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Abstract— OWL became a de facto language for 

representing Semantic Web ontologies. Having been improved 

and extended with rules, the language was later updated to 

OWL 2. In this paper we propose a framework for reasoning 

with an OWL2 ontology and rules using meta-logic. Our meta-

logical system consists of meta-programs expressing onotologies 

and rules, and an inference engine in a form of meta-

interpreters defined by a demo(.) predicate. The framework 

reasons with ontologies and rules in OWL 2 by first an 

ontology and rules being translated into meta-statements, and 

these meta-statements then being reasoned by the meta-

interpreter, which provides a query answering mechanism to 

infer implicit information. A comparative study of related 

works has revealed a merit of our meta-logical representation 

approach that separates the meta level knowledge from the 

object level one. 

 
Index Terms— Semantic Web Ontologies, OWL 2, Rules, 

Metalogic, Meta-reasoning. 

 

I. INTRODUCTION 

ntologies and rules have played an important role in the 

Semantic Web (or shortly ‗SW‘). An ontology forms 

vocabularies and sentences used to express knowledge, and 

this knowledge can be shared on the web. OWL was 

accepted by W3C as a language for representing a web 

ontology. Its core, OWL-DL, is essentially an XML 

encoding of an expressive Description Logic (DL) built 

upon RDF (Resource Description Framework) with a 

substantial fragment of RDF-Schema (RDFS). The 

vocabularies defined in such an ontology consist of classes 

(or so-called ‗concepts‘) and properties (so-called ‗roles‘); 

in logic classes can be treated as unary predicates while 

properties as binary predicates, and all these predicates 

represent relations. OWL was successfully adopted for the 

semantic web in the past. However, some knowledge should 

be formulated more naturally as rules rather than axioms. 

Unfortunately, the rules are missing from OWL. 

A rule representation is a formalism used in logic 

programming. It has been proposed as a promising form of 

knowledge representation in SW which complements to 

other means of knowledge representation in OWL. In the 

broadest sense, a rule can be any statement of the form ―if 
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the precondition p holds then the conclusion c holds‖, where 

the precondition and the conclusion are logical sentences. 

The realization of rules allows a means to deduce and 

combine information. This leads to a way for enhancing 

content, and supporting reasoning capabilities, on OWL 

ontologies. 

The extension of SW ontologies with rules has recently 

attracted much attention in the Semantic Web research, and 

many approaches have been proposed for it. One of them is 

to combine DL with first-order Horn-clause rules. This is the 

basis of the Semantic Web Rule Language, SWRL [2], a 

language for rule formulation and rule extension to OWL. 

However, inferences on SWRL rules can lead to 

undecidability even though the rules are assumed to be 

function-free [2]. In order to make the inferences decidable, 

some restrictions were put upon the rule language in the 

form of DL-safe rules [7] or the form of Description Logic 

Programs (DLP) [1]. Recently, a new revision of OWL has 

been developed by W3C, it is called ‗OWL 2‘. OWL 2 has 

much improvement on its predecessor—OWL—especially 

with rule formulation based on DL SROIQ [11], in which 

DL rules can be completely ensured to be decidable 

fragment of SWRL. 

In our previous work [9], we have developed a meta-

logical approach for reasoning with semantic web ontologies 

expressed in OWL. In this paper we go further by extending 

that framework so that it can reason with SW ontologies and 

rules in OWL 2. 

The remainder of the paper is organized as follows. 

Section II reviews some concepts of ontologies with a rule 

extension, and shows how rules can be expressed in OWL 2. 

Accordingly, we extend our previous framework in order to 

reason with ontologies and rules in OWL 2 in Section III. 

Section IV demonstrates how our new framework reasons 

with ontolologies and rules. We discuss related work in 

section V. Finally, section VI concludes this work.  

II. EXTENDING ONTOLOGIES WITH RULES 

A. SW Ontologies with Rules 

Adding rules to ontologies expressed in OWL could be 

regarded as an important step forward in the SW research, as 

inferences can now be performed upon SW ontologies; and 

many research proposals have been proposed; they range 

from hybrid approaches to homogeneous ones. 

