
 

 
Abstract— This study presents a new version of complex-

valued artificial neural networks (CVANN) for the complex-
valued pattern recognition and classification. Proposed new 
method is called as combined complex-valued artificial neural 
network (CCVANN) which is a combination of two complex-
valued artificial neural networks. To check the validation of 
proposed method, complex-valued XOR benchmark problem is 
used. The accuracy of the CCVANN model is more satisfactory 
as compared to the existing studies in the literature. Moreover 
the proposed CCVANN models’ results have lower recognition 
error than using a single CVANN model. 
 

Index Terms— Complex-valued artificial neural network, 
complex-valued XOR problem 
 

I. INTRODUCTION 

NN is a popular approach used especially in difficult 
and time-consuming engineering problems. The 
application of ANNs has opened a new area for solving 

problems not reasonable by other signal processing 
techniques [1,2]. It is expected that complex-valued 
artificial neural networks (CVANN) whose parameters 
(weights, threshold values, inputs and outputs) are all 
complex numbers, will have applications in fields dealing 
with complex numbers such as telecommunications, speech 
recognition, signal and image processing with the Fourier 
transformation. For complex signal processing problems, 
many existing neural networks cannot directly be applied. 
Although for certain applications it is possible to 
reformulate a complex signal processing problem so that a 
real-valued network and learning algorithm can be used to 
solve the problem, it is not always feasible to do so. 
Moreover it is preferred to preserve the concise formulation 
and elegant structure of complex signal [3]. 

The advantage of using complex-valued artificial neural 
network instead of a real-valued artificial neural network 
(RVANN) counterpart fed with a pair of real values is well 
known [4]. In complex-valued neural networks, one of the 
main problems is the selecting of nodes activation function. 
In real case, the node activation function is usually chosen 
to be a continuous, bounded and non-constant function. 
These conditions on the activation function are very mild 
and there is no problem in selecting a real function that 
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satisfies these requirements and that is also smooth 
(derivative exists). In the complex case, any regular analytic 
function cannot be bounded unless it reduces to a constant. 
This is known as the Liouville’s theorem. In complex case, 
the main constraints that the activation function should 
satisfy can be found in literatures [5,6]. 
In this paper, a novel cascade structure is proposed, called 
combined complex-valued artificial neural networks 
(CCVANN). General scheme of CCVANN is implemented 
in two levels. In the first level, learning of CVANN is 
realized using the original data set. After that, prediction of 
the first level and target of the original data are presented to 
the second level CVANN as inputs. Proposed method is 
tested by complex-valued XOR benchmark problem. 
Obtained results are compared with other complex-valued 
artificial neural network methods in the literature.   

 

II. METHODS 

A. Complex-Valued Artificial Neural Network (CVANN) 

Recently, there has been an increased interest in 
applications of the CVANN to process complex signals [7-
9]. In this study, a complex back-propagation (CBP) 
algorithm has been used for pattern recognition. We will 
first give the theory of the CBP algorithm as applied to a 
multi layer CVANN. Figure 1 shows a CVANN model.  

 

 
                    
                    Fig. 1. CVANN model 

 
The input signals, weights, thresholds, and output signals 
are all complex numbers. The activity Yn of neuron n is 
defined as: 

nm
m

nmn VXWY                                                             (1) 

where Wnm is the complex-valued (CV) weight connecting 

neuron n and m, Xm is the CV input signal from neuron m, 
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and Vn is the CV threshold value of neuron n. To obtain the 
CV output signal, the activity value Yn is converted into its 
real and imaginary parts as follows: 

ziyxYn                                                                      (2) 

where i denotes 1 . Although various output functions 
of each neuron can be considered, the output function used 
in this study is defined by the following equation: 

