

Abstract— To be able to represent FSM as a binary
chromosome several restrictions are required. This paper
analyzes and discuses the differences between classical FSMs
and semantic FSA with evolutionary algorithms. To overcome
the limitation of classical Mealy and Moore machine, we use
semantic FSA. It is presented that when the evolutionary
process is based on the behavior of small building function,
then better evolutionary algorithm is developed. In addition,
the evolutionary process is highly enhanced by using fitness
inheritance technique to constrain the depth of genetic
programming tree to overcome its bloat problem.

Index Terms— Genetic Programming, Evolutionary
Algorithm, Automatic Programming, Reinforcement Learning.

I. INTRODUCTION

Evolutionary algorithms (EAs), which are based on a
powerful principle of evolution: survival of the fittest, and
which model some natural phenomena: genetic inheritance
and Darwinian strife for survival, constitute an interesting
category of modern heuristic search. Evolutionary
algorithms are superior in terms of wide space search ability
because they continue to evolve various individuals and
select better ones (offline learning), while reinforcement
learning can learn incrementally, based on rewards
obtained during task execution (online learning) [1][2][3].
In the early 1960s Fogel introduced Evolutionary
Programming (EP) [4][5]. The simulated evolution was
performed by modifying a population of FSM. After this
other researchers are used EP for solving the problem of
FSM identification. Kumar Chellapilla and David Czarnecki
proposed the variation of EP to solve the problem of
modular FSM synthesis [6]. Karl Benson presented a model
comprising FSM with embedded genetic programs which co
evolve to perform the task of Automatic Target Detection
[7].Another approach to solve the problem of FSM
identification is based on GA. This method has been
researched by several authors. Tongchim and
Chongistitvatana investigated parallel implementation of
GA to solve the problem of FSM synthesis [8].
Chongistitvatana and Niparnan improved GA by
evolvingonly the state transition function [9].
Chongistitvatana also presented a method of FSM synthesis
from multiple partial input/output sequences [10]. Jason W.
Horihan and Yung–Hsiang Lu paid more attention to
improving the FSM evolution by using progressive fitness
functions [11].Different types of machines can be inferred
using GA: Lamine Ngome used genetic simulation for
Moore machine identification [12], Pushmeet Kohli used
GA to synthesize FA accepting particular language using
accept/reject data [13], Philip Hingston showed in [14] how

Nada M. A. Al Sallami is an Associated Prof. in MIS department,

faculty of Economic and administration sciences. She interested in
Evolutionary algorithm and the theory of computer sciences.

GA can be used for the inference of regular language from a
set of positive examples, Xiaojun Geng applied GA for
solving identification problem for asynchronous FSM [15].
The algorithm for Automated Negotiations presented by Tu,
Wolff and Lamersdorf is based on GA synthesis of FSM
[16]. Simon M. Lucas paid more attention to finite state
transducers [17] and compares his method to ”Heuristic
State Merging” [18].GA has also been used for solving
other similar problems: for solving State Assignment
Problem [19], for identification of nondeterministic
pushdown automata[20], for inferring regular and context-
free grammars [21], for protecting resources [22]. The
researcher in the reference [23] was use genetic
programming for FSM induction, such FSM have special
formalism based on input-output trajectory sets. In this
paper an analysis and discussion are given about the
differences between the classical FSA used by other
researchers and this FSA (called Semantic Finite State
Automata SFSA). It is presented that when the induction
process is based on the behavior of small building function
better EA is developed. Furthermore, complex systems
often include chaotic behavior [24], which is to say that the
dynamics of these systems are nonlinear and difficult to
predict over time, even while the systems themselves are
deterministic machines following a strict sequence of cause
and effect. The nonlinearity of chaotic systems results in the
amplification of small differences, and this is what makes
them increasingly difficult to predict over time. Natural
chaotic systems may be difficult to predict but they will still
exhibit structure that is different than purely random
systems. Chaos is important, in part, because it helps us to
cope with unstable system by improving our ability to
describe, to understand, perhaps even to forecast them . In
this work we attempted to scale-up GP application to real
live problems, by focusing on the meaning rather than the
structure of a program. This paper is organized as follows.
Section 2 provides the related definition of FSM and its
limitation in genetic evolutionary process. In Section 3,
genetic evolutionary process based on input-output
specification is described. Sections 5 give discussion and
conclusions.

To insert images in Word, position the cursor at the

insertion point and either use Insert | Picture | From File or
copy the image to the Windows clipboard and then Edit |
Paste Special | Picture (with “float over text” unchecked).

