



Abstract— OWL became a de facto language for

representing Semantic Web ontologies. Having been improved

and extended with rules, the language was later updated to

OWL 2. In this paper we propose a framework for reasoning

with an OWL2 ontology and rules using meta-logic. Our meta-

logical system consists of meta-programs expressing onotologies

and rules, and an inference engine in a form of meta-

interpreters defined by a demo(.) predicate. The framework

reasons with ontologies and rules in OWL 2 by first an

ontology and rules being translated into meta-statements, and

these meta-statements then being reasoned by the meta-

interpreter, which provides a query answering mechanism to

infer implicit information. A comparative study of related

works has revealed a merit of our meta-logical representation

approach that separates the meta level knowledge from the

object level one.

Index Terms— Semantic Web Ontologies, OWL 2, Rules,

Metalogic, Meta-reasoning.

I. INTRODUCTION

ntologies and rules have played an important role in the

Semantic Web (or shortly ‗SW‘). An ontology forms

vocabularies and sentences used to express knowledge, and

this knowledge can be shared on the web. OWL was

accepted by W3C as a language for representing a web

ontology. Its core, OWL-DL, is essentially an XML

encoding of an expressive Description Logic (DL) built

upon RDF (Resource Description Framework) with a

substantial fragment of RDF-Schema (RDFS). The

vocabularies defined in such an ontology consist of classes

(or so-called ‗concepts‘) and properties (so-called ‗roles‘);

in logic classes can be treated as unary predicates while

properties as binary predicates, and all these predicates

represent relations. OWL was successfully adopted for the

semantic web in the past. However, some knowledge should

be formulated more naturally as rules rather than axioms.

Unfortunately, the rules are missing from OWL.

A rule representation is a formalism used in logic

programming. It has been proposed as a promising form of

knowledge representation in SW which complements to

other means of knowledge representation in OWL. In the

broadest sense, a rule can be any statement of the form ―if

Visit Hirankitti is with the School of Computer Engineering, Faculty of

Engineering, King Mongkut‘s Institute of Technology Ladkrabang,

Ladkrabang Dist., Bangkok 10520, Thailand (e-mail: khvisit@kmitl.ac.th).

Trang Xuan Mai is with the International College, King Mongkut‘s

Institute of Technology Ladkrabang, Bangkok 10520, Thailand (e-mail:

trangmx@gmail.com).

the precondition p holds then the conclusion c holds‖, where

the precondition and the conclusion are logical sentences.

The realization of rules allows a means to deduce and

combine information. This leads to a way for enhancing

content, and supporting reasoning capabilities, on OWL

ontologies.

The extension of SW ontologies with rules has recently

attracted much attention in the Semantic Web research, and

many approaches have been proposed for it. One of them is

to combine DL with first-order Horn-clause rules. This is the

basis of the Semantic Web Rule Language, SWRL [2], a

language for rule formulation and rule extension to OWL.

However, inferences on SWRL rules can lead to

undecidability even though the rules are assumed to be

function-free [2]. In order to make the inferences decidable,

some restrictions were put upon the rule language in the

form of DL-safe rules [7] or the form of Description Logic

Programs (DLP) [1]. Recently, a new revision of OWL has

been developed by W3C, it is called ‗OWL 2‘. OWL 2 has

much improvement on its predecessor—OWL—especially

with rule formulation based on DL SROIQ [11], in which

DL rules can be completely ensured to be decidable

fragment of SWRL.

In our previous work [9], we have developed a meta-

logical approach for reasoning with semantic web ontologies

expressed in OWL. In this paper we go further by extending

that framework so that it can reason with SW ontologies and

rules in OWL 2.

The remainder of the paper is organized as follows.

Section II reviews some concepts of ontologies with a rule

extension, and shows how rules can be expressed in OWL 2.

Accordingly, we extend our previous framework in order to

reason with ontologies and rules in OWL 2 in Section III.

Section IV demonstrates how our new framework reasons

with ontolologies and rules. We discuss related work in

section V. Finally, section VI concludes this work.

II. EXTENDING ONTOLOGIES WITH RULES

A. SW Ontologies with Rules

Adding rules to ontologies expressed in OWL could be

regarded as an important step forward in the SW research, as

inferences can now be performed upon SW ontologies; and

many research proposals have been proposed; they range

from hybrid approaches to homogeneous ones.