)(.)()( yfixfzf RRC                                                   (3) 

where fR(u)=1/(1+exp(-u)) and is called the sigmoid 
function. For the sake of simplicity, the networks used both 
in the analyses and experiments will have three layers. We 
will use Wml for the weight between the input neuron l and 
the hidden neuron m, Vnm for the weight between the hidden 
neuron m and the output neuron n, θm for the threshold of 
the hidden neuron m, and γn for the threshold of the output 
neuron n. Let Il, Hm, On denote the output values of the input 
neuron l, the hidden neuron m, and the output neuron n, 
respectively. Let also Um and Sn denote the internal 
potentials of the hidden neuron m and the output neuron n, 
respectively. Um, Sn, Hm, and On can be defined respectively 
as  

l
mlmlm IWU  ,  

m
nmnmn HVS  , Hm=fc(Um), and 

On= fc(Sn). Let δn=Tn-On denote the error between the actual 
pattern On and the target pattern Tn of output neuron n. We 
will define the square error for the pattern p as 
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n
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2
1 , where N is the number of output 

neurons. 
Next, we define a learning rule for the CBP model described 
above. We can show that the weights and the thresholds 
should be modified according to the following equations 
[7].  
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Equations (4)-(7) can be expressed as:  

    

  nmnm HV                                                               (8) 
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where z  denotes the complex conjugate of a complex 
number z. 

Summary of CBP algorithm: 
1. Initialization 

Set all the weights and thresholds to small complex random 
values. 

2. Presentation of input and desired (target) outputs 
Present the input vector X(1), X(2),….,X(N) and 
corresponding desired (target) response  T(1), T(2),….T(N), 
one pair at a time, where N is the total number of training 
patterns. 

 3. Calculation of actual outputs 
Use the formula in Eq.3 to calculate output signals. 

4. Adaptation of weights and thresholds 
Use the formulas in Eq. (8-11) to calculate adaptated 
weights and thresholds.  

  
One of the difficulties encountered in applying the CBP 

algorithm to the complex domain involves the appropriate 
choice of activation function.  

Several researchers developed a set of properties that a 
complex activation function must satisfy in order to be 
useful in a multilayer perceptron trained with the back-
propagation algorithm [6]. In summary, these properties are 
as follows: 

1. 1- The activation function φ(z) should be nonlinear in 
both ZQ and ZI, which denote the real and imaginary parts, 
respectively, of the argument Z. Otherwise, there is no 
advantage in having a multilayer perceptron. 

2. 2- The function φ(z) should be bounded.  
3. 3- The partial derivatives of φ(z) should exist and be 

bounded. 
4. 4- The function φ(z) should not be an entire function, 

which is defined as a complex function that is analytic 
everywhere in the complex domain.  

5. Complex activation function is a superposition of real 
and imaginary logarithmic sigmoids, as shown by 
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where Zr and Zi are the real and imaginary parts of Z 
respectively [6]. 
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B. Combined Complex-Valued Artificial Neural Network 
(CCVANN) 

Conventional ANN models for engineering focus on 
identifying and using a single, neural network model. This 
approach assumes that a single ANN model can take all the 
information of input data. The other candidate models are 
redundant. However, any individual model cannot be a 
success in the extraction of related information from data. 
Wolpert [10] proposed the idea of stacked generalization to 
combine multiple models. Sridhar et al. [11] were applied to 
stacked generalization for neural network models (SNN) 
that consist of a combination of the candidate neural 
networks. In [11], SNNs were limited to using a linear 
combination of artificial neural networks. Models that are 
useful in a nonlinear sense are wasted if a linear 
combination is used. Same authors proposed an information 
theoretic stacking (ITS) algorithm for combining neural 
network models in [12]. Proposed algorithm identifies and 
combines useful models regardless of the nature of their 
relationship to the network output. In this work, obtained 
results demonstrate that the SNNs developed using the ITS 
algorithm can achieve highly improved performance as 
compared to using a single ANN [12].  

