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Abstract-The Centers for Disease Control and Prevention 
reported that the diseases of the heart, cancer, stroke, 
Alzheimer’s disease, and diabetes are among the top leading 
causes of deaths in the US for 2007. These diseases are known 
to be caused by a variety of factors including cholesterol and 
polyunsaturated fatty acids (PUFAs). This paper shows how 
pattern recognition using an unsupervised clustering 
algorithm (principal component analysis (PCA)) can provide a 
direct method of discriminating dyslipidemic patients 
according to Fredrickson’s Classification of Dyslipidemias 
obtained from the spectral data. The spectral data were 
obtained by utilizing a mature, patented reagent system based 
on its selectivity to the -CH=CH-CH2- group in a wide variety 
of lipids in human serum samples. The simple colorimetric 
assay used is rapid, rugged, and inexpensive that produces a 
characteristic molar absorbance spectra for cholesterol, ω-3 
(methyl esters of linolenic, eicosapentaenoic acid (EPA), and 
docosahexaenoic acid (DHA) fatty acids), and ω-6 (methyl 
esters of linoleic, conjugated linoleic acid (CLA), and 
arachidonic fatty acids). The assay is reacted with serum 
samples of known dyslipidemias. An independent full factorial 
design simulation of synthetic serum mixtures containing 
different levels of the lipids in chloroform solutions was also 
done. Pattern recognition using an unsupervised clustering 
algorithm (PCA) was applied to both the spectral data of 
synthetic and actual serum samples. The full factorial design 
of synthetic mixtures of human serum in chloroform solutions 
accomplished the discrimination of eight clusters. Each 
cluster corresponded to specific levels of lipids prepared. 
Application of the assay to real serum samples revealed ten 
clusters with each corresponding to a disease state according 
to Fredrickson’s Classification of Dyslipidemias. The results 
demonstrated that the novel chemical approach could provide 
a good agreement between clinical chemistry and pattern 
recognition results. This study shows how pattern recognition 
coupled with the assay can provide discrimination of dyslipi-
demic states in dyslipidemic individuals in faster and cheaper 
ways. 
 
Index Terms- dyslipidemia, Fredrickson’s, hierarchical 
clustering, pattern recognition, principal component analysis 
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I. INTRODUCTION 
 

