore that a 
compliant PLC system supports all the standard functions 
and function block unless specified by the manufacturer. 
Therefore a declaration of the instance variable based on the 
standard function block and call to the function block with 
required parameters is enough to have portable code. For non 
standard function block you need to declare the function 
block, and then declare the instance variables.  
Fig.5 gives an example of a declaration of a function block 
and declaration of the instance variable. The function block 
instance appears on Fig.1 Netw1. Based on the given LD, the 
function block instance is given a conditional call. Therefore 
the Instruction List uses operator CALC. If EN is always true, 
that is connected to the left bar on LD, then the function block 
is given a non conditional call, CAL. At the bottom of Fig.5, 
the statement %DT0 D_TOD; is a declaration of the function 
instance. We can now use variable %DT0 as a function block 
instance. 
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With this function block, %SW0 is considered as a system 
variable on the particular PLC. It stores the current date and 
time as a single absolute long integer LINT in seconds since 
the epoch. For example on Linux system this is taken as 
January 1st 1970, therefore system dependent. In fact 
computers regard and store time as a basic single quantity 
which is only converted to date and time in user space for 
readability. PDT is the preset date and time. We assume that 
it is converted to LINT by the editor functions upon entry 
through user interface in this PLC and therefore the function 
block instance keeps this value to memory as LINT and is 
retained even on power failure. Interval is the time in seconds 
at which the output generation is repeated. It could be every 
hour, minute or days or even years. The editor would allow 
you to enter these values in various forms such as days, 
seconds, years or a combination using IEC standard entry for 
time variable such as DT and conversion can be done by the 
function block itself or the system 

The code in Fig.5 assumes your system is a 32 bit word 
register, and therefore the entire 32 bit word is loaded into 
registers for manipulation. In fact the IEC 61131-3 standard 
does not assume any specific machine, so the details will be 
system dependent. For further details on processor 
implementation based on IEC 61131-3 standard refer to [5] 
and [6]. 

X. CONCLUSION 

This paper has proposed a TSDFS algorithm to generate 
IEC 61131-3 compliant Instruction List code from 
unrestricted Ladder Diagram with complex network and 
function blocks. With this algorithm we relaxed the 
restrictions on LD to compile to IL and we developed a clear 
and concise direct relationship between the two languages 
which has in the past hampered the flexibility on compiling 
from ladder diagram to IL or instruction list to LD. It has also 
given details about function block implementation on LD and 
how IL code can be generated for such networks using the 
same algorithm.  

Future work will be to use a reverse to the algorithm to 
compile from IL to LD. 
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