The idea behind the hybrid approaches was that the

predicates in the rules and predicates in the ontologies are

treated to be different, and suitable interface between them is

provided. The research works on this direction are such as

A Meta-logical Approach for Reasoning with

Ontologies and Rules in OWL 2

Visit Hirankitti, and Trang Mai Xuan

O

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

AL-log language, a hybrid integration of Datalog and

Description Logic ALC [4], CARIN, another hybrid

integration of Datalog with different DLs [5], and a hybrid

integration of OWL DL (or more precisely the DL SHOIN)

with normal rules under answer set semantics [6].

According to the homogeneous approaches both rules and

ontologies are combined into the same logical language

without making a priori distinction between the rule

predicates and the ontology predicates. Two example

languages based on these approaches are Description Logic

Program (DLP) [1] and Semantic Web Rule Language

(SWRL) [2]. In [1] a DLP was proposed by combining

Description Logics (DLs), which is the basis for the

ontology languages, with Logic Programs (LP), which is the

basis for rule languages. It supports a bidirectional

translation of premises and inferences between the fragment

of DL and LP, and vice versa. This translation enables one

to construct rules on top of SW ontologies. Later SWRL was

proposed in [2] as a new language for an integration of rules

and ontologies, in which OWL was extended with Horn-

clause rules expressed in RuleML.

Recently SWRL becomes the most widely used language

for describing ontologies with rules. However, the

straightforward addition of the rules to ontologies leads to

undecidability when reasoning with SWRL ontologies. In

order to retain decidability, some restrictions have been put

upon SWRL rules, and these restricted rules can be rewritten

as a set of DL axioms using features introduced in SROIQ.

This technique has been presented in [8]. Due to the fact that

OWL 2 was developed based on DL SROIQ, OWL 2 can

therefore express rules in the form of DL axioms.

B. Expressing Rules in OWL 2

Some previous SW ontology languages such as

DAML+OIL and OWL were developed based on DL

SHOIQ [12]. SHOIQ provides a variety of constructors for

building class expressions. The DL class expressions can be

demonstrated as being corresponded to first order logic

(FOL) which is used to formulate rules. Table I shows the

correspondence between FOL formulae and the DL class

expressions [1].

According to this correspondence, an FOL sentence can

be expressed in DL as well as in DAML+OIL or OWL. For

example, a rule of the form: C(x)  ¬D(x) E(x)  F(x)

can be rewritten as a DL axiom: C ⊓ ¬D ⊑ E ⊔ F, and a

rule of the form: C(x)  R(x,y) E(x) can be rewritten

in DL as the axiom: C ⊓ R.⊤ ⊑ E. However, with some

rules such as:

 hasParent(x,y)  hasBrother(y,z) (A)

 hasUncle(x,z), and

 Man(x)  hasChild(x,y) fatherOf(x,y). (B)

There is no correspondence so they cannot be rewritten as

DL axioms, however to be able to do so we need some extra

axioms in DL SROIQ, these are some new features

introduced in OWL 2.

OWL 2 which is based on DL SROIQ [11] supports the

Role Inclusion Axiom (RIA) or so-called the ―property

chain‖ axiom and the Self concept, and these can be used to

express more forms of rules, including the previous example.

Table I: DL-FOL equivalence

Expression DL FOL

subclassOf C ⊑ D  x.C(x)  D(x)

subpropertyOf P1 ⊑P2  x,y.P1(x,y)  P2(x,y)

transitiveProperty P+ ⊑ P  x,y,z.(P(x,y)  P(y,z))
 P(x,z)

functionalPropery ⊤≤1 P  x,y,z.(P(x,y)  P(x,z))
 y=z

inverseProperty P  Q—
 x,y.P(x,y)  Q(y,x)

intersectionOf C1⊓ …⊓Cn C1(x)  …  Cn(x)

unionOf C1⊔ …⊔Cn C1(x)  …  Cn(x)

complementOf ¬C ¬C(x)

The Role Inclusion Axioms are the constructs of the form

R o S ⊑ T where o is a binary composition operator. This

form is equivalent to an FOL formula:  x,y,z.(R(x,y)  S(y,z))

 T(x,z). By adopting this, rule A can easily be rewritten as

a DL SROIQ axiom:

 hasParent o hasBrother ⊑ hasUncle.