The idea behind the hybrid approaches was that the 

predicates in the rules and predicates in the ontologies are 

treated to be different, and suitable interface between them is 

provided. The research works on this direction are such as 
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AL-log language, a hybrid integration of Datalog and 

Description Logic ALC [4], CARIN, another hybrid 

integration of Datalog with different DLs [5], and a hybrid 

integration of OWL DL (or more precisely the DL SHOIN) 

with normal rules under answer set semantics [6]. 

According to the homogeneous approaches both rules and 

ontologies are combined into the same logical language 

without making a priori distinction between the rule 

predicates and the ontology predicates. Two example 

languages based on these approaches are Description Logic 

Program (DLP) [1] and Semantic Web Rule Language 

(SWRL) [2]. In [1] a DLP was proposed by combining 

Description Logics (DLs), which is the basis for the 

ontology languages, with Logic Programs (LP), which is the 

basis for rule languages. It supports a bidirectional 

translation of premises and inferences between the fragment 

of DL and LP, and vice versa. This translation enables one 

to construct rules on top of SW ontologies. Later SWRL was 

proposed in [2] as a new language for an integration of rules 

and ontologies, in which OWL was extended with Horn-

clause rules expressed in RuleML. 

Recently SWRL becomes the most widely used language 

for describing ontologies with rules. However, the 

straightforward addition of the rules to ontologies leads to 

undecidability when reasoning with SWRL ontologies. In 

order to retain decidability, some restrictions have been put 

upon SWRL rules, and these restricted rules can be rewritten 

as a set of DL axioms using features introduced in SROIQ. 

This technique has been presented in [8]. Due to the fact that 

OWL 2 was developed based on DL  SROIQ, OWL 2 can 

therefore express rules in the form of DL axioms. 

 

B. Expressing Rules in OWL 2 

Some previous SW ontology languages such as 

DAML+OIL and OWL were developed based on DL 

SHOIQ [12]. SHOIQ provides a variety of constructors for 

building class expressions. The DL class expressions can be 

demonstrated as being corresponded to first order logic 

(FOL) which is used to formulate rules. Table I shows the 

correspondence between FOL formulae and the DL class 

expressions [1]. 

According to this correspondence, an FOL sentence can 

be expressed in DL as well as in DAML+OIL or OWL. For 

example, a rule of the form: C(x)  ¬D(x) E(x)  F(x) 

can be rewritten as a DL axiom: C ⊓ ¬D ⊑ E ⊔ F, and a 

rule of the form: C(x)   R(x,y) E(x) can be rewritten 

in DL as the axiom: C ⊓ R.⊤ ⊑  E. However, with some 

rules such as: 

 hasParent(x,y)  hasBrother(y,z)  (A) 

 hasUncle(x,z), and 

  Man(x)  hasChild(x,y) fatherOf(x,y).  (B) 

There is no correspondence so they cannot be rewritten as 

DL axioms, however to be able to do so we need some extra 

axioms in DL SROIQ, these are some new features 

introduced in OWL 2. 

OWL 2 which is based on DL SROIQ [11] supports the 

Role Inclusion Axiom (RIA) or so-called the ―property 

chain‖ axiom and the Self concept, and these can be used to 

express more forms of rules, including the previous example. 

Table I: DL-FOL equivalence 
 

Expression DL FOL 

subclassOf C ⊑ D  x.C(x)    D(x) 

subpropertyOf P1 ⊑P2  x,y.P1(x,y)  P2(x,y) 

transitiveProperty P+ ⊑  P  x,y,z.(P(x,y)  P(y,z))  
          P(x,z) 

functionalPropery   ⊤≤1 P  x,y,z.(P(x,y)  P(x,z))  
              y=z 

inverseProperty P   Q— 
 x,y.P(x,y)  Q(y,x) 

intersectionOf C1⊓ …⊓Cn C1(x)   …  Cn(x) 

unionOf C1⊔ …⊔Cn C1(x)   …  Cn(x) 

complementOf ¬C ¬C(x) 

 

The Role Inclusion Axioms are the constructs of the form 

R o S ⊑ T where o is a binary composition operator. This 

form is equivalent to an FOL formula:  x,y,z.(R(x,y)  S(y,z)) 

  T(x,z). By adopting this, rule A can easily be rewritten as 

a DL SROIQ  axiom: 

 hasParent o hasBrother ⊑ hasUncle. 

