

Abstract—The paper presents an algorithm for generation of

Instruction List (IL) code from Programmable Logic
Controllers (PLC) Ladder Diagram (LD) based on treating LD
as a tree with single root left bar and treating LD components
separately in accordance with their type. In this algorithm we
use virtual nodes, and they play a central role in the whole
algorithm implementation. The LD is presented as an activity
on vertex (AOV) diagraph. Then we establish activity on a
vertex to transform LD to IL. Nodes are treated according to
their type and the topological sorting of the AOV diagraph. The
algorithm is a general transformation algorithm for
transformation from any complex LD to IL. It has been applied
in the design of a software PLC and successfully compiled to IL.

Index Terms— AOV diagraph, IEC 61131-3 standard,
Instruction list, programmable logic controllers PLC,
unrestricted ladder diagram

I. INTRODUCTION

programmable logic controller (PLC) is a digital logic
device and has been in use since the 1960s. At that time
it was meant to replace hard wired electromechanical

switches and circuits from the automation industry. The
initial programming language therefore resembles to circuit
diagram and is known as Ladder Diagram (LD). Today there
are various low programming languages among these is the
low level Instruction List (IL) which has assembly language
mnemonics and is used on embedded platforms as it can be
converted directly to binary code. The IEC 61131-3 standard
is an international standard meant to unify the programming
languages on PLC. Both LD and IL are contained in this
standard.

This paper proposes an algorithm for code generation from

Manuscript received February 22, 2011; revised March 23, 2011.
Kando Hamiyanze Moonga was with Otis Elevators, Zambia, he is now a

Staff Development Fellow at the University of Zambia, Lusaka, Zambia, and
a masters student in automation at South China University of Technology,
Guangzhou, 510640 China (phone: 02-038672340; e-mail:
moonga2002@yahoo.com).

You Linru is a Professor in the School of Automation at South China
University of Technology, Guangzhou, 510640 China (e-mail:
aulryou@scut.edu.cn).

Liu Shaojun is an Assistant Professor in the School of Automation, South
China University of Technology, Guangzhou, 510640 China (e-mail:
shjliu@scut.edu.cn).

LD to IL code on an unrestricted LD. The only restrictions if
any are made during LD network to topological network
conversion.

We propose a Two Stack Depth First Search (TSDFS)
algorithm to traverse the LD tree as presented in this paper.
The TSDFS algorithm uses virtual nodes, which are merging
and splitting points, and takes advantage of LD semantics and
IL semantics relationships to traverse a LD diagraph and
convert it to IL code. It requires a parser to convert the LD
network to a format that can easily be traversed by the
algorithm.

The algorithm is very simple but extremely effective in
code generation. It does not need to convert the LD
topological map into any other tree. It loads the LD
topological map and output IL code to file.

The semantics of LD and IL does not necessitate a binary
tree to compile to IL. The two program semantics, the LD and
IL networks have a very close relationship which makes code
generation very interesting and can be converted between the
two.

II. GRAPH THEORY AND DATA STRUCTURES

From computer science theory, a graph G = (V, E) is
defined by a set of vertices V, and a set of edges E. In
modeling networks the vertices may represent various
entities such as cities and junctions in road networks. There
are different types of graphs: directed and undirected graphs,
weighted and un weighted graphs, cyclic and acyclic graphs.
Trees are connected acyclic undirected graphs. A graph can
be represented as using a matrix M with adjacency matrix or
adjacency list.

A directed acyclic graph (DAG) is a digraph that has no
directed cycles. A topological ordering of a digraph is a
numbering v1, ..., vn of the vertices such that for every edge
(vi , vj), we have i < j Therefore a topological ordering
satisfies the vertex precedence constraints.

The in degree of a vertex is the number of edges incident to
the vertex and the out degree is the number of edges from the
vertex.

Theorem

A digraph admits a topological ordering if and only if it is a
DAG.

Algorithm for Compiling Unrestricted Ladder
Diagram to IEC 61131-3 Compliant Instruction

List

Kando Hamiyanze Moonga, Member IAENG, You Linru, and Liu Shaojun

A

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

III. SEMANTIC REPRESENTATION OF LADDER DIAGRAM

Figure 1 gives a semantic representation of ladder diagram.
Details on LD semantics are analyzed in [1].

