
 

 
Abstract— To be able to represent FSM as a binary 
chromosome several restrictions are required. This paper 
analyzes and discuses the differences between classical FSMs 
and semantic FSA with  evolutionary algorithms. To overcome 
the limitation of classical Mealy and Moore machine, we use 
semantic FSA. It is presented that when the evolutionary  
process is based on the behavior of small building function, 
then  better evolutionary algorithm is developed. In addition, 
the evolutionary process is highly enhanced by using fitness 
inheritance technique to constrain the depth of genetic 
programming tree to overcome its bloat problem. 
 

Index Terms— Genetic Programming, Evolutionary 
Algorithm, Automatic Programming, Reinforcement Learning. 

 

I. INTRODUCTION 

Evolutionary algorithms (EAs), which are based on a 
powerful principle of evolution: survival of the fittest, and 
which model some natural phenomena: genetic inheritance 
and Darwinian strife for survival, constitute an interesting 
category of modern heuristic search. Evolutionary 
algorithms are superior in terms of wide space search ability 
because they continue to evolve various individuals and 
select better ones (offline learning), while reinforcement 
learning  can learn incrementally, based on rewards 
obtained during task execution (online learning) [1][2][3].  
In the early 1960s Fogel introduced Evolutionary 
Programming (EP) [4][5]. The simulated evolution was 
performed by modifying a population of FSM. After this 
other researchers are  used EP for solving the problem of 
FSM identification. Kumar Chellapilla and David Czarnecki 
proposed the variation of EP to solve the problem of 
modular FSM synthesis [6]. Karl Benson presented a model 
comprising FSM with embedded genetic programs which co 
evolve to perform the task of Automatic Target Detection 
[7].Another approach to solve the problem of FSM 
identification is based on GA. This method has been 
researched by several authors. Tongchim and 
Chongistitvatana investigated parallel implementation of 
GA to solve the problem of FSM synthesis [8]. 
Chongistitvatana and Niparnan improved GA by 
evolvingonly the state transition function [9]. 
Chongistitvatana also presented a method of FSM synthesis 
from multiple partial input/output sequences [10]. Jason W. 
Horihan and Yung–Hsiang Lu paid more attention to 
improving the FSM evolution by using progressive fitness 
functions [11].Different types of machines can be inferred 
using GA: Lamine Ngome used genetic simulation for 
Moore machine identification [12], Pushmeet Kohli used 
GA to synthesize FA accepting particular language using 
accept/reject data [13], Philip Hingston showed in [14] how 
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GA can be used for the inference of regular language from a 
set of positive examples, Xiaojun Geng applied GA for 
solving identification problem for asynchronous FSM [15]. 
The algorithm for Automated Negotiations presented by Tu, 
Wolff and Lamersdorf is based on GA synthesis of FSM 
[16]. Simon M. Lucas paid more attention to finite state 
transducers [17] and compares his method to ”Heuristic 
State Merging” [18].GA has also been used for solving 
other similar problems: for solving State Assignment 
Problem [19], for identification of nondeterministic 
pushdown automata[20], for inferring regular and context-
free grammars [21], for protecting resources [22]. The 
researcher in the reference [23] was use genetic 
programming for FSM induction, such FSM have special 
formalism based on input-output trajectory sets. In this 
paper an analysis and discussion are given about the 
differences between the classical FSA used by other 
researchers and this FSA (called Semantic Finite State 
Automata SFSA). It is presented that when the induction 
process is based on the behavior of small building function 
better EA is developed.  Furthermore, complex systems 
often include chaotic behavior [24], which is to say that the 
dynamics of these systems are nonlinear and difficult to 
predict over time, even while the systems themselves are 
deterministic machines following a strict sequence of cause 
and effect. The nonlinearity of chaotic systems results in the 
amplification of small differences, and this is what makes 
them increasingly difficult to predict over time. Natural 
chaotic systems may be difficult to predict but they will still 
exhibit structure that is different than purely random 
systems. Chaos is important, in part, because it helps us to 
cope with unstable system by improving our ability to 
describe, to understand, perhaps even to forecast them . In 
this work we attempted to scale-up GP application to real 
live problems, by focusing on the meaning rather than the 
structure of a program. This paper is organized as follows. 
Section 2 provides the related definition of FSM and its 
limitation in genetic evolutionary process.  In Section 3, 
genetic evolutionary process based on input-output 
specification is described. Sections 5 give discussion and 
conclusions. 