The Self concept allows one to express a ―local reflexive‖ 

property, e.g. R(x,x), in which a role R relates an 

individual x to itself. The Self concept can be used to 

transform a property R(x,x)into a class CR and vice versa, 

and this is due to a DL SROIQ  axiom CR   R.Self. 

Therefore to derive the DL SROIQ axioms which 

correspond to rule B, we first transform a class Man into a 

property PMan by introducing an axiom Man   PMan.Self, 

we then apply the previous RIA. As a result, rule B will be 

equivalent to the DL SROIQ   axioms: 
Man  PMan.Self. 
PMan o hasChild ⊑  fatherOf. 

With the DL-FOL and DL SROIQ-FL mappings we can 

express a rather wide range form of rules in DL axioms of 

OWL 2 and vice versa, if they satisfy certain restrictions [8]. 

In the next section we extend our previous framework [9] so 

that it can reason with ontologies and rules expressed in 

OWL 2.  

III. OUR META-LOGICAL APPROACH 

A. Our Approach 

Our framework forms a logical system consisting of meta-

programs and an inference engine. The former is in the form 

of logical sentences representing a meta-level description of 

an SW ontology. That is, the ontology described by OWL 2 

is transformed into a meta-logical representation. The latter 

is a meta-interpreter, in the form of a demo (meta-)program, 

which is used to infer explicit as well as implicit 

information, or in other words draw conclusions, from the 

former. The meta-interpreter can also communicate to the 

internet to obtain SW ontologies, communicate with the user 

to get SW information, draw inference consequences for the 

user, and traverse a link to an SW or web resource like a 

web browser. 

In this paper our previous framework [9], which was 
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designed to support reasoning with OWL ontologies, is now 

enhanced with an ability to reason with ontologies and rules 

expressed in OWL 2. Our meta-logical system can be simply 

illustrated in Fig. 1. In order to support rules, which are 

expressed by using the new features in OWL 2, the meta-

program in our previous framework has to be extended with 

some new forms of meta-statements. 

 

User
Internet

Ontologies and 

rules in OWL 2

Meta-interpreter

Meta-programs transformed 

from SW ontology

 

Fig. 1 Our meta-logical system 
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Fig. 2 Object level and Meta level of ontology elements. 

 

 To explain our framework, in the next three sub-sections 

we first introduce our meta-language used for formulating 

the meta-programs of ontologies and rules, then explain the 

meta-programs in details. Finally we describe our meta-

interpreter. 

B. Meta-language for an OWL2 Ontology 

The language elements of an SW ontology are classes, 

properties, instances, and relationships between/among them 

described in the object level and the meta-level as depicted 

in Fig. 2. At the object level, an instance can be an 

individual or a literal of a domain, e.g. ‗john‘, and property 

is a relationship between individuals, or is an individual‘s 

attribute, e.g. ‗hasSon‘, ‗type‘. At the meta-level, a meta-

instance can be an individual, a property, a class, or an 

object-level statement. A meta-property is a property to 

describe a meta-instance‘s attribute or a relationship 

between/among meta-instances, e.g. ‗reflexive‘, etc. Notice 

that according to the SW convention, to make a name 

appearing in an ontology unique, we qualify it with a 

namespace like <namespace>:<name>, such as ‗f‘:‗son‘, 

‗f‘:‗hasSon‘, ‗owl‘:‗reflexive‘, etc. Henceforth this qualified 

name will be used throughout. 