II. FSA DEFINITION

A. Moore Machine

is a six-tuple : (Q, Σ, Δ, δ, λ, qo)
, where: Q is a finite set of states, Σ is the input alphabet, Δ
is the output alphabet, δ: Q × Σ → Q is the transition
function, λ : Q × Σ → Δ is the output function that shows

Improving FSM Evolution Algorithm

Nada M. A. Al Sallami

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

what character from Δ will be printed by each state that is
entered., and qo denotes the start state

Figure 1: Moore machine example

B. Mealy Machine

It is a six-tuple : (Q, Σ, Δ, δ, λ, qo)
, where: Q is a finite set of states, Σ is the input alphabet, Δ
is the output alphabet, δ: Q × Σ → Q is the transition
function, λ : Q × Σ → Δ is the output function that .
Character from Δ will be printed by each transition that is
processed, and qo denotes the start state.

Figure 2: Mealy machine example

C. Evolutionary Algorithm

The goal is finding a minimum size deterministic FSM
consistent with the training set, clearly its NP-complete
problem. Evolutionary algorithms can be used to solve such
 problem. Figure 3 show how training and test sets can be
used to get complete solution with EA.

Figure 3: Creating sets of training and set with EA

D. Limitation of FSA Induction

To be able to represent FSM as a binary chromosome
several restrictions are required.

1. No final state. FSM finishes its work then precedes
the input string to the end.

2. Initial state. FSM must have only one initial state
and this state is always labeled as ’0’.
Deterministic.

3. FSM has only one initial state and only one
possible transition for each input value. Complete.

4. For each state and each input symbol, there must be
one edge.

Figure 4, show a Moore machine with dynamic number of
states, In that case there appear some problems like: Non-
complete transitions; Un accessible states. Solving the
problem of non–complete transitions may base on partial
solution. FSM will stop working when it reaches the state it
cannot leave and will produce partial output (during
’original’ work-flow FSM can stop only if an input string is
processed). In addition post–processing stage must be used
to solve problem of un accessible states.

Figure 4: Moore machine with dynamic number of states

III. SEMANTIC FSA

As given in [23], semantic Finite State Automata SFSA is
defined as 9- tuples:
P=(x, X, T, F, Z, I, O, γ, X initial), where: x is the set of
system variables, X is the set of system states, X= { X
initial, ….. , X final}, T is the time scale, T =[0, ∞), F is
the set of primitive functions, Z is the state transition
function, Z = {(f, X, t): (f, X, t) Є F × X × T , z(f, X, t) =
(•X, •t)}, I is the set of inputs, O is the set of outputs, γ is
the readout function, X initial is the initial state of the
system, X initial Є X.
The evolution SFSM depend on input-output behavior of
the system, and it is expressed as 7-tuples: (IOS, S, F, α1,
Tmax, β, υ). Where: IOS is the input-output boundaries of
the system, S is the syntax term, F is the primitive function, .
α1 is the learning parameter, Tmax and β are the
complexity parameters , and υ system proof plan.
IOS describes the inputs that the system is designed to
handle and the outputs that the system is designed to
produce. An IOS is not a system, but it determines the set of
all systems that satisfy the IOS. It is a 6-tuples: IOS = (T, I,
O, Ti , To, η). Where T, is the time scale of IOS, I is the set
of inputs, O is a set of outputs, Ti is a set of input
trajectories defined over T, with values in I, TO, is a set of

Example Generator:
training set, & test set

Evolutionary Algorithm

FSA

Machine
Type

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

output trajectories defined over T, with values in O, and η is
a function defined over Ti whose values are subset of To;
that is, η matches with each given input trajectories Ti the
set of all output trajectories that might, or could be, or
eligible to be produced by some systems as output,
experiencing the given input trajectory Ti.. . A system P
satisfies IOS if there is a state X of P, and some subset U
not empty of the time scale T of P, such that for every input
trajectory g in Ti, there is an output trajectory h in To
matched with g by η such that the output trajectory
generated by S, started in the state X is:

γ (Z (f (g), X, t) = η(h(t)) For every t Є U …Eq. 1

Learning parameter a1 is a positive real
number specifying the minimum accepted degree of
matching between an IOS, and the real observed
behavior of the system over the time scale, Tx, of IOS
only. Tmax and β parameters are merits of system
complexity: size and time, respectively. It is important to
note that there is a fundamental difference between a
time scale T and an execution time of a system. T
represents system size, it defines points within the
overall system, whereas, β, is the time required by the
machine to complete system execution, hence it is high
sensitive to the machine type.