 
To insert images in Word, position the cursor at the 

insertion point and either use Insert | Picture | From File or 
copy the image to the Windows clipboard and then Edit | 
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II. FSA DEFINITION 

A. Moore Machine  

is a six-tuple : ( Q, Σ, Δ, δ,  λ, qo) 
, where: Q is a finite set of states, Σ is the input alphabet,  Δ 
is the output alphabet, δ: Q × Σ → Q is the transition 
function,  λ : Q × Σ → Δ is the output function that shows 
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what character from Δ will be printed by each state that is 
entered., and qo denotes the start state 
 

 
Figure 1: Moore machine example 
 

B. Mealy Machine 

It is a six-tuple : ( Q, Σ, Δ, δ,  λ, qo) 
, where: Q is a finite set of states, Σ is the input alphabet,  Δ 
is the output alphabet, δ: Q × Σ → Q is the transition 
function,  λ : Q × Σ → Δ is the output function that . 
Character from Δ will be printed by each transition that is 
processed, and qo denotes the start state. 

 
Figure 2: Mealy machine example 

 

C. Evolutionary Algorithm 

The goal is finding a minimum size deterministic FSM 
consistent with the training set, clearly its NP-complete 
problem. Evolutionary algorithms can be used to solve such 
 problem. Figure 3 show how training and test sets can be 
used to get complete solution with EA. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 3: Creating sets of training and set with EA 

 

D. Limitation of FSA Induction 

To be able to represent FSM as a binary chromosome 
several restrictions are required.  

1. No final state. FSM finishes its work then precedes 
the input string to the end.  

2. Initial state. FSM must have only one initial state 
and this state is always labeled as ’0’. 
Deterministic.  

3. FSM has only one initial state and only one 
possible transition for each input value. Complete.  

4. For each state and each input symbol, there must be 
one edge. 

 
Figure 4, show a Moore machine with dynamic number of 
states, In that case there appear some problems like: Non-
complete transitions; Un accessible states. Solving the 
problem of non–complete transitions may base on partial 
solution. FSM will stop working when it reaches the state it 
cannot leave and will produce partial output (during 
’original’ work-flow FSM can stop only if an input string is 
processed). In addition post–processing stage must be used 
to solve problem of un accessible states. 
 

 
Figure 4: Moore machine with dynamic number of states 

 

III. SEMANTIC FSA 

As given in [23], semantic Finite State Automata SFSA is 
defined as 9- tuples: 
P=( x, X, T, F,  Z, I, O, γ, X initial ), where: x is the set of 
system variables, X is the set of system states, X= { X 
initial, ….. , X final}, T is the time scale, T =[0, ∞ ), F is 
the set of primitive functions, Z is the state transition 
function, Z = {(f, X, t): (f, X, t) Є F × X × T , z(f, X, t) = 
(•X, •t)},  I is the set of inputs, O is the set of outputs, γ is 
the readout function,    X initial     is the initial state of the 
system, X initial  Є X.  
The evolution SFSM depend on input-output behavior of 
the system, and it is expressed as 7-tuples: (IOS, S, F, α1, 
Tmax,  β, υ  ). Where: IOS is the input-output boundaries of 
the system, S is the syntax term, F is the primitive function, . 
α1  is the learning parameter,  Tmax and   β are the 
complexity parameters ,  and υ system proof plan. 
IOS describes the inputs that the system is designed to 
handle and the outputs that the system is designed to 
produce. An IOS is not a system, but it determines the set of 
all systems that satisfy the IOS. It is a 6-tuples: IOS = (T, I, 
O, Ti , To, η). Where T, is the time scale of IOS, I is the set 
of inputs, O is a set of outputs, Ti is a set of input 
trajectories defined over T, with values in I, TO, is a set of 
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output trajectories defined over T, with values in O, and η is 
a function defined over Ti whose values are subset of To; 
that is, η matches with each given input trajectories Ti the 
set of all output trajectories that might, or could be, or 
eligible to be produced by some systems as output, 
experiencing the given input trajectory Ti.. . A system P 
satisfies IOS if there is a state X of P, and some subset U 
not empty of the time scale T of P, such that for every input 
trajectory g in Ti, there is an output trajectory h in To 
matched with g by η such that the output trajectory 
generated by S, started in the state X is:  