According to our framework, in an SW ontology we 

distinguish between its object and meta levels, and similarly 

its object and meta languages. The object language specifies 

objects and their relationships in the real world. The meta-

language describes the syntactic form of the object language. 

Hence, we have formulated two meta-languages: one 

discussing mainly about objects and their relationships we 

call it ―meta-language for the object level (ML)‖, and the 

other we call ―meta-language for the meta-level (MML),‖ 

which discusses mainly about classes, instances, properties 

and their relationships. 

 Meta-language for the object level (ML) 

Objects and their relationships at the object level are 

specified in an SW ontology and this information is 

expressed by the elements of ML below. 

Meta-constant specifies a name of an object and a literal, 

e.g. ‘son’, including a reference, e.g. a namespace, the 

latter is a meta-constant of MML. This means that ML and 

MML are not totally separated. 

Meta-variable stands for a different meta-constant at a 

different time, e.g. Person. 

Meta-function symbol stands for a name of a relation 

between objects, or a name of an object‘s property—i.e. an 

object-level predicate name, such as ‘hasSon’, ‘name’. It 

also stands for other meta-level function symbol, e.g. ‘ ’, 

‘ ’, ‘:’. 

Meta-term is either a meta-constant or a meta-variable or 

meta-function symbol applied to a tuple of meta-terms, e.g. 

‘f’:‘hasSon’, ‘owl’:‘reflexive’.  To express object-

level predicate it has the form: P(S, O), where P is an object-

level predicate name, S and O are meta-constants or meta-

variable, e.g. 

 ‘f’:‘hasSon’(‘f’:‘fa’,‘f’:‘son’). 

Meta-statement for the object level reflects an object-

level sentence to its existence at the meta-level. It has the 

form: statement(object-level-sentence), e.g. 
statement( 

  ‘f’:‘hasSon’(‘f’:‘fa’,‘f’:‘son’) true). 

 Meta-language for the meta level (MML) 

Apart from the object language, an SW ontology also 

defines classes, properties, their relationships, as well as 

class-instance relations, and we argue that this information is 

meta-information of the object level. Here we express this 

information by MML which includes: 

Meta-constant specifying a name of an instance, a 

property, a class, a literal, and a namespace. 

Meta-variable standing for a different meta-constant at a 

different time. 

Meta-function symbol standing for a logical connective, 

e.g. ‘ ’, ‘ ’, ‘¬’ (‘¬’ is used to express a classical 

negation); or ‘:’; or a name of set operators applied on 

classes such as union; or a meta-predicate name being a 

name of a relation between entities; or a name of 

characteristic of a property, which may fall into one of the 

following categories: 

Class-class relations: equivalent class of, etc. 

Class-instance relations: instance of, class of, etc. 

Property-property relations: property chain of, etc. 

Class-property relations: Keys, etc. 

Relations between literals and instances/classes/ 

properties: we can take these relations as attributes of 

instances, of classes, or of properties, e.g. comment. 

Characteristics of properties: reflexive, asymmetric, etc. 

Meta-term being either a meta-constant or a meta-variable 

or meta-function symbol applied to a tuple of meta-terms, 

e.g. ‘f’:‘fatherOf’, etc. When a meta-term expresses a 

meta-level predicate stating a relation between entities, it has 

the form of Pred(Sub,Obj), and when it expresses a meta-

level predicate stating a characteristic of a property, it has 

the form of Pred(Prop), where Pred is a meta-predicate 

name, Sub,  Obj, and Prop (a property) are meta-constants 

or meta-variables. 
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An example of a meta-term expressing a classical negation, 

is in the form of ‘¬’‘rdf’:‘type’(I,C), where I is a 

meta-constant specifying an individual, and C is a meta-

constant specifying a class. 

The meta-term expressing a meta-level sentence is a term 

Pred(Sub,Obj) or Pred(Prop) or a logical-connective 

function symbol applied to the tuple of these terms. Let all 

meta-variables appearing in the meta-level sentence be 

universally quantified. One form of the sentence is a Horn-

clause meta-rule, e.g. 