     Dyslipidemias are serious and costly health problems 
worldwide known to be major risk factors for 
cardiovascular diseases, diabetes mellitus, and 
atherosclerosis [1], [2]. Prevention in the form of early 
detection of dyslipidemia and risk modification via drug 
and non-drug procedures, particularly among the high-risk 
group, is, therefore imperative. 
     Hyperlipidemia is the most common form of 
dyslipidemia, which is characterized by abnormally 
elevated levels of any or all lipids (cholesterol or 
triglyceride levels or both) and/or lipoproteins in the blood. 
It also includes any decreased lipid levels. 
Hyperlipoproteinemia is a specific form of hyperlipidemia 
characterized by abnormally elevated concentrations of 
specific lipoproteins in the plasma.  
     Cholesterol and triglyceride analyses are the simplest 
means for detecting hyperlipoproteinemia. They also 
provide some information about the type of 
hyperlipoproteinemia because the proportion of these lipids 
varies from one lipoprotein family to another. Knowledge 
of the concentrations of cholesterol and triglycerides 
permits the distinction of three general types of 
hyperlipidemia that roughly corresponds to certain types of 
hyperlipoproteinemias. Frederickson, et al developed a 
classification scheme to correlate hyperlipidemias with the 
abnormal lipoprotein serum patterns (Table I) [3]. 
     The methods of diagnosis for the abovementioned 
disease states usually involve electrophoretic methods, 
ultracentrifugation, and enzymatic tests [3]-[6]. For 
quantitative determination of total cholesterol in blood 
serum using the enzymatic test, several factors affect the 
analysis. These include the specificity of the enzymes used 
(cholesterol esterase and cholesterol oxidase), conditions of 
analysis and composition of the reaction mixture, and 
interferences from components of blood serum [5]. Other 
methods of determining cholesterol and triglyceride 
concentrations have included capillary gas chromatography 
[6]. Chromatographic methods, however, require extended 
amounts of time to carry out the analyses and are not ideal 
in typical clinical settings. 
     The original objective of this study was to introduce a 
mature, patented reagent system selective to the -CH=CH-
CH2- group that might provide a rapid diagnostic test for 
screening dyslipidemic individuals. 
     The assay was determined to simultaneously quantitate 
cholesterol and six polyunsaturated fatty acids (PUFAs) in 
synthetic mixtures and in human serum without any need 
for analytical separation [7]. The assay reagent produced a 
characteristic molar absorbance spectrum specific for each 
lipid analyte according to their degree of unsaturation. The 
method was shown to simultaneously quantitate cholesterol 
and PUFAs in human serum [8], [9].  
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     In this study, pattern recognition diagrams are included 
to discriminate among different dyslipidemic conditions of 
patients from selected samples with predetermined 
historical backgrounds. With additional specimens, 
correlations between assays and patients can be confirmed 
with each cluster represented as a biomarker for that 
disease. 
     The goal of pattern recognition is to recognize an 
obscure property in a collection of objects (i.e. samples) 
from indirect measurements (i.e. spectra) made on the 
objects [10]. 
     An unsupervised learning algorithm by principal 
component analysis (PCA) is employed in the pattern 
recognition used in this study. In PCA, complicated 
relationships are reduced to simple ones by projecting the 
data (i.e. spectra) from multidimensional space to two or 
three dimensions [11]. The first two principal components 
are then plotted against each other and hierarchical 
clustering analysis was performed to group together data 
points. 
 

II. MATERIALS AND METHODS 
 
Human Serum Samples 
     Serum samples were collected from patients who were 
admitted to Cape Town Clinic and Lipidology Laboratory at 
the University of Cape Town (UCT), South Africa. These 
patients were identified and treated for their respective lipid 
disorders. The anonymous samples from UCT were from 
volunteers who had already requested a lipid profile and 
had given consent. No attempt was made to solicit samples 
nor was any extensive information derived from the 
medical records. Subjects fasted for at least 12 hours prior 
to the collection of the sample. A venous blood sample was 
collected into a VacutainerTM red and grey capped 
separation tube. After inversion of the tube five times to 
mix the blood and the components of the collection tube, 
the sample was centrifuged at 3400 revolutions per minute 
(RPM) for 15 minutes. The collection tube contained a 
clotting activator which takes approximately 30 minutes to 
activate and a floating gel that separates the red blood cells 
from the serum during the centrifugation step. The serum, 
which was the top layer in the tube, was then transferred to 
a 10 mL glass vial with a screw cap. The experimental 
assay was completed within three days of receiving the 
sample. Samples were stored in a refrigerator at 2-4°C and 
were allowed to return to room temperature prior to 
analyses. UCT samples were also drawn from patients with 
normal to elevated cholesterol levels. For serum sample 
analysis, a 10 µL sample of serum was added to a 13 x 100 
mm borosilicate disposable test tube to which 1.0 mL of 98 
% acetyl chloride (AC) (Acros) was added, and then 
shaken. A 40 µL aliquot of perchloric acid (PA) (70% 
American Chemical Society (ACS) reagent grade, GFS) 
was then carefully added down the inside of the test tube 
and slowly introduced to the acetyl chloride, sample 
mixture.  
     The reaction starts on the first contact with PA. The 
solution was shaken by hand for twenty seconds to allow for 
the release of the small amount of hydrochloric acid (HCl) 
gas from the reaction test tube. The test tube was covered 