Fig. 1. Ladder Diagram with Two Networks or Rungs

Since LD networks were adopted from circuit theory, the
rules that would apply are similar to those of electric current
and therefore reverse current is not allowed as done in
circuits where diodes direct current direction. The LD
network restricts current direction where we get the left bar
as source and we traverse as indicated by arrows or adjacency
when presented as a graph.

IV. LADDER DIAGRAM AS A GRAPH OR TOPOLOGICAL

NETWORK

LD semantics simplifies the analysis of a graph created
based on LD. A graph created directly from LD semantics
assumes diagraph as shown in Fig.2. Taking the left bar as a
source node, it will have only one source node, the left bar to
traverse the entire graph. It can have several sink nodes as the
application allows, but these have out degree equal to zero
and in degree equal to one, the source has in degree equal to
zero and can have plenty of out degree depending on your
application. Then all the other nodes have in degree and out
degree equal to one. Then virtual nodes are required to
represent the interconnection for parallel network. Virtual
nodes have in degree or out degree greater than or equal to
one. Given the source then we can begin to generate code by
depth first traversal till we reach a virtual node.

Most algorithms are based on converting the LD graph to a
binary tree [7], [2], and use binary tree traversal algorithms
such as postorder. Others [3] have used Two Terminal Series
Parallel, TTSP algorithm and then binary decomposition tree.
In binary tree form, all the nodes are considered as leaves.
“The left bar is the root of the binary tree. It is characterized

by the fact that any node can have utmost two branches. If
the out degree in an AOV diagraph is 1, representing the
series ‘AND’ relations between the vertex and its successor
vertices, then we should create an ‘AND’ node in binary tree.
If the out degree of a vertex in an AOV diagraph is equal or
greater than 2, representing the parallel ‘OR’ relations
between the vertex and its successor vertices, then we should
create an ‘OR’ node in binary tree. Finally the binary tree is
traversed by postorder algorithm and each leaf node forms an
IL program, but the leaf node which corresponds to a virtual
node in the AOV diagraph can not form any instruction”. In
[4] an AOV diagraph is used to compile directly from LD to
Structured Text Language, STL.

In this paper we compile LD to IL code directly from the
AOV diagraph. With this algorithm we relax the restrictions
on LD to compile to IL and we develop a clear and concise
direct relationship between the two languages which has in
the past hampered the flexibility on compiling from ladder
diagram to IL as noted in [3] or instruction list to LD. We use
depth first search (dfs) to traverse the graph and generate IL.
The algorithm uses the fact that no any node has in degree or
out degree greater than one. Only virtual nodes will have out
degree or in degree greater than one, these are therefore used
to control the dfs algorithm for parallel networks. Fig.2 is
based on the LD in Fig.1 and gives the designation for
various nodes used in this paper.

This paper will use the following notations: Source nodes
will be denoted as sNODE, terminal or sink node as tNODE,
virtual nodes as xNODE and function blocks as fNODEs,
contact nodes as bNODEs. We also have special node types
these are ftNODEs and fsNODEs. These nodes are associated
with function blocks, and are very important to correctly
generate the code for complex networks with various types of
function blocks including non standard function blocks. The
xNODEs, sNODEs, ftNODEs and fsNODEs help to make
decisions during graph traversal and code generation.

V. LD NETWORK (GRAPH) AS A LD TREE

A LD presented as a diagraph can be considered as a tree
with the root as a single entity left bar.

In this paper we present a different notion of a tree as
opposed to general computer science theory on trees as
branches will be allowed to merge and split. This is what we
shall mean here by a tree:
1) The left bar holds roots or it’s the ground that hold the

roots, like all natural trees grow from the ground, but the
ground is one entity. All roots are found in this same
ground. Given a forest therefore, though naturally roots
will be different, the ground is still the same and it
supplies water to all the branches and leaves of all the
trees in a forest. This is true with the left bar on LD
networks and therefore true on any graph drawn from the
LD network no matter how complex the LD maybe,
taking note of item 3 below. With this approach
therefore, a LD network can never be a forest, but can be
a complex tree with one root. The root has in degree
zero.

2) As opposed to binary tree representation where all nodes

J

Netw2

 Interval

 Netw1

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

are leaves including virtual nodes, here the output nodes
on LD are considered as leaves, and that’s the furthest
we can go in the tree from the root. These nodes have out
degree zero.