‘owl’:‘propertyDisjointWith’(P,DP)  
‘owl’:‘propertyDisjointWith’(DP,P). 

Meta-statement being a meta-predicate or meta-

predicates connected by logical connective. It has two forms 

meta_statement(meta-level-sentence) and axiom(meta-level-

sentence), the latter represents a rule for a mathematical 

axiom, e.g.: 

meta_statement(‘owl’:‘propertyDisjointWith’ 

(‘f’:‘likes’,‘f’:‘dislikes’) true). 

axiom(‘owl’:‘propertyDisjointWith’(P,DP)  
‘owl’:‘propertyDisjointWith’(DP,P)). 

C.  Meta-programs of an Ontology with Rules 

Each OWL2 ontology is transformed into a meta-program 

containing a (sub-)meta-program expressed in ML, called 

MP, and a (sub-)meta-program expressed in MML, called 

MMP. Another meta-program expresses some mathematical 

axioms for classes and properties called AMP is also needed 

for the inference engine to reason with MP and MMP. 

 Meta-program for the object level (MP) 

MP contains information of instances and their 

relationship in the form of meta-statements for the object 

level: statement(P(S,O) true). In terms of a rule 

system, this can be understood as a ‗fact‘. An example is: 

statement(‘f’:‘hasFather’ 

(‘f’:‘M02’,‘f’:‘M01’) true). 

 Meta-program for the meta level (MMP) 

MMP contains meta-statements for classes, properties, 

their relationships, and class-instance relationships in the 

form of meta-rules. Here are some typical examples: 

Some meta-statement about classes and their relationships: 
meta_statement(‘rdfs’:‘subClassOf’ 

(C,SC) true). 

// The class C is sub-class of class SC. 

meta_statement(‘rdfs’:‘equivalentClass’ 

(C,EC) true). 

// Classes C and EC are equivalent. 

meta_statement(‘owl’:‘disjoinwith’ 

(C,DC) true).  

// Classes C and DC are disjoint. 

meta_statement(‘owl’:‘intersectionOf’ 

(C,Cs) true). 

// Class C is intersection of classes in Cs. 

meta_statement(‘owl’:‘unionOf’ 

(C,Cs) true). 

// Class C is union of classes in Cs. 

meta_statement(‘owl’:‘complementOf’ 

(C,CC) true). 

// Class C is complement of class in CC. 

meta_statement(‘rdf’:‘type’(I,C) true). 

// The Instance I is an instance of class C. 
… 

Meta-statements about properties and their relationships: 
meta_statement(‘owl’:’inverseOf’ 

(P,IP) true). 

//The property P is an inversion of property IP. 

meta_statement(‘owl’:‘symmtric’(P) true). 

//The property P is symmetric. 

meta_statement(‘rdfs’:‘domain’(P,D) true). 

//The domain of property P is D. 

… 

The new features in OWL 2 that referred to in section II 

can be translated to the following meta-statements in MMP: 

meta_statement(‘owl’:‘propertyChainOf’ 

(P,[P1, P2]) true). 

//Express RIA: Property P is composition of properties P1, P2. 

meta_statement(‘owl’:‘objectHasSelf’( 

C, PC) true). 

//Express the Self concept: C is a class of individuals which are 

related to themselves under the role PC. 

With such meta-statements we can transform DL rules 

into a meta-program. Here are examples of MMP that 

correspond to the rules we listed in section II.B: 

Rule “C ⊓ ¬D ⊑ E ⊔ F” is transformed into MMP: 
meta_statement(‘rdfs’:‘subClassOf’ 

(M,N)  true). 

meta_statement(‘rdfs’:‘unionOf’ 

(N,[E,F]) true). 

meta_statement(‘rdfs’:‘intersectionOf’ 

(M,[C,D’]) true). 

meta_statement(‘rdfs’:‘complementOf’ 

(D’,D) true). 

Rule “hasParent o hasBrother ⊑ hasUncle” is transformed 

into MMP: 
meta_statement(‘owl’:‘propertyChainOf’ 

(‘f’:‘hasUncle’,[‘f’:‘hasParent’, 

‘f’:‘hasBrother’]) true). 

