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Abstract—Reliability and efficiency are important criteria in
the design of interconnection networks. Connectivity is a widely
used measurement for network fault-tolerance capacities, while
diameter determines routing efficiency along individual paths.
In practice, we are interested in high-connectivity, small-
diameter networks. Recently, the w-wide diameter dw(G),
(w − 1)-fault diameter Dw(G) and the w-Rabin number
rw(G), for w ≤ k(G) have been used to measure network
reliability and efficiency. In this paper, in addition to these pa-
rameters we introduce (w−1)-fault wide diameter ρw(G) and
study these parameters for the undirected circulant network.

Index Terms—wide diameter, fault diameter, fault wide dia-
meter, Rabin number, circulant network.

I. INTRODUCTION

RELIABILITY is an important concept in the design
of networks. Connectivity and edge connectivity are

widely used as reliability measures. In practice, we are often
interested in the collection of multipaths between a pair of
nodes [6]. The distance dG(x, y) from a vertex x to another
vertex y in a network G is the minimum number of edges
of a path from x to y. The diameter d(G) of a network G
is the maximum distance from one vertex to another. The
connectivity k(G) of a network G is the minimum number
of vertices whose removal results in a disconnected or trivial
network. According to Menger’s theorem, there are atleast k
(internally) vertex-disjoint paths from a vertex x to another
vertex y in a network of connectivity k [17].

The classical approach to study routing in interconnection
networks is to try to find the shortest path between the
sending station and the receiving station. Whenever some
stations are faulty on the path between the sending station
and the receiving station, the management protocol has to
find a way to bypass those faulty stations and set up a new
path between them. Similarly, if this new path is disconnected
again, a third path needs to be set up, if it is possible [4].
In this context, diameter is the measurement for maximum
transmission delay and connectivity is a good parameter to
study the tolerance of the network on occasions when nodes
fail. Fault tolerant interconnection networks can be found in
Hsu [17].

For a graph (network) G with connectivity k(G), the
parameters w-wide diameter dw(G), (w − 1)-fault diameter
Dw(G) and the Rabin number rw(G) for any w ≤ k(G)
arise from the study of parallel routing, fault-tolerant systems
and randomized routing respectively [6], [9], [10], [14]. Due
to the widespread use of reliable, efficient and fault-tolerant
networks, these three parameters have been the subject of
extensive study over the past decade [6]. In the sequal,
(x1, x2, ..., xn) denotes a path from x1 to xn.
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II. PRELIMINARIES

Definition 1. [4] A container C(x, y) between two distinct
nodes x and y in a network G is a set of node-disjoint paths
between x and y. The number of paths in C(x, y) is called
the width of C(x, y). A C(x, y) container with width w is
denoted by Cw(x, y). The length of Cw(x, y), written as
l(Cw(x, y)), is the length of a longest path in Cw(x, y).

Definition 2. [5] For w ≤ k(G), the w-wide distance from
x to y in a network G is defined as

dw(x, y) = min{l(Cw(x, y))/Cw(x, y) is a

container with width w between x and y}

The w-wide diameter of G is defined as

dw(G) = maxx,y∈V (G) {dw(x, y)} .

In other words, for w ≤ k(G), the w-wide diameter dw(G)
of a network G is the minimum l such that for any two
distinct vertices x and y there exist w vertex-disjoint paths
of length at most l from x to y.

The notion of w-wide diameter was introduced by Hsu
[6] to unify the concepts of diameter and connectivity. It is
desirous that an ideal interconnection network G should be
one with connectivity k(G) as large as possible and diam-
eter d(G) as small as possible. The wide-diameter dw(G)
combines connectivity k(G) and diameter d(G), where 1 ≤
w ≤ k(G). Hence dw(G) is a more suitable parameter than
d(G) to measure fault-tolerance and efficiency of parallel
processing computer networks. Thus, determining the value
of dw(G) is of significance for a given graph G and an
integer w. Hsu [6] proved that this problem is NP -complete
[18].