The Self concept allows one to express a ―local reflexive‖

property, e.g. R(x,x), in which a role R relates an

individual x to itself. The Self concept can be used to

transform a property R(x,x)into a class CR and vice versa,

and this is due to a DL SROIQ axiom CR   R.Self.

Therefore to derive the DL SROIQ axioms which

correspond to rule B, we first transform a class Man into a

property PMan by introducing an axiom Man   PMan.Self,

we then apply the previous RIA. As a result, rule B will be

equivalent to the DL SROIQ axioms:
Man  PMan.Self.
PMan o hasChild ⊑ fatherOf.

With the DL-FOL and DL SROIQ-FL mappings we can

express a rather wide range form of rules in DL axioms of

OWL 2 and vice versa, if they satisfy certain restrictions [8].

In the next section we extend our previous framework [9] so

that it can reason with ontologies and rules expressed in

OWL 2.

III. OUR META-LOGICAL APPROACH

A. Our Approach

Our framework forms a logical system consisting of meta-

programs and an inference engine. The former is in the form

of logical sentences representing a meta-level description of

an SW ontology. That is, the ontology described by OWL 2

is transformed into a meta-logical representation. The latter

is a meta-interpreter, in the form of a demo (meta-)program,

which is used to infer explicit as well as implicit

information, or in other words draw conclusions, from the

former. The meta-interpreter can also communicate to the

internet to obtain SW ontologies, communicate with the user

to get SW information, draw inference consequences for the

user, and traverse a link to an SW or web resource like a

web browser.

In this paper our previous framework [9], which was

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

designed to support reasoning with OWL ontologies, is now

enhanced with an ability to reason with ontologies and rules

expressed in OWL 2. Our meta-logical system can be simply

illustrated in Fig. 1. In order to support rules, which are

expressed by using the new features in OWL 2, the meta-

program in our previous framework has to be extended with

some new forms of meta-statements.

User
Internet

Ontologies and

rules in OWL 2

Meta-interpreter

Meta-programs transformed

from SW ontology

Fig. 1 Our meta-logical system

object level statement meta statement

subject predicateobject subject predicateobject

instance property meta-instance Meta-property

class

Used inInstance of

Is aOntology element

Object level Meta level

Fig. 2 Object level and Meta level of ontology elements.

 To explain our framework, in the next three sub-sections

we first introduce our meta-language used for formulating

the meta-programs of ontologies and rules, then explain the

meta-programs in details. Finally we describe our meta-

interpreter.

B. Meta-language for an OWL2 Ontology

The language elements of an SW ontology are classes,

properties, instances, and relationships between/among them

described in the object level and the meta-level as depicted

in Fig. 2. At the object level, an instance can be an

individual or a literal of a domain, e.g. ‗john‘, and property

is a relationship between individuals, or is an individual‘s

attribute, e.g. ‗hasSon‘, ‗type‘. At the meta-level, a meta-

instance can be an individual, a property, a class, or an

object-level statement. A meta-property is a property to

describe a meta-instance‘s attribute or a relationship

between/among meta-instances, e.g. ‗reflexive‘, etc. Notice

that according to the SW convention, to make a name

appearing in an ontology unique, we qualify it with a

namespace like <namespace>:<name>, such as ‗f‘:‗son‘,

‗f‘:‗hasSon‘, ‗owl‘:‗reflexive‘, etc. Henceforth this qualified

name will be used throughout.

According to our framework, in an SW ontology we

distinguish between its object and meta levels, and similarly

its object and meta languages. The object language specifies

objects and their relationships in the real world. The meta-

language describes the syntactic form of the object language.

Hence, we have formulated two meta-languages: one

discussing mainly about objects and their relationships we

call it ―meta-language for the object level (ML)‖, and the

other we call ―meta-language for the meta-level (MML),‖

which discusses mainly about classes, instances, properties

and their relationships.

 Meta-language for the object level (ML)

Objects and their relationships at the object level are

specified in an SW ontology and this information is

expressed by the elements of ML below.

Meta-constant specifies a name of an object and a literal,

e.g. ‘son’, including a reference, e.g. a namespace, the

latter is a meta-constant of MML. This means that ML and

MML are not totally separated.