3) The virtual nodes allow merging of branches and
splitting of branches. Split branches will also lead to
other leaves which are terminal nodes. Therefore the LD
graph has trees and branches merging or splitting.

4) Traversal within a branch is allowed only from the root
to towards the leaves just as water moves from the roots
towards leaves through branches.

5) All leaves are reachable from the root, or otherwise
error; graph does not meet the LD semantics.

6) All nodes along a simple branch have in degree one and
out degree one.

Secondly we add constraints to satisfy LD semantic.

VI. TWO STACK DEPTH FIRST SEARCH IL CODE GENERATION

ALGORITHM

We now propose a Two Stack Depth First Traversal
algorithm to generate instruction list. This algorithm uses the
power of recursion to traverse the given tree and two stacks;
one for start nodes and one for end node.

Input: LD Topological map or AOV diagraph
Output: IL

1. Initialize:
 Start node Stack:=empty
 End node Stack:=empty
 All other variables initialized.
 Load the Root ID into Start node Stack equivalent to sNODE out
 degree each time incrementing the start index. Start index to point
 to sNODE the Root, on top of stack. Now pop the top of stack
and assign to the Depth First Search (DFS) proceed to 2.

2. begin (At start node Get the unvisited adjacent)
 while (there are bNODEs proceed with DFS algorithm and
 generate IL code for the branch till you reach a tNODE or
 xNODE)
 if (xNODE proceed to 3)
 else if (tNODE go to 7)
 else go to 10

3. At xNODE check node status;

 if (we are meeting this xNODE for the first time) go to 4
 else (top of end index points to this xNODE pop End node Stack
and go to 5)

4. Make this xNODE as an end node and put it’s ID on End
node Stack equivalent to its in degree each time incrementing
 the end index. Then go to 5

5. Process this xNODE and increment the in degree processing
 count for this node.

 if（the in degree processing count equal to the xNODE in degree）
 go to 6
 else if (Start node Stack not empty) get the start node ID from
 stack by popping Start node Stack assign ID to DFS then go to
2
 else go to10.

6. Make this node a start node, put its ID on Start node Stack
 equivalent to its out degree

 if (Start node Stack not empty,) pop the Start node Stack
assign ID to DFS and then go to 2
 else go to 10.

7. Process this tNODE then

 if (Start node Stack is empty) proceed to 8
 else pop the Start node Stack assign to DFS and then go to 2

8. if (End node Stack empty and statistic check correct) proceed
 to 9

 else go to 10

9. Code generation successful

 exit (Normal)

10. Code generation failure. Encountered an error,

 exit (error)

Fig.3 Two Stack Depth First Search Algorithm

During loading entries on end stack, if End node Stack is

an array, and the xNODE index is 5, and the xNODE has in
degree equal to 3, then we put 3 entries in the End node Stack
each time incrementing the End node Index, which is used to
index the array. If using pointers, then three entries have to be
entered and the pointer incremented each time we do an entry
to point to top of stack. Then you need to pop three times in
order to exhaust the entries from stack for this xNODE.
Similarly you do the same for the start nodes for the entries in
the Start node Stack.

In the algorithm the word process implies write the label,
opcode, operand\s and comments to file for the IL instruction.

 bNODE

sNODE

 bNODE

 tNODE

 tNODE

 fsNODE fNODE

 bNODE

 bNODE

 bNODE

 xNODE

 bNODE

 bNODE

 xNODE

 bNODE

 bNODE

 xNODE
 xNODE

 bNODE

 xNODE

 bNODE

 bNODE

 xNODE

 bNODE

Function block
with in degree
and out degree
equal to one

Terminal
point
At leaf

Root
Entry

i

Fig.2. Ladder Diagram AOV diagraph as Interconnected Trees with
Merging Branches

The vertical bar for the sNODE in Fig.2 implies that you can have many
other complex branches rooted at sNODE, but the the algorithm still
stands and it will terminate correctly at the last branch on the furthest
leaf that is the tNODE from the source. Termination of code
generation is done at a terminal node and not at any other
node, otherwise error.

 ftNODE

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

In addition to this algorithm there are a few control boolean
variables to ensure we get the correct semantics for the IL.
These they help to make decisions about what opcode and
operand to use, especially at the sNODE and xNODE but
they are not relevant for this paper. Decisions are such as ‘LD
helper’, or ‘LD %B0’. Each node keeps its element type.
These are LD element types such as input, input not, jump,etc.
Then the code generation can be embedded into a switch
statement. Opcodes such as OR and or with modifiers as
specified in IEC61131-3 are found at xNODEs; ST, STN and
JMP etc are found at tNODEs; AND, ANDN are met along a
particular branch. The CAL and CALC are found at fNODEs.
Additional commands are embedded in function blocks; such
as ADD, MUL, SQRT, DIV,GT,GE etc these could be
mathematical expressions as explained in section 8. It could
also be a sub program or routine or data structures such as
arrays.