An application of combined ANN (CANN) for medical 
diagnosis was proposed by Hayashi and Setiono [13]. To 
improve the accuracy of the diagnosis, second level ANN 
were trained with the outputs of the first level networks. 
They obtained higher accuracy rate in the second level ANN 
than the individual ANN in the first level. Ubeyli [14-16] 
proposed CANN to diagnose and classify tasks for medical 
data. In this study, diagnosis of internal carotid artery 
disorders, erythemato-squamous diseases and EEG signals 
classification was realized using CANN. Different 
engineering applications of CANN were presented by 
[17,18]. Subbaraj and Rajasekaran [17] and Dung [18] used 
CANN instead of single ANN for peak load forecasting and 
radar target recognition, respectively.     

The general CCVANN model which is a combination of 
two CVANN used in this study is illustrated in Figure 2. 
The CVANNs were used at the first and second levels for 
the complex-valued pattern recognition. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. CCVANN model 

 
 

III.  CALCULATION ERRORS 

A. Stopping Criteria 

The stopping criteria used for learning of CCVANNs was 
[8]: 
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where Tn

(p), On
(p)   C denote the desired output value. The 

actual output value of the neuron n for the pattern p, i.e the 
left side of (Eq. 13) denotes the error between the desired 
output pattern and the actual output pattern. N denotes the 
number of neurons in the output layer. 

The training of CCVANNs was stopped when the error 
goal was achieved. After that, the performances of 
CCVANNs were tested by presenting test subjects.  

 

B. Numerical Errors 

Training and test errors given in tables were conducted 
according to Eq. (14). 
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where t(i) is desired outputs, a(i) is outputs of neural 
network, k is the number of samples in training or test data, 
m is the number of segments in training or test data and n is 
the number of outputs of neural network for training or test 
procedures [19]. 
 

IV. COMPLEX-VALUED XOR PROBLEM 

 
Minsky and Papert [20] clarified the limitations of a 

single real-valued neuron: in a large number of interesting 
cases, a single real-valued neuron is incapable of solving the 
problems. A classic example of this case is the exclusive-or 
(XOR) problem which has a long history in the study of 
neural networks, and many other difficult problems involve 
the XOR as subproblem [21].  

In this section, it is proved that the XOR problem can be 
solved by a CCVANN. 

 

A. Complex-Valued XOR Problem with Four Patterns  

The input-output mapping in the XOR problem is shown 
in Table 1. In order to solve the XOR problem with 
complex-valued artificial neural networks, the input-output 
mapping is encoded as shown in Table 2 (similar XOR 
problem) where the real part of the output can be seen as the 
XOR of the input’s real and input’s imaginary part, and the 
imaginary part of the output is equal to real part of the input 
[22]. 

This problem has been simulated with 1-2-1 (one input, 
two hidden nodes in hidden layer and one output) 
CCVANN to compare with other methods in the literature 
(conventional CVANN [21], improved CVANN [22], 
Complex-Valued Wavelet ANN [23]) for complex-valued 
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XOR problem solving. For all methods, learning rate and 
maximum iteration number were chosen as 0.5 and 20000, 
respectively, similarly [23]. Error values in Table 3 were 
used as stopping criteria (as seen Eq. 13). Results for 
proposed methods and other methods were presented in 
Table 3, comparatively. It can be shown in this table, when 
the error was used as 0.001, the best success rate (nearly 
100 %) is obtained using proposed method.  For this error 
value, conventional CVANN and improved CVANN were 
achieved 93 % and 99 % success rate, respectively.  Using 
proposed method for complex-valued XOR problem were 
obtained higher success rates than single CVANN for all 
error values. 