Rule ―Man(x)  hasChild(x,y) fatherOf(x,y)‖ is 

transformed into MMP: 
meta_statement(‘owl’:‘objectHasSelf’ 

(‘f’: ‘Man’, PMan)  true). 

meta_statement(‘owl’:‘propertyChainOf’ 

(‘f’:‘fatherOf’, 

[PMan,‘f’:‘hasChild’]) true). 

 

 Meta-program for the axioms (AMP) 

AMP contains axioms for classes and properties, they are 

expressed in the meta-rule form. In [9], we had several 

axioms in AMP to support for OWL. In order to work with 

ontologies and rules expressed in OWL 2, we add more 

axioms to manipulate with the new features in OWL 2, and 

an axiom for a set complement. Here we list all the axioms 

corresponding to the formulae in Table I and to the new 

features in OWL 2: 

axiom(‘rdf’:‘type’(I,C)   (asic) 
 ‘owl’:‘subclassOf’(SC,C)   
 ‘rdf’:‘type’(I,SC)). 

// Axiom to handle a subclass formula. 

axiom(P(S,O)   (acsp) 
‘rdfs’:‘subPropertyOf’(SP,P)  SP(S,O)). 

// Axiom to handle a subproperty formula. 
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axiom(P(S,O)   (actp) 
‘owl’:‘transitive’(P)  P(S,O1)   P(O1,O)). 

// Axiom to handle a transitive property 

axiom(P(S,O)   (acfp) 
‘owl’:‘functional’(P)   
P(S,O1)   ‘owl’:‘sameAs’(O,O1)). 

// Axiom to handle a functional property 

axiom(P(S,O)   (acip) 
‘owl’:‘inverseOf’(P,IP)  IP(O,S)). 

// Property IP is an inverse property of P. 

axiom(P(S,O)   (acpc) 
‘owl’:‘propertyChainOf’(P,[P1,P2])   
 P1(S,O1)  P2(O1,O)). 

// Axiom to handle the chain property. 

axiom(P(S,S)   (acsc) 
‘owl’:‘objectHasSelf’(C,P)   
‘rdf’:‘type’(S,C)). 

// Axiom to handle the Self concept. 

axiom(‘rdf’:‘type’(I,C)   (acic) 
‘owl’:‘intersectionOf’(C,Cs)   
 ‘intertype’(I,Cs)). 

‘intertype’(I,[H|T])  
 ‘rdf’:‘type’(I,H)   ‘intertype’(I,T). 
// Axiom to handle a set intersection. 

axiom(‘rdf’:‘type’(I,C)   (acuc) 
‘owl’:‘unionOf’(C,Cs)  ‘unionType’(I,Cs)). 

‘unionType’(I,[H|T]) ‘rdf’:‘type’(I,H). 
‘unionType’(I,[H|T]) ‘unionType’(I,T). 

// Axiom to handle a set union. 

axiom(‘¬’‘rdf’:‘type’(I,C)   (accc) 
 ‘owl’:‘complementOf’(C, Cc)   
 ‘rdf’:‘type’(I,Cc)). 

// Axiom to handle a set complement. 
 

D. The Meta-interpreter 

The meta-interpreter in our framework is constructed for 

reasoning with the meta-programs MPs, MMPs, and AMPs 

and can be used to develop an intelligent agent to reason 

with SW ontologies. It is defined by a demo predicate of the 

form demo(A). With this predicate we can infer the answer 

A from the meta-programs. Our meta-interpreter adapts the 

Vanilla meta-interpreter in [10] in order for reasoning with 

the meta-programs transformed from ontologies and rules 

where we have defined three kinds of meta-level statements: 

(1) statement(A B) for the object-level of an ontology, 

(2) meta_statement(A B) for the meta-level of an 

ontology (including rules), and (3) axiom(A B) for the 

mathematical axioms.  The definition of demo/1 is: 

demo(true). (true) 

demo(A‘  ’B) demo(A)  demo(B). (conj) 

demo(A) statement(A‘ ’B)  demo(B). (ost) 

demo(A) meta_statement(A‘ ’B)  demo(B). (mst) 

demo(A) axiom(A‘ ’B)  demo(B). (ast) 

The first clause (true) is the basis for proving true. The 

second clause (conj) is used for proving a conjunction goal. 