Remark 1. If there exists a container C∗
w(x, y) such that

each of the w paths in C∗
w(x, y) is a shortest path between

x and y in G, then

dw(x, y) = l(C∗
w(x, y))

Definition 3. [11] For w ≤ k(G), the (w−1)-fault distance
from x to y in a network G is

Dw(x, y) = max{dG−S(x, y) : S ⊆ V with

|S| = w − 1 and x, y are not in S}

where dG−S(x, y) denotes the shortest distance between x
and y in G− S.

The (w − 1)-fault diameter of G is

Dw(G) = max{Dw(x, y) : x and y are in G}

The notion of Dw(G) was defined by Hsu [6] and the spe-
cial case in which w = k(G) was studied by Krishnamoorthy
et al. [9].

Motivated by the definitions of wide diameter and fault
diameter in a network, we introduce a new parameter in this
paper known as fault wide diameter and define it as follows:
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Fig. 1. Circulant graph G(8;±{1, 3, 4})

Definition 4. For w ≤ k(G), the (w − 1)-fault wide
distance from x to y in a network G is

ρw(x, y) = max{dk(G)−|S|(x, y) : S ⊆ V with

|S| = w − 1 and x, y are not in S}

The (w − 1)-fault wide diameter of G is

ρw(G) = max{ρw(x, y) : x and y are in G}

Definition 5. [11] The w-Rabin number rw(G) of a network
G is the minimum l such that, for any w+1 distinct vertices
x, y1, ..., yw there exist w vertex-disjoint (except at x) paths
of length at most l from x to yi, 1 ≤ i ≤ w.

This concept was first defined by Hsu [6]. It is clear that
when w = 1, d1(G) = D1(G) = ρk(G) = r1(G) = d(G)
for any network G. The following are basic properties and
relationships among dw(G), Dw(G), ρw(G) and rw(G).

Lemma 1. [11] The following statements hold for any
network G of connectivity k:

1. D1(G) ≤ D2(G) ≤ · · · ≤ Dk(G)
2. d1(G) ≤ d2(G) ≤ · · · ≤ dk(G)
3. r1(G) ≤ r2(G) ≤ · · · ≤ rk(G)
4. Dw(G) ≤ dw(G) and Dw(G) ≤ rw(G) for 1 ≤ w ≤ k
It is easy to check that the new parameter ρw(G) exhibits

the following properties.
Lemma 2. Let G be a network of connectivity k. Then
1. ρ1(G) ≥ ρ2(G) ≥ · · · ≥ ρk(G)
2. Dw(G) ≤ dw(G) ≤ ρw(G) ≤ rw(G) for 1 ≤ w ≤ k
In 1994, Chen et al. determined the wide diameter of the

cycle prefix network [5]. In 1998, Liaw et al. found fault-
tolerant routing in circulant directed graphs and cycle prefix
networks [12]. The line connectivity and the fault diameters
in pyramid networks were studied by Cao et al. in 1999 [4].
In the same year Liaw et al. determined the Rabin number
and wide diameter of butterfly networks [10], [11]. In 2005,
Liaw et al. found the wide diameters and Rabin numbers of
generalized folded hypercube networks [13]. In 2009, Jia and
Zhang found the wide diameter of Cayley graphs of Zm, the
cyclic group of residue classes modulo m and they proved
that the k-wide diameter of the Cayley graph Cay(Zm, A)
generated by a k-element set A is d + 1 for k = 2 and is
bounded above by d+ 1 for k = 3, where d is the diameter
of Cay(Zm, A) [7].

In this paper we compute the w-wide diameter dw(G),
(w− 1)-fault diameter Dw(G), (w− 1)-fault wide diameter
ρw(G), and the w-Rabin number rw(G) for w ≤ k(G) when
G is an undirected circulant graph with connectivity k.
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Fig. 2. 2r-wide diameter of G

III. MAIN RESULTS

The circulant is a natural generalization of the double loop
network and was first considered by Wong and Coppersmith
[16]. Circulant graphs have been used for decades in the
design of computer and telecommunication networks due to
their optimal fault-tolerance and routing capabilities [3]. It
is also used in VLSI design and distributed computation [1],
[2], [15]. The term circulant comes from the nature of its
adjacency matrix. A matrix is circulant if all its rows are
periodic rotations of the first one. Circulant matrices have
been employed for designing binary codes [8]. Theoretical
properties of circulant graphs have been studied extensively
and surveyed by Bermond et al. [1]. Every circulant graph
is a vertex transitive graph and a Cayley graph [17]. Most
of the earlier research concentrated on using the circulant
graphs to build interconnection networks for distributed and
parallel systems [1], [3].