 
γ (Z (f (g), X, t) = η(h(t)) For every t Є U    …Eq. 1 

Learning parameter a1 is a positive real 
number specifying the minimum accepted degree of 
matching between an IOS, and the real observed 
behavior of the system over the time scale, Tx, of IOS 
only. Tmax and β parameters are merits of system 
complexity: size and time, respectively. It is important to 
note that there is a fundamental difference between a 
time scale T and an execution time of a system. T 
represents system size, it defines points within the 
overall system, whereas, β, is the time required by the 
machine to complete system execution, hence it is high 
sensitive to the machine type.  

The search space in Genetic Program Generation (GPG) 
algorithm is the space of all possible computer programs 
described as an 9-tuples SFSA. Multi-objective fitness 
measure is adopted to incorporate a combination of 
correctness (satisfy IOS), parsimony (smallness T), and 
efficiency (smallness β ).The fitness value of individual is 
computed by the following equation: 
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…Eq.2 

Where: δ is the weight parameter, δ >=2,   βi the run time of 
individual i, Ti is the time scale of the individual i, Ri is the 
actual calculated input trajectory of individual i. For 
complex problem, it becomes difficult to apply the proposed 
GPG because the cost of determining fitness values for an 
entire population is prohibitive. A child's inherited fitness 
can be seen as an approximation of average fitness of the 
common schemata of the parents [23][24][25] 

IV. ANALYSIS 

It clear that the evolutionary process of our system is highly 
depends on input-output specifications, more precisely input 
and output trajectory sets, and η function. Unfortunately, 
when we deal with complex systems and real live problem, 
strong feedback (positive as well as negative) and many 
interactions exist: i.e. chaotic behavior, as we explain in part 
I. Thus, we need to find a way to control chaos, to 
understand, and predict what may happen long term. In 
these cases input and output specifications are self 
organized, which mean that trajectory data are collected and 
enhanced over time, when genetic generation process runs 
again and again. Genetic generation process begins with 

initial version of input and output trajectory sets, and η 
function. Then change them over time to reflect input-
output characteristic of the required system. The output of 
each SFSA individual, at any generation, is computed 
through using equation number 1, and evaluated to 
determine it’s fitness by using equation number 2. Figure5, 
specify clearly that SFSA populations, with high trajectory 
information converge to the solution in less time than these 
populations with little trajectory information. From the 
figure little data trajectory information always may lead to 
un convergence state, that is maximum generation number 
allowed her is 5000.  Therefore, main problem will appear if 
the system has little trajectory information. In this case, 
problem properties can be described mathematically by 
using formal software engineering methods, if it has poor 
input-output properties. These mathematics are implemented 
in the context of a formal specification language, such as Z. 
Formal methods are focus primarily on function and data, 
therefore, they must be redesigned in a way that overcome 
their difficulty to represent timing, control, and behavioral 
aspects of a problem. 

V. CONCLUSION 

Generally SFSM solve most problem and limitations found 
in traditional FSA. The states are connected by trajectory 
information sets, so it is possible that only the essential 
problem’s behavior obtained in the current situation are 
used in the network flow, and it can determine an action by 
not only the current, but also the past information. .The 
inheritance analyses indicate that the expected effects of 
inheritance are consistent with the schemata-based 
processing of the GA. Reduction of the expense of 
evaluating a population, through inheritance techniques 
could substantially enhance the GA's applicability, 
especially in the application where the typical GA's 
population based approach may be prohibitively expensive. 
SMA can yield systems with small overall size, and hence 
less time is required to execute such optimized system on 
parallel machines. 

 

 

 

 

 

 

 

 

 

 

Figure 5: Data Trajectory effect 
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