 
TABLE I 

 XOR PROBLEM WITH FOUR PATTERNS 
INPUTS OUTPUT 

X1 X2 Y 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

 
 

TABLE II 
SIMILAR XOR PROBLEM FOR COMPLEX-VALUED PATTERNS 

 
 
 

 
 
 

 
TABLE III 

COMPARISON OF PROPOSED METHOD AND PREVIOUS STUDIES 

Origin of 
Methods 

Error = 0.1 / 0.01 / 0.001 
Success Rate (%) Iteration Number 

[21] 
Conventional 

CVANN 
95 / 95 / 93 488 / 1878 / 1184 

 
[22] 

Improved 
CVANN 

100 / 100 / 99 203 / 582 / 3180 

 
[23] 

Complex-Valued 
Wavelet ANN 

98.58 / 99.77 / 99.97 71 / 665 / 5095 

 
[Proposed] 
Combined 
CVANN 

97.55 / 99.75 / 99.99 75 / 615 / 5435 

 
 
When the error was used as 0.001, outputs of CCVANN 

was presented in Table 4. It can be shown in Table 4, results 
of proposed CCVANN algorithms to solving complex-
valued XOR problem were converged to target, 
successfully.  
 
 

TABLE IV 
OUTPUTS OF CCVANN FOR ERROR=0.001 

 
 
 
 
 
 

 

B. Complex-Valued XOR Problem with Sixteen Patterns  

For the second experiment, complex-valued XOR gate 
patterns of Nitta [8] were used. CCVANN was trained and 
tested with the sixteen patterns of Table 5. Leave one out 
cross-validation method [23] was used for obtaining a better 
network generalization. Obtained training and test errors 
were averaged.  

Optimum network architecture is defined as 2-2-1. 
Learning rate was chosen as 1.0 in training via 
experimentation. Maximum iteration number is 1000.  
Training and test errors were obtained 0.032 % and 0.035 
%, respectively. Target and outputs of CCVANN are shown 
in Table 6.  

 
TABLE V 

 XOR PROBLEM WITH SIXTEEN PATTERNS 
Input 1 Input 2 Output 

0 0 1 
0 i i 
i 0 0 
i i 1+i 
i 1 i 
1 1 1+i 

1+i i i 
1+i 1+i 1 
0 1 i 
0 1+i 0 
i 1+i 0 
1 0 0 
1 i i 
1 1+i 0 

1+i 0 0 
1+i 1 i 

 
TABLE VI 

 RESULTS OF CCVANN FOR TABLE V 
Target Outputs of CCVANN 

1 0.9988+0.0006i 
i 0.0010+0.9991i 
0 0.0007+0.0010i 

1+i 0.9991+0.9989i 
i 0.0010+0.9992i 

1+i 0.9994+0.9986i 
i 0.0009+0.9991i 
1 0.9986+0.0007i 
i 0.0010+0.9993i 
0 0.0006+0.0011i 
0 0.0007+0.0010i 
0 0.0005+0.0010i 
i 0.0008+0.9993i 
0 0.0006+0.0011i 
0 0.0005+0.0008i 
i 0.0009+0.9991i 

 
 

V. CONCLUSIONS 

 
In this paper, a combined complex-valued artificial neural 
network model considering the complex-valued pattern 
recognition was developed. The following conclusions may 
be drawn based on the results presented; 
1. The results of the CCVANN compared to experimental 
results are found to be more satisfactory (99.99%). 
Moreover, the proposed method performs better when 
compared to existing methods in the literature.  

Input Pattern Output Pattern 

0 0 
i 1 
1 1+i 

1+i i 

Target Outputs of CCVANN 

0 0.0001 + i0.0001 

1 0.9999 + i0.0001 

1 + i 0.9999 + i0.9999 

i 0.0001 + i0.9999 
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2. The proposed CCVANN methods’ results have a lower 
prediction error than using a single CVANN model.  
3. Although the performance of the developed CCVANN 
model is limited to the range of input data used in the 
training and testing process, the method can easily be 
applied with additional new set of data.  
 

REFERENCES 
[1] A.S., Miller, B.H. Blott and T.K. Hames, “Review of neural network 

applications in medical imaging and signal processing”, Medical and 
Biological Engineering and Computing, 30 449-464. 1992. 

[2] W.G. Baxt, “Use of an artificial neural network for data analysis in 
clinical decision making, the diagnosis of acute coronary occlusion”, 
Neural Computing, 2, 480-489, 1990. 