VII. STATISTICS CHECK FOR CONFORMANCE TO LD SEMANTICS

Once we begin the traversal, successful exit is only
allowed at a tNODE, unless we encountered an error. During
code generation if the start stack becomes empty and end
stack is also empty and we are at a terminal node, tNODE,
then this implies we have traversed the entire graph and
reached all the nodes and therefore each time we reach a
terminal node we check whether our start stack and end stack
are empty. In fact checking of stacks is done each time we
pop from stack. Both must be empty at the same time when
we are at a tNODE. If not we pop the start node and go to that
node and traverse the unvisited branch using DFS. Of course
you can add other error checking mechanism, but the ones
presented here ensure that the traversal was done correctly
and the graph was drawn to LD semantics, otherwise the
graph does not meet LD semantics.

At termination all statistics are checked to ensure the graph
was correct and the generated code is correct. We carry out a
count of all the processed node types, that’s fNODEs,
bNODEs, tNODEs, fsNODEs, ftNODEs and sNODEs. Then
we compare with the statistics generated by the LD to graph
parser and should tally otherwise error. As an example if you
have an unconnected node from Ladder diagram, then it
won’t be reached from the root, and if the node count is
correct from the LD to graph parser, then the node count from
the TSDFS will be less by that particular node. If there are
any reductions required for the network are done by the LD
to graph parser, and the final result presented to the TSDFS is
as required for the IL code. It is worth also to note that though
termination is done at a tNODE, further check of the entire
code is required to ensure correctness. For example a tNODE
could be a JMP statement and the label operand to the JMP
opcode might not exist therefore a warning should be issued
by the compiler, jumping to a non existent label.

Function blocks present a challenge and therefore these
should be presented in the correct way in order to produce
correct code. In the next section we present an analysis on the
function blocks for the code generation based on the TSDFS
algorithm.

VIII. GENERATING IL CODE FROM FUNCTION BLOCKS AND

MATHEMATICAL EXPRESSIONS

Mathematical expressions are considered as function
blocks. This separates the code that transverse the graph from
the code embedded in the function blocks or mathematical
expressions. In this way then a mathematical expression is
simply a node and at first can be considered to be a black box
except its instance designation and if using EN and ENO
boolean variables. EN is considered as a special terminal
node, ftNODE which points to a particular function block
instance. It is considered as a terminal node in IL code while
non terminal as regards to TSDFS algorithm as it has out
degree equal to one and it’s adjacent is the function block.
Therefore an fNODE is preceded by at least one ftNODE and
succeeded by at least one fsNODE. The ftNODEs and
fsNODEs could be more than one on a function block. When
this is the case the function block will be treated like an
xNODE all the in degree is processed and then finally we call
the function block then we proceed to execute on its out
degree.

Only one ftNODE should point to the function block, this
is the node that invokes the function block.
Certain function blocks are independent from the rest of the
network. These connect direct to the root and can be called
even at the beginning of scan cycle depending on
implementation, by unconditional call, CAL.

The example code given in Fig.4 was generated from the
Ladder diagram in Fig.1. %DT0.Q is considered as a special
source node, fsNODE it succeeds the function block node
and the function block node designation will point to this
node, and each node keeps all the necessary variables for
invocation. %DT0.Q is a derived variable from the instance
name and it’s an output variable. With regard to IL code
semantics it is a source node, while with regard to TSDFS it’s
not a source node as it has in degree equal to one. Other
functions will have other data types and variables as inputs
and out puts but the reasoning remains the same. Separate
algorithms then evaluate the mathematical expressions and
the code is appended to the instruction list to have a complete
code generation. Part of the code could be from library
functions.