Definition 6. A circulant undirected graph, denoted
by G(n;±{1, 2, ..., j}), 1 ≤ j ≤ ⌊n/2⌋, n ≥ 3 is
defined as an undirected graph consisting of the ver-
tex set V = {0, 1, ..., n − 1} and the edge set E =
{(i, j) : |j − i| ≡ s(mod n), s ∈ {1, 2, ..., j}}.

The circulant graph shown in Fig. 1 is G(8;±{1, 3, 4}).
It is clear that G(n;±1) is the undirected cycle Cn

and G(n;±{1, 2, ..., ⌊n/2⌋}) is the complete graph
Kn. Theorem 1. If G is an undirected circulant graph
G(n;±{1, 2, ..., r}), then

d2r(G) =

{
⌊n−2r

r ⌋+ 2, if n ≡ 1(mod r)
⌈n−2r

r ⌉+ 2, otherwise

for all r = 1, 2, ..., ⌊n/2⌋.
Proof. Since G is 2r-regular, by Menger’s theorem there are
exactly 2r vertex disjoint paths between any two vertices u
and v in G. We begin with the case when u and v are adjacent
in Cn. Since G is vertex-transitive, without loss of generality
we assume that u = 0 and v = 1. Since the neighbourhood of
0 namely N(0) is the set N(0) = {1, 2, ..., r, n−1, ..., n−r},
each path in any container C2r(0, 1) contains exactly one
member from N(0).

Consider a path P in C2r(0, 1) passing through n − r.
Since V (P ) ∩ (N(0)\(n − r)) = ϕ, in order to compute
d2r(G) we choose P to be a shortest path between 0 and 1.
Thus

P = (0, n− r, n− 2r, . . . , 1 + 2r, 1 + r, 1)
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Fig. 3. 3-fault diameter of G(22;±{1, 2, 3}) is 6

of length
⌊
n−2r

r

⌋
+ 2, when n ≡ 1 (mod r) and

P = (0, n− r, n− 2r, . . . , j + r, 1 + r, 1), 2 ≤ j ≤ 1 + r

of length
⌈
n−2r

r

⌉
+ 2 in all other possibilities. Thus every

container C2r(0, 1) contains a path of length
⌊
n−2r

r

⌋
+ 2 if

n ≡ 1 (mod r) and
⌈
n−2r

r

⌉
+ 2 if n ̸≡ 1 (mod r).

We observe that the edge (0, 1) is a path of length 1 and
the paths (0, r−j, 1) and (0, n−r+1+j, 1), 0 ≤ j ≤ r−2 are
paths of length 2 between 0 and 1 passing through vertices
in N(0)\{n − r}. Thus there exist a container C2r(0, 1) in
which the longest path is P and all other paths are of length
1 or 2. See Fig. 2.

The case when u and v are not adjacent on Cn naturally
yields paths between u and v of length atmost

⌊
n−2r

r

⌋
+ 2,

when n ≡ 1 (mod r) and atmost
⌈
n−2r

r

⌉
+ 2, when n ̸≡ 1

(mod r).
In the following theorem we obtain the (r+1)-fault diam-

eter for the undirected circulant graph G(n;±{1, 2, ..., r}).
Theorem 2. Let G be the circulant graph

G(n;±{1, 2, ..., r}). Then

Dr+1(G) =

⌊
n− r

r

⌋
for all r = 2, ..., ⌊n/2⌋.
Proof. We begin with r faulty nodes which are consecutive
vertices in Cn. Without loss of generality let 1, 2, ..., r be the
faulty nodes. Let G

′
= G\{1, 2, ..., r}. It is easy to see that

dG′(0, r + 1) ≥ dG′(i, j) for all vertices i, j taken modulo
n. Now dG′(0, r + 1) =

⌊
n−r
r

⌋
. On the otherhand, suppose

the faulty nodes are not consecutive vertices of Cn, then
dG′(i, j) is bounded above by

⌊
n−r
r

⌋
. See Fig. 3.