The search space in Genetic Program Generation (GPG)
algorithm is the space of all possible computer programs
described as an 9-tuples SFSA. Multi-objective fitness
measure is adopted to incorporate a combination of
correctness (satisfy IOS), parsimony (smallness T), and
efficiency (smallness β).The fitness value of individual is
computed by the following equation:

)()(

0
))(()()(

max

1

ii

ii

TT

Tx

j
jRjTifitness

…Eq.2

Where: δ is the weight parameter, δ >=2, βi the run time of
individual i, Ti is the time scale of the individual i, Ri is the
actual calculated input trajectory of individual i. For
complex problem, it becomes difficult to apply the proposed
GPG because the cost of determining fitness values for an
entire population is prohibitive. A child's inherited fitness
can be seen as an approximation of average fitness of the
common schemata of the parents [23][24][25]

IV. ANALYSIS

It clear that the evolutionary process of our system is highly
depends on input-output specifications, more precisely input
and output trajectory sets, and η function. Unfortunately,
when we deal with complex systems and real live problem,
strong feedback (positive as well as negative) and many
interactions exist: i.e. chaotic behavior, as we explain in part
I. Thus, we need to find a way to control chaos, to
understand, and predict what may happen long term. In
these cases input and output specifications are self
organized, which mean that trajectory data are collected and
enhanced over time, when genetic generation process runs
again and again. Genetic generation process begins with

initial version of input and output trajectory sets, and η
function. Then change them over time to reflect input-
output characteristic of the required system. The output of
each SFSA individual, at any generation, is computed
through using equation number 1, and evaluated to
determine it’s fitness by using equation number 2. Figure5,
specify clearly that SFSA populations, with high trajectory
information converge to the solution in less time than these
populations with little trajectory information. From the
figure little data trajectory information always may lead to
un convergence state, that is maximum generation number
allowed her is 5000. Therefore, main problem will appear if
the system has little trajectory information. In this case,
problem properties can be described mathematically by
using formal software engineering methods, if it has poor
input-output properties. These mathematics are implemented
in the context of a formal specification language, such as Z.
Formal methods are focus primarily on function and data,
therefore, they must be redesigned in a way that overcome
their difficulty to represent timing, control, and behavioral
aspects of a problem.

V. CONCLUSION

Generally SFSM solve most problem and limitations found
in traditional FSA. The states are connected by trajectory
information sets, so it is possible that only the essential
problem’s behavior obtained in the current situation are
used in the network flow, and it can determine an action by
not only the current, but also the past information. .The
inheritance analyses indicate that the expected effects of
inheritance are consistent with the schemata-based
processing of the GA. Reduction of the expense of
evaluating a population, through inheritance techniques
could substantially enhance the GA's applicability,
especially in the application where the typical GA's
population based approach may be prohibitively expensive.
SMA can yield systems with small overall size, and hence
less time is required to execute such optimized system on
parallel machines.

Figure 5: Data Trajectory effect

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

REFERENCES
[1] Koza, J. R., “Genetic Programming, on the Programming of

Computers by Means of Natural Selection”, 1992 MIT Press,
Cambridge, MA.

[2] Koza, J. R. , “ Genetic Programming II, Automatic Discovery of
Reusable Programs”, 1994 MIT Press, Cambridge, MA H. Poor, An
Introduction to Signal Detection and Estimation. New York:
Springer-Verlag, 1985, ch. 4.

[3] ShingoMabu, Kotaro Hirasawa, Jinglu Hu, “A Graph-Based
Evolutionary Algorithm: Genetic Network Programming (GNP) and
Its Extension Using Reinforcement Learning”, 2007 by the
Massachusetts Institute of Technology Evolutionary Computation
15(3): 369-398.

[4] L. J. Fogel, A. J. Owens, and M. J. Walsh., " Artificial Intelligence
throughSimulated Evolution", John Wiley, 1966.J. Wang,
“Fundamentals of erbium-doped fiber amplifiers arrays (Periodical
style—Submitted for publication),” IAENG International Journal of
Applied Mathematics, submitted for publication.

[5] Fogel, D. B. , “An introduction to simulated evolutionary
optimization”, 1994 IEEE Transactions on Neural Networks, 5(1):3–
14.