[3] C. Li, X. Liao and J Yu, “Complex-valued wavelet network”, 
Journal of Computer and System Sciences, 67, 623-632, 2003. 

[4]  N. Benvenuto, M. Marchesi, F. Piazza, and A. Uncini, “A comparison 
between real and complex-valued neural networks in communication 
applications”, Proceedings of the International Conference on 
Artificial Neural Networks IEEE, Spain, 1991. 

[5]  N. Georgin and C. Koutsougeras, “Complex domain 
backpropagation”, IEEE Transactions on Circuits And Systems,  39, 
330-334, 1992. 

[6]    S. Haykin, Adaptive Filter Theory, Prentice Hall, 2002. 
[7]    T. Nitta, “A back-propagation algorithm for complex numbered neural 

networks”, Proceedings International Joint Conference on Neural 
Networks, IEEE, Nagoya, 1649-1652, 1993. 

[8]    T. Nitta, “An extension of the back-propagation algorithm to complex 
        numbers”, Neural Network, 10, 1391-1415, 1997. 
[9]    T. Nitta, “An analysis of the fundamental structure of complex-valued 
          neurons”, Neural Processing Letters, 12, 239-246, 2000. 
[10]   D. H. Wolpert,. Stacked generalization, Neural Networks, Vol. 5 (2),                     

241-259, 1992. 
[11]  V. Sridhar, C Seagrave and B. Barlett, “Process modeling using  

stacked neural networks”, American Institute of Chemical 
Engineering Journal, Vol. 42 (9), 2529-2539, 1996. 

[12]  V. Sridhar, B. Barlett and C. Seagrave, “An information theoretic 
approach for combining neural network process models”, Neural 
Networks,  Vol. 12, 915-926, 1999. 

[13]  Y Hayashi and  R. Setiono,” Combining neural network predictions   
for medical diagnosis”, Computers in biology and medicine, Volume 
32 (4), 237-246, 2002. 

[14]  E. D. Übeyli, “Combining neural network model for automated 
diagnostic systems”, Journal of Medical Systems, Vol. 30, 483-488, 
2006. 

[15]  E. D. Übeyli, “Combined neural networks for diagnosis of 
erythemato-squamous diseases”, Expert Systems with Applications, 
Vol. 36, 5107-5112, 2009. 

[16]  E. D. Übeyli, Combined neural network model employing wavelet 
coefficients for EEG signals classification, Digital Signal 
Processing, Vol. 19, 297-308. 

[17]  P. Subbaraj and V. Rajasekaran, “Evolutionary techniques based 
combined artificial neural networks for peak load forecasting”, 
World Academy of Science, Eng., Tech., Vol. 45, 680-686, 2008. 

[18]  P. T. Dung, “Combined neural Networks for radar target recognition 
from radar range profiles”, International Conference on Advanced 
Technologies for Communications, 353-355, 2008. 

[19]  Y. Özbay, R. Ceylan and B. Karlik, “A fuzzy clustering neural 
network architecture for classification of ECG arrhythmias”, 
Computers in Biology and Medicine, 36, 376-388, 2006. 

[20]   M. L. Minsky and S. A. Papert,, Perceptrons, MIT Pres, Cambridge, 
1969. 

[21]   T. Nitta, “Solving the XOR problem and the detection of symmetry 
using a single complex-valued neuron”, Neural Networks, 16, 1101-
1105, 2003. 

[22]   X. Chen,  Z. Tang C. Variappan, S. Li and T. Okada, “A modified 
error backpropagation algorithm for complex-value neural 
networks”, International Journal of Neural Systems, 15, 435-443, 
2005. 

[23]  Y. Özbay, S. Kara, F. Latifoğlu, R Ceylan and M. Ceylan, “Complex-
valued wavelet artificial neural network for Doppler signal 
classifying”, Artificial Intelligence in Medicine, 40, 143-156, 2007. 

 
 
 

 
 
 
 
 
 
 
 
 
  
 
   
 

Proceedings of the World Congress on Engineering 2011 Vol II 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011