Meta-variable stands for a different meta-constant at a

different time, e.g. Person.

Meta-function symbol stands for a name of a relation

between objects, or a name of an object‘s property—i.e. an

object-level predicate name, such as ‘hasSon’, ‘name’. It

also stands for other meta-level function symbol, e.g. ‘ ’,

‘ ’, ‘:’.

Meta-term is either a meta-constant or a meta-variable or

meta-function symbol applied to a tuple of meta-terms, e.g.

‘f’:‘hasSon’, ‘owl’:‘reflexive’. To express object-

level predicate it has the form: P(S, O), where P is an object-

level predicate name, S and O are meta-constants or meta-

variable, e.g.

 ‘f’:‘hasSon’(‘f’:‘fa’,‘f’:‘son’).

Meta-statement for the object level reflects an object-

level sentence to its existence at the meta-level. It has the

form: statement(object-level-sentence), e.g.
statement(

 ‘f’:‘hasSon’(‘f’:‘fa’,‘f’:‘son’) true).

 Meta-language for the meta level (MML)

Apart from the object language, an SW ontology also

defines classes, properties, their relationships, as well as

class-instance relations, and we argue that this information is

meta-information of the object level. Here we express this

information by MML which includes:

Meta-constant specifying a name of an instance, a

property, a class, a literal, and a namespace.

Meta-variable standing for a different meta-constant at a

different time.

Meta-function symbol standing for a logical connective,

e.g. ‘ ’, ‘ ’, ‘¬’ (‘¬’ is used to express a classical

negation); or ‘:’; or a name of set operators applied on

classes such as union; or a meta-predicate name being a

name of a relation between entities; or a name of

characteristic of a property, which may fall into one of the

following categories:

Class-class relations: equivalent class of, etc.

Class-instance relations: instance of, class of, etc.

Property-property relations: property chain of, etc.

Class-property relations: Keys, etc.

Relations between literals and instances/classes/

properties: we can take these relations as attributes of

instances, of classes, or of properties, e.g. comment.

Characteristics of properties: reflexive, asymmetric, etc.

Meta-term being either a meta-constant or a meta-variable

or meta-function symbol applied to a tuple of meta-terms,

e.g. ‘f’:‘fatherOf’, etc. When a meta-term expresses a

meta-level predicate stating a relation between entities, it has

the form of Pred(Sub,Obj), and when it expresses a meta-

level predicate stating a characteristic of a property, it has

the form of Pred(Prop), where Pred is a meta-predicate

name, Sub, Obj, and Prop (a property) are meta-constants

or meta-variables.

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

An example of a meta-term expressing a classical negation,

is in the form of ‘¬’‘rdf’:‘type’(I,C), where I is a

meta-constant specifying an individual, and C is a meta-

constant specifying a class.

The meta-term expressing a meta-level sentence is a term

Pred(Sub,Obj) or Pred(Prop) or a logical-connective

function symbol applied to the tuple of these terms. Let all

meta-variables appearing in the meta-level sentence be

universally quantified. One form of the sentence is a Horn-

clause meta-rule, e.g.

‘owl’:‘propertyDisjointWith’(P,DP)
‘owl’:‘propertyDisjointWith’(DP,P).

Meta-statement being a meta-predicate or meta-

predicates connected by logical connective. It has two forms

meta_statement(meta-level-sentence) and axiom(meta-level-

sentence), the latter represents a rule for a mathematical

axiom, e.g.:

meta_statement(‘owl’:‘propertyDisjointWith’

(‘f’:‘likes’,‘f’:‘dislikes’) true).

axiom(‘owl’:‘propertyDisjointWith’(P,DP)
‘owl’:‘propertyDisjointWith’(DP,P)).

C. Meta-programs of an Ontology with Rules

Each OWL2 ontology is transformed into a meta-program

containing a (sub-)meta-program expressed in ML, called

MP, and a (sub-)meta-program expressed in MML, called

MMP. Another meta-program expresses some mathematical

axioms for classes and properties called AMP is also needed

for the inference engine to reason with MP and MMP.

 Meta-program for the object level (MP)

MP contains information of instances and their

relationship in the form of meta-statements for the object

level: statement(P(S,O) true). In terms of a rule

system, this can be understood as a ‗fact‘. An example is:

statement(‘f’:‘hasFather’

(‘f’:‘M02’,‘f’:‘M01’) true).