Three last clauses (ost), (mst), and (ast) are used for 

interpreting three meta statements of the three meta-

programs MP, MMP, and AMP respectively. 

IV. QUERY ANSWERING WITH OUR FRAMEWORK 

In our framework, ontologies and rules expressed in OWL 

2 are transformed into a meta-program formed by the three 

sub-meta-programs MP, MMP and AMP. This meta-

program is used as the input of the meta-interpreter which is 

implemented in Prolog; the meta-interpreter is the inference 

engine reasoning with the meta-program to derive 

conclusions. 

The family ontology [13] is used as an example to 

demonstrate our framework. Due to its lack of rules, three 

OWL2 rules are added to it. After the whole ontology is 

transformed into meta-programs, here are some parts of 

them: 

 The MP program 

statement(‘f’:‘hasParent’ (1) 

(‘f’:‘M02’,‘f’:‘M01’) true). 

statement(‘f’:‘hasParent’ (2) 
(‘f’:‘F02’,‘f’:‘M01’) true). 

statement(‘f’:‘hasParent’ (3) 
(‘f’:‘M03’,‘f’:‘F02’) true). 

… 

 The MMP program 

meta_statement(‘rdf’:‘type’ (1‘) 
(‘f’:‘M01’,‘f’:‘Man’) true). 

meta_statement(‘rdf’:‘type’ (2‘) 
(‘f’:‘M02’,‘f’:‘Man’) true). 

meta_statement(‘rdf’:‘type’ (3‘) 
(‘f’:‘F02’,‘f’:‘WoMan’) true). 

meta_statement(‘owl’:‘complementOf’ (4‘) 
(‘f’:‘Man’,‘f’:‘WoMan’) true). 

meta_statement(‘owl’:‘unionOf’ (5‘) 
(‘f’:‘Human’, 

 [‘f’:‘Man’,‘f’:‘WoMan’]) true). 

The first rule hasParent(x,y)   hasParent(z,y)  

siblingOf(x,z) added is expressed by  hasParent o 

hasParent
– ⊑ siblingOf DL axiom, where hasParent– 

is the inverse property of hasParent. This is transformed 

into the following meta-statements in MMP: 

 meta_statement(‘owl’:’inverseOf’ (6‘) 
 (‘f’:‘parentOf’,‘f’:‘hasParent’) true). 

 meta_statement(‘owl’:‘propertyChainOf’ (7‘) 
 (‘f’:‘siblingOf’,[‘f’:‘hasParent’, 

 ‘f’:‘parentOf’]) true ). 

The next one Man(x)  siblingOf(x,y)  brotherOf(x,y) 

is transformed into the meta-statements in MMP: 

meta_statement(‘owl’:‘objectHasSelf’ (8‘) 
(‘f’: ‘Man’, PMan) true). 

meta_statement(‘owl’:‘propertyChainOf’ (9‘) 
(‘f’:‘brotherOf’, 

[PMan,‘f’:‘siblingOf’]) true). 

The third rule brotherOf(x,y)  parentOf(y,z)  

uncleOf(x,z) is transformed into the  following meta-

statements in MMP: 

meta_statement(‘owl’:‘propertyChainOf’ (10‘) 
 (‘f’:‘uncleOf’,[‘f’:‘brotherOf’, 

 ‘f’:‘parentOf’]) true ). 

Now we pose some queries to the meta-interpreter to get 

answers as follows: 
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?- demo(‘rdf’:‘type’(‘f’:‘M02’,X)). (q1) 
X = ‘f’:‘Man’; 

X = ‘f’:‘Human’. 