Theorem 3. If G is an undirected circulant graph, then

D2(G(n;±{1, 2, ..., r})) =
⌈ n

2r

⌉
for all r = 1, 2, ..., ⌊n/2⌋.
Proof. Since G is vertex-transitive, let us assume that the
vertex labeled r be the faulty node. Let G′ = G\{r}. We
assume that u = 0 and v = ⌊n/2⌋. In order to compute
D2(G) we choose P to be shortest path between 0 and
⌊n/2⌋. Then

P = (0, n− r, n− 2r, . . . , ⌊n/2⌋)

of length n
2r if n − r ≡ 0 (mod r). Otherwise, we choose

the shortest path P between 0 and ⌊n/2⌋ as

P = (0, r − 1, 2r − 1, . . . , ⌊n/2⌋)
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Fig. 4. 5-fault wide diameter of G(22;±{1, 2, 3}) is 5

of length
⌈

n
2r

⌉
. It is easy to see that dG′(0, ⌊n/2⌋) =

⌈
n
2r

⌉
≥

dG′(i, j) for all vertices i, j taken modulo n.
In the next result we obtain the (w−1)-fault wide diameter

for an undirected circulant graph.
Theorem 4. Let G be the circulant graph

G(n;±{1, 2, ..., r}). Then

ρ2(G) =

⌈
n− (2r + 1)

r

⌉
+ 2

for all r = 1, 2, ..., ⌊n/2⌋.
Proof. Since G is vertex-transitive, let us assume that 1 be the
faulty node. Let G′ = G\{1}. Then G′ is (2r−1)-connected.
We choose u = 0 and v = 2. Since the neighbourhood of 0
is the set N(0) = {2, 3, ..., r, n− 1, ..., n− r}, each path in
the container C2r−1(0, 2) contains exactly one member from
N(0).

Consider a path P in C2r−1(0, 2) passing through n−r+1.
Since V (P )∩ (N(0)\(n− r+1)) = ϕ, in order to compute
ρ2(G) we choose P to be a shortest path between 0 and 2.
Thus

P = (0, n− r + 1, n− 2r + 1, . . . , 2)

of length
⌈
n−(2r+1)

r

⌉
+2. Again by Theorem 1, the length of

other paths are less than or equal to
⌈
n−(2r+1)

r

⌉
+2. It is also

easy to see that d2r−1(0, 2) =
⌈
n−(2r+1)

r

⌉
+2 ≥ d2r−1(i, j)

for all vertices i, j taken modulo n in G′.
Theorem 5. Let G be the circulant graph

G(n;±{1, 2, ..., r}). Then

ρ3(G) =


⌈
n−(2r−2)

r

⌉
+ 2, if n− (2r − 2) ≡ x (mod r)

where x ∈ {3, 4, . . . , r − 1}⌊
n−(2r−2)

r

⌋
+ 2, otherwise

for all r = 4, 5, ..., ⌊n/2⌋.
Proof. Since G is vertex-transitive, let us assume that 1, 2 be
the faulty nodes. Let G′ = G\{1, 2}. Then G′ is (2r − 2)-
connected. We assume that u = 0 and v = 3. Since the
neighbourhood of 0 is the set N(0) = {3, ..., r, n−1, ..., n−
r}, each path in the container C2r−2(0, 2) contains exactly
one member from N(0).

Consider a path P in C2r−2(0, 2) passing through n−r+2.
Since V (P )∩ (N(0)\(n− r+2)) = ϕ, in order to compute
ρ3(G) we choose P to be a shortest path between 0 and 3.
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Fig. 5. 6-Rabin number of G

Thus
P = (0, n− r + 2, n− 2r + 2, . . . , 3)

of length
⌈
n−(2r−2)

r

⌉
+2 if n−(2r−2) ≡ x(mod r), where

x ∈ {3, 4, ..., r−1}. By Theorem 1, the length of other paths
are less than or equal to