 Meta-program for the meta level (MMP)

MMP contains meta-statements for classes, properties,

their relationships, and class-instance relationships in the

form of meta-rules. Here are some typical examples:

Some meta-statement about classes and their relationships:
meta_statement(‘rdfs’:‘subClassOf’

(C,SC) true).

// The class C is sub-class of class SC.

meta_statement(‘rdfs’:‘equivalentClass’

(C,EC) true).

// Classes C and EC are equivalent.

meta_statement(‘owl’:‘disjoinwith’

(C,DC) true).

// Classes C and DC are disjoint.

meta_statement(‘owl’:‘intersectionOf’

(C,Cs) true).

// Class C is intersection of classes in Cs.

meta_statement(‘owl’:‘unionOf’

(C,Cs) true).

// Class C is union of classes in Cs.

meta_statement(‘owl’:‘complementOf’

(C,CC) true).

// Class C is complement of class in CC.

meta_statement(‘rdf’:‘type’(I,C) true).

// The Instance I is an instance of class C.
…

Meta-statements about properties and their relationships:
meta_statement(‘owl’:’inverseOf’

(P,IP) true).

//The property P is an inversion of property IP.

meta_statement(‘owl’:‘symmtric’(P) true).

//The property P is symmetric.

meta_statement(‘rdfs’:‘domain’(P,D) true).

//The domain of property P is D.

…

The new features in OWL 2 that referred to in section II

can be translated to the following meta-statements in MMP:

meta_statement(‘owl’:‘propertyChainOf’

(P,[P1, P2]) true).

//Express RIA: Property P is composition of properties P1, P2.

meta_statement(‘owl’:‘objectHasSelf’(

C, PC) true).

//Express the Self concept: C is a class of individuals which are

related to themselves under the role PC.

With such meta-statements we can transform DL rules

into a meta-program. Here are examples of MMP that

correspond to the rules we listed in section II.B:

Rule “C ⊓ ¬D ⊑ E ⊔ F” is transformed into MMP:
meta_statement(‘rdfs’:‘subClassOf’

(M,N)  true).

meta_statement(‘rdfs’:‘unionOf’

(N,[E,F]) true).

meta_statement(‘rdfs’:‘intersectionOf’

(M,[C,D’]) true).

meta_statement(‘rdfs’:‘complementOf’

(D’,D) true).

Rule “hasParent o hasBrother ⊑ hasUncle” is transformed

into MMP:
meta_statement(‘owl’:‘propertyChainOf’

(‘f’:‘hasUncle’,[‘f’:‘hasParent’,

‘f’:‘hasBrother’]) true).

Rule ―Man(x)  hasChild(x,y) fatherOf(x,y)‖ is

transformed into MMP:
meta_statement(‘owl’:‘objectHasSelf’

(‘f’: ‘Man’, PMan)  true).

meta_statement(‘owl’:‘propertyChainOf’

(‘f’:‘fatherOf’,

[PMan,‘f’:‘hasChild’]) true).

 Meta-program for the axioms (AMP)

AMP contains axioms for classes and properties, they are

expressed in the meta-rule form. In [9], we had several

axioms in AMP to support for OWL. In order to work with

ontologies and rules expressed in OWL 2, we add more

axioms to manipulate with the new features in OWL 2, and

an axiom for a set complement. Here we list all the axioms

corresponding to the formulae in Table I and to the new

features in OWL 2:

axiom(‘rdf’:‘type’(I,C) (asic)
 ‘owl’:‘subclassOf’(SC,C) 
 ‘rdf’:‘type’(I,SC)).

// Axiom to handle a subclass formula.

axiom(P(S,O) (acsp)
‘rdfs’:‘subPropertyOf’(SP,P)  SP(S,O)).

// Axiom to handle a subproperty formula.

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

axiom(P(S,O) (actp)
‘owl’:‘transitive’(P)  P(S,O1)  P(O1,O)).

// Axiom to handle a transitive property

axiom(P(S,O) (acfp)
‘owl’:‘functional’(P) 
P(S,O1)  ‘owl’:‘sameAs’(O,O1)).