%DT0 is an instance of a library function. The function
instance is established by invoking the function block with
parameters to execute. Whilst in ladder you need to draw
these instances separately, on IL you just provide parameters
and space to keep these parameters and that creates this
instance. Assuming on your software PLC you have the
given library function.

In [3, Fig 5] is a similar network to Netw2. Such a network
could not be easily converted into IL using the TTSP
algorithm used in that paper. In this paper we generate the
code for such networks. In fact Netw1 is even more complex.
The algorithm enters at the root, meets %I0 line 1 and exits at
output %Q3, line 48 with the IL code.

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

1 Netw1: LDN %I0 36 Netw2: LD %I7
2 OR (37 AND %I8
3 LDN %I6 38 OR (
4 OR (39 LD %I9
5 LD %I4 40 ST helper3
6 ANDN %I5 41 AND %I10
7) 42)
8 ANDN %I1 43 AND %B10
9) 44 OR (
10 OR (45 LD helper3
11 LD %I2 46 AND %I13
12 ST helper1 47)
13 AND %I3 48 ST %Q3
14)
15 ST helper2
16 ANDN %B0
17 OR (
18 LD helper2
19 ANDN %B2
20 AND %B1
21)
22 ST %Q0
23 ANDN %B4
24 OR (
25 LD helper2
26 ANDN %B3
27 OR (
28 LD helper1
29 AND %I15
30)
31 ST EN
32 CALC %DT0 (PDT: =T#1268976547s, interval: =T#3600s)
33 LD %DT0.Q
34)
35 JMP Netw3

Fig.4 Generated Instruction List

The algorithm uses a ‘Look ahead’ function which returns

the number of nodes from a given starting node (sNODE or
xNODE) to a given end node (xNODE) or till we meet a
tNODE. The returned value helps to decide the opcode and
operand to use at the start of another branch in parallel
branches, whether to use ‘OR’ without modifier or ‘OR ‘and
‘(‘modifier or ‘OR’ and ‘N’ modifier. Also when the out
degree is greater than one at an xNODE, we need to decide
whether to ‘ST helper’ or not when moving away from an
xNODE.

In Fig.4 line 21 the ‘OR’ branch ends and the parallel
network ends but another parallel network begins on the out
degree of the xNODE. By help of a ‘Look ahead’, we do not
‘ST helper’ though out degree is two. The code on line 22
implies store Current Result (CR) to %Q0 and retain the
contents of CR. %Q0 <— CR, CR does not change, then we
‘ANDN’ CR with the next operand %B4 on line 23, this
changes the contents of CR.

Line 31 is useless in this code snippet since invoking the
function block is based on the CR for a conditional call and
EN is not used anywhere else rendering it useless. Could be
useful if we had had other Boolean variables to be processed
as inputs to the function block after line 31 and then we can
use LD EN then CALC %DT0. Since the function block is
preceded by a complex network it’s given a conditional call.
Therefore line 31 can be deleted.

In the next section we give an analysis of function blocks
and the use of EN and ENO and non standard function
blocks.

IX. IMPLEMENTATION OF NON STANDARD FUNCTION BLOCKS

TO COMPLY WITH IEC61131-3 STANDARD.

In this section we shall interchangeably use function and
function block. The difference between a function and a
function block is the former has no memory while the latter
has memory.

The use of function blocks on LD allows highly complex
manipulation of non Boolean data to be done on LD networks.
Since LD is Boolean, a function or function block must be
preceded by at least one Boolean input and at least one
Boolean output. These allow LD to give a call to the function
block and present a Boolean output based on the result of the
evaluation to the function block. The IEC 61131-3 standard
introduced EN as input variable and ENO as output variable
for standard function blocks. When EN is true, then the
function block will be executed. A successful evaluation of
the function will set ENO. IEC 61131-3 allows non standard
function blocks as well. Other Boolean variables can be
added to functions or function blocks and then these can be
connected to the rest of the LD thereby creating a complex
network.