⌈
n−(2r−2)

r

⌉
+ 2. Also it is easy to

see that d2r−2(0, 3) =
⌈
n−(2r−2)

r

⌉
+ 2 ≥ d2r−2(i, j) for all

vertices i, j taken modulo n in G′.
Remark 2. If r = 3, then

ρ3(G) =

⌈
n− 4

3

⌉
+ 1

where G be the circulant graph G(n;±{1, 2, ..., r}).
Theorem 6. If G is an undirected circulant graph, then

ρr+1(G(n;±{1, 2, ..., r})) =
⌈
n− (r + 2)

r

⌉
+ 1

for all r = 1, 2, ..., ⌊n/2⌋.
Proof. Since G is vertex-transitive, let us assume that
1, 2, ..., r be the faulty nodes. Let G′ = G\{1, 2, ..., r}.
Then G′ is r-connected. We assume that u = 0 and
v = r + 1. Since the neighbourhood of 0 is the set
N(0) = {n − 1, ..., n − r}, each path in the container
Cr(0, r + 1) contains exactly one member from N(0).

Consider a path P in Cr(0, r+1) passing through n− 1.
In order to compute ρr+1(G) we choose P to be a shortest
path between 0 and r + 1. Thus

P = (0, n− 1, n− 1 + r, . . . , r + 1)

of length
⌈
n−(r+2)

r

⌉
+1. By Theorem 1, the length of other

paths are less than or equal to
⌈
n−(r+2)

r

⌉
+1. It is also easy

to see that dr(0, r + 1) =
⌈
n−(r+2)

r

⌉
+ 1 ≥ dr(i, j) for all

vertices i, j taken modulo n in G′. See Fig. 4.
We now proceed to determine the w-Rabin number for an

undirected circulant graph.
Theorem 7. If G is an undirected circulant graph, then

r2m−1(G(n;±{1, 2, ...,m})) =
⌊
n− 3

m

⌋
+ 1

for all m = 1, 2, ...,
⌊
n
2

⌋
.

Proof. By definition of Rabin number, we choose 2m points
(say u, u1, u2, . . . , u2m−1) in G. It is enough to consider the
case when these points are consecutive points in Cn labeled
i, i1, . . . , i2m−1 modulo n. We claim that, there are 2m− 1

vertex-disjoint paths from i to ik, 1 ≤ k ≤ 2m− 1 of length
atmost

⌊
n−3
m

⌋
+1. We in fact, construct 2m−1 vertex-disjoint

paths from i to ik, 1 ≤ k ≤ 2m− 1 as follows.
The edge (i, i1) is a path of length 1 from i to i1. Further

(i, in−m+l1 , i1), 1 ≤ l1 ≤ m− 1 and (i, in+l2 , i1), 2 ≤ l2 ≤
m are 2m−2 number of paths in G of length 2 from i to i1.
The edge (i, i2) is a path of length 1 from i to i2. Further
(i, i1, i2), (i, in+l1 , i2), 3 ≤ l1 ≤ m and (i, in−m+l2 , i2),
2 ≤ l2 ≤ m− 1 are 2m− 3 number of paths in G of length
2 from i to i2. Also (i, i+ n− r, i+ n− 2r, . . . , i2 + r, i2)
is a path of length

⌊
n−3
m

⌋
+ 1.

Similarly, the 2m − 1 vertex-disjoint paths from i to ik,
3 ≤ k ≤ 2m−1 are of length less than or equal to

⌊
n−3
m

⌋
+1.

Theorem 8. If G is an undirected circulant graph
G(n;±{1, 2, ...,m}), then

r2m(G) =

{
⌊n−2m

m ⌋+ 2, if n ≡ 1(mod m)
⌈n−2m

r ⌉+ 2, otherwise

for all m = 1, 2, ...,
⌊
n
2

⌋
.

Proof. This theorem is an easy consequence of Theorem 7.
See Fig. 5.

IV. CONCLUSION

In this paper we have found the w-wide diameter, w-fault
diameter, w-fault wide diameter and w-Rabin number for
a circulant undirected graph G. It would be interesting to
study reliability measures in interconnection network such
as hypercube network, butterfly network, mesh network and
so on.
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