// Axiom to handle a functional property

axiom(P(S,O) (acip)
‘owl’:‘inverseOf’(P,IP)  IP(O,S)).

// Property IP is an inverse property of P.

axiom(P(S,O) (acpc)
‘owl’:‘propertyChainOf’(P,[P1,P2]) 
 P1(S,O1)  P2(O1,O)).

// Axiom to handle the chain property.

axiom(P(S,S) (acsc)
‘owl’:‘objectHasSelf’(C,P) 
‘rdf’:‘type’(S,C)).

// Axiom to handle the Self concept.

axiom(‘rdf’:‘type’(I,C) (acic)
‘owl’:‘intersectionOf’(C,Cs) 
 ‘intertype’(I,Cs)).

‘intertype’(I,[H|T])
 ‘rdf’:‘type’(I,H)  ‘intertype’(I,T).
// Axiom to handle a set intersection.

axiom(‘rdf’:‘type’(I,C) (acuc)
‘owl’:‘unionOf’(C,Cs)  ‘unionType’(I,Cs)).

‘unionType’(I,[H|T]) ‘rdf’:‘type’(I,H).
‘unionType’(I,[H|T]) ‘unionType’(I,T).

// Axiom to handle a set union.

axiom(‘¬’‘rdf’:‘type’(I,C) (accc)
 ‘owl’:‘complementOf’(C, Cc) 
 ‘rdf’:‘type’(I,Cc)).

// Axiom to handle a set complement.

D. The Meta-interpreter

The meta-interpreter in our framework is constructed for

reasoning with the meta-programs MPs, MMPs, and AMPs

and can be used to develop an intelligent agent to reason

with SW ontologies. It is defined by a demo predicate of the

form demo(A). With this predicate we can infer the answer

A from the meta-programs. Our meta-interpreter adapts the

Vanilla meta-interpreter in [10] in order for reasoning with

the meta-programs transformed from ontologies and rules

where we have defined three kinds of meta-level statements:

(1) statement(A B) for the object-level of an ontology,

(2) meta_statement(A B) for the meta-level of an

ontology (including rules), and (3) axiom(A B) for the

mathematical axioms. The definition of demo/1 is:

demo(true). (true)

demo(A‘  ’B) demo(A)  demo(B). (conj)

demo(A) statement(A‘ ’B)  demo(B). (ost)

demo(A) meta_statement(A‘ ’B)  demo(B). (mst)

demo(A) axiom(A‘ ’B)  demo(B). (ast)

The first clause (true) is the basis for proving true. The

second clause (conj) is used for proving a conjunction goal.

Three last clauses (ost), (mst), and (ast) are used for

interpreting three meta statements of the three meta-

programs MP, MMP, and AMP respectively.

IV. QUERY ANSWERING WITH OUR FRAMEWORK

In our framework, ontologies and rules expressed in OWL

2 are transformed into a meta-program formed by the three

sub-meta-programs MP, MMP and AMP. This meta-

program is used as the input of the meta-interpreter which is

implemented in Prolog; the meta-interpreter is the inference

engine reasoning with the meta-program to derive

conclusions.

The family ontology [13] is used as an example to

demonstrate our framework. Due to its lack of rules, three

OWL2 rules are added to it. After the whole ontology is

transformed into meta-programs, here are some parts of

them:

 The MP program

statement(‘f’:‘hasParent’ (1)

(‘f’:‘M02’,‘f’:‘M01’) true).

statement(‘f’:‘hasParent’ (2)
(‘f’:‘F02’,‘f’:‘M01’) true).

statement(‘f’:‘hasParent’ (3)
(‘f’:‘M03’,‘f’:‘F02’) true).

…

 The MMP program

meta_statement(‘rdf’:‘type’ (1‘)
(‘f’:‘M01’,‘f’:‘Man’) true).

meta_statement(‘rdf’:‘type’ (2‘)
(‘f’:‘M02’,‘f’:‘Man’) true).

meta_statement(‘rdf’:‘type’ (3‘)
(‘f’:‘F02’,‘f’:‘WoMan’) true).

meta_statement(‘owl’:‘complementOf’ (4‘)
(‘f’:‘Man’,‘f’:‘WoMan’) true).

meta_statement(‘owl’:‘unionOf’ (5‘)
(‘f’:‘Human’,

 [‘f’:‘Man’,‘f’:‘WoMan’]) true).