//1st answer is supported by (mst), (1’), and (true), and 2nd answer 

is supported by (ast), (acuc), (conj), (5’), (1’), and (true). 

?- demo(‘¬’‘rdf’:‘type’(‘f’:‘F02’,X)). (q2) 
X = ‘f’:‘Man’. 

//The adopted clauses are (ast), (accc), (conj), (mst), (4’), (3’) and 

(true). 

?- demo(‘f’:‘siblingOf’(‘f’:‘M02’,X)). (q3) 
X = ‘f’:‘F02’. 

//The adopted clauses are (ast), (acpc), (conj), (7’), (true), (ost), 

(1), (mst), (acip), (6’), and (2). 

?- demo(‘f’:‘brotherOf’(X, ‘f’:‘F02’)). (q4) 
 X = ‘f’:‘M02’. 

//The adopted clauses are (ast), (acpc), (conj), (9’), (true), (acsc), 

(8’), (mst), (2’), and the clauses adopted for answering q3. 

?- demo(‘f’:‘uncleOf’(‘f’:‘M02’,X)). (q5) 
X = ‘f’:‘M03’. 

//The adopted clauses are (ast), (acpc), (conj), (10’), (true), (3), 

and the clauses adopted for answering q4. 

V. RELATED WORKS 

We now look at other approach that enhances ontologies 

with rules. Grosof et al. [1] proposed the Description Logic 

Program (DLP); this approach supports bi-directional 

translation between logical sentences from DLP fragment of 

Description Logic and logic programs. 

According to this approach, every concept referred to in 

an ontology is mapped into a unary relation with a concept 

name becoming a name of the relation and an individual 

name becoming an argument. Every instance-property-

instance relationship is mapped into a binary relation. In 

addition, concepts as well as property constructor statements 

are converted into rules. The distinction between this 

approach and ours is the following. 

Firstly this approach was designed to support a subset of 

DAML+OIL, and provides only a mapping from RDFS and 

DAML+OIL into logic programs, but does not support the 

new features in OWL 2, such as the property chain axiom 

and the Self concept. Secondly, this approach has a 

weakness when representing an ontology in a logic program. 

For example, to represent the statement ―a is union of b1,
 
b2, 

…, bn‖, it requires n number of rules to do so, i.e. a(X):-

b1(X), …, a(X):-bn(X). However, in our representation, 

this requires only one statement, that is our (acuc) axiom, 

which is more compact.  

 Even more importantly, their representation of logic 

program is at the object level only. Thus, the names of 

concepts, or the names of roles, in an ontology which are 

meta-terms cannot be accessed and reasoned from their logic 

program and therefore cannot be queried by an inference 

engine. For example, in their representation, statement (1) 

and (1‘) in section IV would be presented as the facts: 
  hasParent(‘f’:‘M02’,‘f’:‘M01’). 

Man(‘F’:‘M01’). 

With these clauses we can ask only the question who is a 

man?, or who is a parent of ‘M02’?, but it is impossible to 

get answers to a question like which class ‘M01’ is an 

instance of?, or what a relationship between ‘M02’ and 

‘M01’ is? This is because a predicate name is a meta-level 

information that cannot be reasoned and queried at object-

level by a Prolog interpreter. However, in our approach 

since we separate the meta-level from the object-level 

knowledge in an ontology, such queries can be asked and 

answered via the demo predicate; i.e.: 

?-demo(P(‘f’:‘M02’,‘f’:‘M01’)). 

  P=‘f’:‘hasParent’. 

?-demo(‘rdf’:‘type’(‘f’:‘M01’,‘f’:X)). 

X=Man. 

In addition the object-level information said earlier can 

also be asked. 

VI. CONCLUSION 

In this paper we have presented a meta-logical framework 

for representing and reasoning with ontologies and rules 

expressed in OWL 2. The logical system of our framework 

consists of meta-programs transformed from ontologies and 

rules expressed in OWL 2, and an inference engine defined 

by a demo predicate with the new extra auxiliary axioms 

proposed in the paper.  
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