(*system dependent implementation of absolute time, say linux epoch*)

FUNCTION_BLOCK D_TOD
VAR_INPUT
 interval: TIME; (*in seconds*)
 PDT: TIME; (*Preset date and time as absolute
 time in seconds, ref system epoch*)
END_VAR
 LD %SW0 (*system abs time in s*)
 GT PDT
 ST Q (*Boolean variable*)
 JMPC LABEL
 RET
LABEL:LD PDT
 ADD interval
 ST PDT
END_FUNCTION_BLOCK

%DT0: D_TOD;

Fig.5 Example of a Library Function

All non Boolean calculations are done by the system on

which the LD is running. Code from any of these function
blocks is generated separately and then appended. For
embedded systems it can be assumed therefore that a
compliant PLC system supports all the standard functions
and function block unless specified by the manufacturer.
Therefore a declaration of the instance variable based on the
standard function block and call to the function block with
required parameters is enough to have portable code. For non
standard function block you need to declare the function
block, and then declare the instance variables.
Fig.5 gives an example of a declaration of a function block
and declaration of the instance variable. The function block
instance appears on Fig.1 Netw1. Based on the given LD, the
function block instance is given a conditional call. Therefore
the Instruction List uses operator CALC. If EN is always true,
that is connected to the left bar on LD, then the function block
is given a non conditional call, CAL. At the bottom of Fig.5,
the statement %DT0 D_TOD; is a declaration of the function
instance. We can now use variable %DT0 as a function block
instance.

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

With this function block, %SW0 is considered as a system
variable on the particular PLC. It stores the current date and
time as a single absolute long integer LINT in seconds since
the epoch. For example on Linux system this is taken as
January 1st 1970, therefore system dependent. In fact
computers regard and store time as a basic single quantity
which is only converted to date and time in user space for
readability. PDT is the preset date and time. We assume that
it is converted to LINT by the editor functions upon entry
through user interface in this PLC and therefore the function
block instance keeps this value to memory as LINT and is
retained even on power failure. Interval is the time in seconds
at which the output generation is repeated. It could be every
hour, minute or days or even years. The editor would allow
you to enter these values in various forms such as days,
seconds, years or a combination using IEC standard entry for
time variable such as DT and conversion can be done by the
function block itself or the system

The code in Fig.5 assumes your system is a 32 bit word
register, and therefore the entire 32 bit word is loaded into
registers for manipulation. In fact the IEC 61131-3 standard
does not assume any specific machine, so the details will be
system dependent. For further details on processor
implementation based on IEC 61131-3 standard refer to [5]
and [6].

X. CONCLUSION

This paper has proposed a TSDFS algorithm to generate
IEC 61131-3 compliant Instruction List code from
unrestricted Ladder Diagram with complex network and
function blocks. With this algorithm we relaxed the
restrictions on LD to compile to IL and we developed a clear
and concise direct relationship between the two languages
which has in the past hampered the flexibility on compiling
from ladder diagram to IL or instruction list to LD. It has also
given details about function block implementation on LD and
how IL code can be generated for such networks using the
same algorithm.

Future work will be to use a reverse to the algorithm to
compile from IL to LD.

 REFERENCES
[1] Mark Minus, “Creating Semantic Representations of Diagrams”,

Springer-Verlag Berlin Heidelberg 2000
[2] Ge Fen, Wu Ning, “A transformation Algorithm of Ladder Diagram

into Instruction List Based on AOV Digraph and Binary
Tree”,IEEE,2006

[3] Y. Yan, Hangping Zhang, “Compiling Ladder Diagram into Instruction
List to Comply with IEC 61131-3”, 2010 Elsevier B.V. All rights
reserved

[4] Liuwen Huang, Wei Liu, Zhanqing Liu “Algorithm of Transformation
from PLC Ladder Diagram to Structured Text”, The Ninth
International Conference on Electronic Measurement & Instruments
ICEMI’2009

[5] Motohiko Okabe, “Development of Processor Directly Executing IEC
61131-3 Language”, SICE Annual Conference 2008 August 20-22,
2008, The University Electro-Communications, Japan

[6] Snaider Carrillo L., Agenor Polo Z. Mario Esmeral P. “Design and
Implementation of an Embedded Microprocessor Compatible with IL
Language in Accordance to the Norm IEC 61131-3”, Proceedings of
the 2005 International Conference on Reconfigurable Computing and
FPGAs (ReConFig 2005) 0-7695-2456-7/05 © 2005 IEEE

[7] H.A. Barker, J. Song and P Townsend, “A rule based procedure for
generating programmable controller code from graphical input in the
form of ladder diagrams”,Eng. Appl. Of AI.,1989, Vol.2 December, c
1989 Pineridge Press Ltd

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

