
 
 

 

 
Abstract— The paper presents detection and classification of 

rotor bar faults at steady state operation in squirrel cage 
induction motor by using power factor. One phase current and 
voltage of the stator coils were used to calculate the power 
factor.  To investigate effects of rotor faults on the power factor, 
its frequency spectrum was obtained by fast Fourier Transform 
(FFT). Significant picks in the spectrum were used to discern 
“healthy” and “faulty” motor conditions. The motor conditions 
were classified by Artificial Neural Network (ANN). In 
experiments three different rotor faults and healthy motor 
conditions were investigated by 30 HP, 8’’, with 18 bars, 380V, 2 
poles and 50 Hz squirrel cage submersible induction motor. The 
proposed decision structure detects and classifies rotor bar 
faults with 100% accuracy.  
 

Index Terms—Broken rotor bar, fault diagnosis, induction 
motors, Fast Fourier Transform, Artificial Neural Network.  
 

I. INTRODUCTION 

  Induction motors are critical component of many industrial 
processes and are widely used as main drive for most rotating 
mechanical loads. Most electric motor faults interrupt a 
process, and may damage other related machinery. During 
recent years, there has been a substantial amount of research 
to provide condition monitoring techniques for ac induction 
motors based on motor current signature analysis (MCSA) 
[3-5] as current signals can easily be monitored for condition 
monitoring [5].  The problem is how to extract different 
features from the current signal and discriminate among 
various motor conditions. Most of the works on MCSA use 
second order based techniques like FFT analysis. Some work 
particularly uses the sidebands around the supply line 
frequency at twice the slip frequency and its multiples 

  fs21  in frequency spectrum of the current [6, 7]. The 

amplitude of the fundamental frequency is considerably 
greater than the sideband amplitude and the sideband is very 
close the fundamental frequency component depending on 
the slip. Therefore, relied solely on current FFT particular 
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solution has only limited ability to make an accurate 
detection [8]. Recent years, many upgrades of the basic 
MCSA algorithms have been proposed in order to improve 
detection accuracy and sensitivity. To solve the problem, two 
or three phase currents or voltage signals or their 
combinations have been used [9-12]. To develop such 
fault-detection, several authors have used modern computing 
approaches such as neural networks [6], artificial immune 
system [7].  

Therefore, in this paper one phase current and voltage of 
the stator coils were used to calculate the power factor.  To 
investigate effects of rotor faults on the power factor, its 
frequency spectrum was obtained by FFT. Significant picks 
in the spectrum were used to discern “healthy” and “faulty” 
motor conditions. The motor conditions were classified by 
ANN.  

II. MATERIAL AND METHOD 

The distortion of the rotor’s magnetic field orientation and 
the resulting local saturation in the rotor laminations around 
the region of the broken bars lead to a quasi-elliptical trace of 
the magnetic field’s space vector.  So, stator current is 
affected according to motor slip as in Equation (1).  

 

fksfb )21(      ,     k = 1,2,3,....                (1) 

Where f is main frequency and s is slip. The effects cause 
fluctuations on the current.  Zero-crossing points of current 
are changing because of the fluctuations.  Therefore, power 
factor of motor oscillates depend on the slip frequency. The 
frequency, it occurred by rotor bar faults, is available in 

multiple of  sf2   in frequency spectrum of the power factor. 

The frequency spectrum region was used to detection and 
classification of rotor bar faults in the present study.    

One phase current and voltage of the stator coils were 
measured to calculate the power factor. The zero-crossing 
points of the current and voltage and their periods are 
determined and power factor is calculated by these 
zero-crossing points and periods according to Equation 1.  

 

T

T
factorPower d              (1) 

 
Where Td is distance between the current zero-crossing 

point and the voltage zero-crossing point, T is period of 
voltage. These values are shown more clearly in Fig. 1.   
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Fig. 1. The zero-crossing points of stator current and 
voltage and showing of T and Td. 

 
The power factors are analyzed for each fault size and they 

are compared with other fault sizes and healthy rotor in time 
domain as shown Fig. 2.  

 

   
 

Fig. 2. The power factor variations according to faults size 
in time domain. 

 
The power factor oscillations in time domain may occur 

due to changes in motor load. Discerning is needed that these 
oscillations result from the fault or load change. So, DC 
components are extracted and then the power factor data in 
time domain are transformed to frequency domain by FFT. 

The frequency component corresponding to sf2 in the 

spectrum is useful to feature extraction for detection of rotor 
bar faults. Fig. 3 shows the frequency spectrum of power 
factor for faulty and healthy conditions.  

 

   
 

Fig. 3. The frequency spectrum of power factor for faulty 
and healthy conditions. 

 
Finally, the frequency spectrum of power factor is used to 

be inputs of ANN. So, the faulty motor conditions are 
detected and classified by using ANN outputs. 

III. EXPERIMENTAL STUDY AND RESULTS  

The experiments are made by 30 HP, 8’’, with 18 bars, 
380V, 2 poles and 50 Hz squirrel cage submersible induction 
motor. The purposed three different rotor faults were created 
in the factory at the production phase. The analyzed rotor 
faults are shown as follows:  

- A rotor with one broken rotor bar, 
- A rotor with two adjacent broken rotor bars, 
- A rotor with three adjacent broken rotor bars. 
 