The first rule hasParent(x,y)  hasParent(z,y)

siblingOf(x,z) added is expressed by hasParent o

hasParent
– ⊑ siblingOf DL axiom, where hasParent–

is the inverse property of hasParent. This is transformed

into the following meta-statements in MMP:

 meta_statement(‘owl’:’inverseOf’ (6‘)
 (‘f’:‘parentOf’,‘f’:‘hasParent’) true).

 meta_statement(‘owl’:‘propertyChainOf’ (7‘)
 (‘f’:‘siblingOf’,[‘f’:‘hasParent’,

 ‘f’:‘parentOf’]) true).

The next one Man(x)  siblingOf(x,y) brotherOf(x,y)

is transformed into the meta-statements in MMP:

meta_statement(‘owl’:‘objectHasSelf’ (8‘)
(‘f’: ‘Man’, PMan) true).

meta_statement(‘owl’:‘propertyChainOf’ (9‘)
(‘f’:‘brotherOf’,

[PMan,‘f’:‘siblingOf’]) true).

The third rule brotherOf(x,y)  parentOf(y,z)

uncleOf(x,z) is transformed into the following meta-

statements in MMP:

meta_statement(‘owl’:‘propertyChainOf’ (10‘)
 (‘f’:‘uncleOf’,[‘f’:‘brotherOf’,

 ‘f’:‘parentOf’]) true).

Now we pose some queries to the meta-interpreter to get

answers as follows:

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

?- demo(‘rdf’:‘type’(‘f’:‘M02’,X)). (q1)
X = ‘f’:‘Man’;

X = ‘f’:‘Human’.

//1st answer is supported by (mst), (1’), and (true), and 2nd answer

is supported by (ast), (acuc), (conj), (5’), (1’), and (true).

?- demo(‘¬’‘rdf’:‘type’(‘f’:‘F02’,X)). (q2)
X = ‘f’:‘Man’.

//The adopted clauses are (ast), (accc), (conj), (mst), (4’), (3’) and

(true).

?- demo(‘f’:‘siblingOf’(‘f’:‘M02’,X)). (q3)
X = ‘f’:‘F02’.

//The adopted clauses are (ast), (acpc), (conj), (7’), (true), (ost),

(1), (mst), (acip), (6’), and (2).

?- demo(‘f’:‘brotherOf’(X, ‘f’:‘F02’)). (q4)
 X = ‘f’:‘M02’.

//The adopted clauses are (ast), (acpc), (conj), (9’), (true), (acsc),

(8’), (mst), (2’), and the clauses adopted for answering q3.

?- demo(‘f’:‘uncleOf’(‘f’:‘M02’,X)). (q5)
X = ‘f’:‘M03’.

//The adopted clauses are (ast), (acpc), (conj), (10’), (true), (3),

and the clauses adopted for answering q4.

V. RELATED WORKS

We now look at other approach that enhances ontologies

with rules. Grosof et al. [1] proposed the Description Logic

Program (DLP); this approach supports bi-directional

translation between logical sentences from DLP fragment of

Description Logic and logic programs.

According to this approach, every concept referred to in

an ontology is mapped into a unary relation with a concept

name becoming a name of the relation and an individual

name becoming an argument. Every instance-property-

instance relationship is mapped into a binary relation. In

addition, concepts as well as property constructor statements

are converted into rules. The distinction between this

approach and ours is the following.

Firstly this approach was designed to support a subset of

DAML+OIL, and provides only a mapping from RDFS and

DAML+OIL into logic programs, but does not support the

new features in OWL 2, such as the property chain axiom

and the Self concept. Secondly, this approach has a

weakness when representing an ontology in a logic program.

For example, to represent the statement ―a is union of b1,

b2,

…, bn‖, it requires n number of rules to do so, i.e. a(X):-

b1(X), …, a(X):-bn(X). However, in our representation,

this requires only one statement, that is our (acuc) axiom,

which is more compact.

 Even more importantly, their representation of logic

program is at the object level only. Thus, the names of

concepts, or the names of roles, in an ontology which are

meta-terms cannot be accessed and reasoned from their logic

program and therefore cannot be queried by an inference

engine. For example, in their representation, statement (1)

and (1‘) in section IV would be presented as the facts:
 hasParent(‘f’:‘M02’,‘f’:‘M01’).