[6] Kumar Chellapilla and David Czarnecki. A preliminary
investigationinto evolving modular finite state machines, 1999.

[7] Karl A Benson. Evolving finite state machines with embedded
geneticprogramming for automatic target detection within SAR
imagery. InProceedings of the 2000 Congress on Evolutionary
Computation CEC00,pages 1543–1549. IEEE Press, 6-9 July 2000.

[8] Shisanu Tongchim and Prabhas Chongstitvatana. Parallel genetic
algorithm for finite state machine synthesis from input/output
sequences.In Erick Cantu-Paz and Bill Punch, editors, Evolutionary
Computationand Parallel Processing, pages 20–25, Las Vegas,
Nevada, USA, 8 2000.

[9] Nattee Niparnan and Prabhas Chongstitvatana. An improved
geneticalgorithm for the inference of finite state machine. In GECCO
’02:Proceedings of the Genetic and Evolutionary Computation
Conference,page 189, San Francisco, CA, USA, 2002. Morgan
Kaufmann PublishersInc.

[10] Chatchawit Aporntewan Prabhas Chongstitvatana. Improving
correctness of finite-state machine synthesis from multiple partial
input/output sequences..

[11] Jason W. Horihan and Yung-Hsiang Lu. Improving fsm evolution
withprogressive fitness functions. In GLSVLSI ’04: Proceedings of
the 14thACM Great Lakes symposium on VLSI, pages 123–126.
ACM Press,2004.

[12] Lamine Ngom, Claude Baron, and Jean-Claude Geffroy, "Genetic
simulationfor finite state machine identification" In SS ’99:
Proceedings of the Thirty-Second Annual Simulation Symposium,
page 118, Washington,DC, USA, 1999. IEEE Computer Society.

[13] Pushmeet Kohli, "A new genetic algorithm based scheme for
inferringfinite state machines from accept/reject data samples", In
IICAI, pages632–645, 2003.

[14] Philip Hingston, " A genetic algorithm for regular inference" In Lee
Spector,Erik D. Goodman, Annie Wu, W. B. Langdon, Hans-Michael
Voigt,Mitsuo Gen, Sandip Sen, Marco Dorigo, Shahram Pezeshk,
Max H. Garzon,and Edmund Burke, editors, Proceedings of the
Genetic and EvolutionaryComputation Conference (GECCO-2001),
pages 1299–1306, SanFrancisco, California, USA, 7-11 2001.
Morgan Kaufmann

[15] Xiaojun Geng, "Solving identification problem for asynchronous
finite state machines using genetic algorithms", In GECCO ’06:
Proceedingsof the 8th annual conference on Genetic and evolutionary
computation, pages 1413–1414, New York, NY, USA, 2006. ACM
Press..

[16] M. T. Tu, E. Wolff, and W. Lamersdorf, " Genetic algorithms for
automated negotiations: A FSM-based application approach", In
DEXA ’00:Proceedings of the 11th International Workshop on
Database and Expert Systems Applications, page 1029, Washington,
DC, USA, 2000. IEEE Computer Society.

[17] Simon M. Lucas, " Evolving finite state transducers: Some initial
explorations.In Euro GP", pages 130–141, 2003.

[18] Simon M. Lucas and T. Jeff Reynolds, " Learning finite state
transducers: Evolution versus heuristic state merging", 2007.

[19] J. Amaral, K. Turner, and J. Ghosh., "Designing genetic algorithms
for the state assignment problem", 1995.

[20] M. Lankhorst., "A genetic algorithm for induction of non
deterministic pushdown automata.",

[21] Simon Lucas., "Structuring chromosomes for context-free grammar
evolution", In Proceedings of The IEEE Conference on Evolutionary

Computation ,IEEE World Congress on Computational Intelligence,
1994.

[22] William M. Spears and Diana F. Gordon., "Evolving finite-state
machine strategies for protecting resources". In International
Syposium on Methodologies for Intelligent Systems, pages 166–175,
2000.

[23] A. Al Salami N. M. A., "Evolutionary Algorithm Definition",
American J. of Engineering and Applied Sciences 2(4): 789-795,
2009.

[24] AL-Salami, N.M.A., "System Evolving using Ant Colony
Optimization algorithm.", J. Computer. Science, 2009 5 (5): 380-387.
http://www.scipub.org/fulltext/jcs/jcs55380-387.pdf.

[25] Al Salami N. M. A., "Genetic System Generation", WEC 2009, pp 23-
27.

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