In order to ensure accurate measurements, each rotor fault 

was created separately and passed through each assembly 
phase. To obtain broken rotor bar faults, a small part (5 mm 
length) is cut from the mid side of rotor bar and the two parts 
of bar are stacked from  both sides. So conductivity of the bar 
is decreased to 0, as shown in Fig. 4. Broken rotor bar 
photograph is given in Fig. 5.  

 

 
 

Fig. 4. Obtaining of broken rotor bar. 
 

 
 

Fig. 5. Photograph of broken rotor bar parts and rotor. 
 
The motors were tested in the motor factory by using 

experiment system. The tested motor was loaded by 
generator. Load is leveled by using resistors which conducted 
to the generator.  The photographs of the used experiment 
system are given in Fig. 6. One phase current and voltage of 
the stator coils were obtained to calculate the power factor in 
steady state operation for each fault.   

 
 

Proceedings of the World Congress on Engineering 2011 Vol II 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011



 
 

 

 
 

Fig. 6. Photograph of experiment system. 
 

The current and voltage were sampled by using Hall-effect 
sensors from the tested motor coils. Sampling was made at 
7.5 kHz. The data were transformed to frequency domain by 
using FFT.  

 

A. ANN Training, Test and Results 

A feed-forward network trained by back-propagation 
algorithm was used for classification. Inputs propagate from 
input layer to output layer via one hidden layer. The 
frequency spectrums are used as input vector for training the 
ANN which defines the target as healthy or faulty. After the 
training, the NN used to detect the faulty motor conditions. 

 
Input matrixes of ANN are the frequency spectrum of 

power factor (as shown Fig. 3) between 0 and 25 Hz. 
 
Output matrixes of ANN are column matrixes and they 

consist of 4 components. Every line represents 4 different 
motor conditions. 

Each fault representing output matrixes:  
Healthy  : [1 0 0 0 ]T  
A broken bar : [0 1 0 0 ]T 
Two broken bars : [0 0 1 0 ]T 
Three broken bars : [0 0 0 1 ]T 

 
The choosing of output matrix having four components 

increased accuracy of the diagnosis.  
There were eighteen data for every condition. the eight of 

the data were used for training and other eight data were used 
for test.  

Training and test were implemented at different number of 
hidden layers and iterations to find optimal number of hidden 
layers and iterations. Following criteria were used for 
optimization: 

Training Error : Per unit of ratio of difference between 
real results and training results to number of total samples. 

Test Error : Per unit of ratio of difference between 
real results and test results to number of total samples. 

Diagnosis Error : Per unit of ratio of number of mistaken 
diagnosises to number of total diagnosis. 

Healthy Error : Per unit of ratio of number of mistaken 
diagnosises in healthy motor conditions to number of total 
diagnosises. 

Because of that goal is to detection fault, “Diagnosis Error” 
was used to be the most significant indicator in the 
optimization.  

 
 
 

TABLE I. THE ERRORS FOR 500 ITERATIONS AT DIFFERENT 

NUMBER OF HIDDEN LAYER. 
 

Hidden 
Layer 

 

Healthy 
Error 
[%] 

Training  
Error 
[%] 

Test  
Error 
[%] 

Diagnosis 
Error 
[%] 

50 0 3.77E-05 1.74E+00 2.78 

100 0 1.28E-07 4.30E-01 0 

120 0 3.08E-04 2.11E+00 8.33 

150 0 1.15E-05 6.00E-01 0 

200 0 1.01E-10 1.36E+00 2.78 

250 0 2.49E-10 8.50E-01 0 

450 0 1.42E-08 2.00E+00 2.78 

500 0 3.90E-12 3.30E-01 0 

550 0 1.45E-08 1.16E+00 0 

750 0 5.86E-12 2.79E+00 2.78 

 
TABLE II. THE ERRORS FOR 100 HIDDEN LAYERS AT 

DIFFERENT NUMBER OF ITERATIONS. 
 

Iteration 
Number 

 

Healthy 
Error 
[%] 

Training  
Error 
[%] 

Test  
Error 
[%] 

Diagnosis
Error 
[%] 

250 0 6.00E-05 4.70E-01 0 

500 0 3.90E-12 3.30E-01 0 

750 0 2.95E-12 4.30E-01 2.78 

1000 0 2.84E-12 4.40E+00 2.78 

 
By investigating the results, the optimal values have been 

reached. The most efficient number of hidden layer is 500 
and the most efficient number of iteration is 500 as shown in 
Table I and TableII. At the end of the process the error of 
training is calculated as 3.90E-12%, the error of test is 
3.30E-01% and the error of diagnosis is 0%. 

IV. CONCLUSION 

In this study, the rotor fault effects on signals of power 
factor were analyzed by using FFT at steady state operation. 
For the analysis, experiments were performed for 3 different 
rotor faults and healthy motor conditions. The experimental 
results illustrate that the significant frequency components in 
frequency spectrum of power factor can be successfully 
applied for the broken bar diagnosis. The significant change 
depending on the rotor faults in frequency spectrum is used to 
be input matrix of supervised ANN. So, the classification was 
made. Consequently, the present study shows that the fault 
detection and classification from the power factor are quite 
feasible. The proposed method makes it possible to diagnose 
the faults, and discernment of them from each other with 
100% accuracy. 
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