Man(‘F’:‘M01’).

With these clauses we can ask only the question who is a

man?, or who is a parent of ‘M02’?, but it is impossible to

get answers to a question like which class ‘M01’ is an

instance of?, or what a relationship between ‘M02’ and

‘M01’ is? This is because a predicate name is a meta-level

information that cannot be reasoned and queried at object-

level by a Prolog interpreter. However, in our approach

since we separate the meta-level from the object-level

knowledge in an ontology, such queries can be asked and

answered via the demo predicate; i.e.:

?-demo(P(‘f’:‘M02’,‘f’:‘M01’)).

 P=‘f’:‘hasParent’.

?-demo(‘rdf’:‘type’(‘f’:‘M01’,‘f’:X)).

X=Man.

In addition the object-level information said earlier can

also be asked.

VI. CONCLUSION

In this paper we have presented a meta-logical framework

for representing and reasoning with ontologies and rules

expressed in OWL 2. The logical system of our framework

consists of meta-programs transformed from ontologies and

rules expressed in OWL 2, and an inference engine defined

by a demo predicate with the new extra auxiliary axioms

proposed in the paper.

ACKNOWLEDGMENT

We gracefully acknowledge the financial support for this

research from the Japan International Corporation Agency

(JICA) under the AUN/SEED-Net Program.

REFERENCES

[1] Benjamin N. Grosof, I. Horrocks, Raphael Volz, Stefan Decker,

Descripstion Logic Programs: Combining Logic Programs with

Description Logic, In Proc. of the 12th Int‘l Conf. on the WWW, pp.

48-57, ACM, 2003.

[2] Ian Horrocks, Peter F. Patel-Schneider, A Proposal for an OWL Rules

Language, In Proc. of the 13th Int‘l Conf. on the WWW, ACM, 2004.

[3] Jakob Henriksson, Jan Małuszyński, Hybrid integration of rules and

ontologies: A constraint-based framework, Rule and ontology

integration workshop, RuleML 2006 Athens, GA, USA, 2006.

[4] Francesco M. Donini, Maurizio Lenzerini, and Andrea Schaerf, AL-

log: Integrating datalog and description logics, Journal of Intelligent

Information Systems, p. 227 – 252, 1998.

[5] Alon Y. Levy and Marie-Christine Rousset, Combining Horn rules

and description logics in CARIN, Artificial Intelligence, pp. 165 –

209, 1998.

[6] T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits, Combining

Answer Set Programming with Description Logics for the Semantic

Web, In Proc. Ninth International Conference of Principles of

Knowledge Representation and Reasoning (KR2004), p. 141 – 151,

2004.

[7] Boris Motik, Ulrike Sattler, and Rudi Studer, Query answering for

OWL-DL with rules, Journal of Web Semantics: Science, Services

and Agents on the World Wide Web, 3(1)41-60, 2005.

[8] F. Gasse, U. Sattler, and V. Haarslev, Rewriting Rules into SROIQ

Axioms, Poster at 21st Int. Workshop on DLs (DL-08), 2008.

[9] V. Hirankitti, and V. X. Tran, A Meta logical Approach for

Reasoning with Semantic Web Ontologies, In proc. of the 4th IEEE

Int. Conf. on Computer Sciences: Research, Innovation & Vision for

the Future, Vietnam, pp. 228-235, 2006.

[10] R. A. Kowalski, J. S. Kim, A Metalogic Programming Approach to

Multi-agent Knowledge and Belief, in AI and Mathematical Theory

of Computation, pp. 231-246, 1991.

[11] I. Horrocks, O. Kutz, U. Sattler, The even more irresistible SROIQ,

In Proc. of the 10th Int. Conf. On Principles of Knowledge

Representation and Reasoning, 2006, pp. 57-67, AAAI Press. I.

[12] P. F. Patel-Schneider, P. Hayes, and I. Horrocks, OWL Web Ontology

Language: Semantics and Abstract Syntax, W3C Recommendation,

http://www.w3.org/TR/owl-semantics/, Feb. 2004.

[13] The family ontology, http://www.owldl.com/ontologies/family.owl.

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

http://www.owldl.com/ontologies/family.owl