with a Teflon cap and placed into a centrifuge and spun for 
3 minutes at 3400 RPM. After centrifugation, precipitated 
proteins were separated as a small plug not removed, and 
the reagent solution was transferred to a 10.0 mm 
pathlength optical glass cuvette that was fitted with a 
Teflon stopper for the remaining time. Absorbance spectra 
were measured after 15 minutes on an HP8452A 
Spectrophotometer. A 5.0 second integration time and 2 nm 
spectral resolution were used to measure the absorbance 
data over the range of 350-550 nm. The blank for each 
reaction was pure AC. The reagent mixture of AC with PA 
did produce a slight color at 15 minutes. Due to the 
possibility of variability and small absorbance value, AC 
was substituted as the blank. 

 
Synthetic Mixtures 
     Methyl esters of ω-6 fatty acids (linoleic, conjugated 
linoleic acid (CLA), and arachidonic), ω-3 fatty acids (α-
linolenic, eicosapentaenoic acid (EPA), and 
docosahexaenoic acid (DHA)) and free cholesterol in 
chloroform solutions were all used to prepare synthetic 
mixtures of serum. The mixtures were prepared by full 
factorial design (n=128) using the SAS-JMP Software 
Package [12]. All of the standards were 90 to 99 % pure 
based on gas chromatographic analysis and were all 
purchased from Sigma-Aldrich. Stock solutions for each of 
the analytes with maximum total concentrations of 0.02 M 
and 0.04 M were prepared. The stock solutions were used to 
prepare mixtures to limit the maximum spectral response to 
ranges between 0.2 and 1.2 absorbance units. The inclusion 
of water was taken into account in this study. Serum 
normally consists of 97 % water [13]. With the sample size 
of serum being 10 µL, approximately 9.7 µL of water was 
added to the reagents in cases where synthetic mixtures are 
analyzed. The final experimental assay involved the 
addition of 10 µL of distilled water as the first step, 
followed by 1.0 mL AC, 10 µL chloroform mixture sample, 
and finally 40 µL PA. The final steps of the assay remained 
the same as serum in order to maintain constancy during 
the 15-minute reaction period. 

 
Pattern Recognition 
     The pattern recognition technique used in this study, 
PCA, is an unsupervised multivariate statistical method 
useful for reducing multidimensional data down to 2 or 3 
dimensions that can readily be comprehended. The 
graphical representations presented utilize the first 2 or 3 
principal components as the axes. Using PCA, the resulting 
principal components were plotted versus each other to 
produce 2- and 3- dimensional representations of the data 
to determine if any clustering patterns were separable. PCA 
was used for both the prepared mixtures and serum 
samples. If a pattern was seen, then hierarchical cluster 
analysis was used to group together the data points using 
the JMP software package [12]. In cluster analysis, the 
process will start with one piece of data and combines 
groups based on distances from one another in the principal 
component space [11]. The cluster analysis in this study 
was agglomerative hierarchical with Ward’s method being 
used for the distances. 
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III. RESULTS AND DISCUSSIONS 
 

     PCA was first performed in spectral data (128 samples x 
101 variables matrix) obtained by full factorial design of 
synthetic serum mixtures in chloroform solutions consisting 
of cholesterol, and six PUFAs. Full factorial design was 
used in this study because they are extremely easy to set up 
and easy to analyze [14]. Fig. 1 shows the full factorial 
design spectra. The spectral data matrix is decomposed in 
PCA by singular value decomposition (SVD) algorithms 
according to the equation below [15]: 

                        
ncxp

T

nxncnxp
SCX    (1) 

where X is an n (=128) spectra at p (=101) wavelengths; C, 
128x7 concentration matrix; ST, 7x101 matrix of the pure 
spectra (n=128 is the number of mixture spectra, nc(=7) is 
the number of components, and p(=101) is the number of 
wavelengths). Eq. (1) shows the decomposition of the 
spectral matrix in real factors, a product of ST of the spectra 
with a matrix C of concentration profiles. 
     By decomposing matrix X with a PCA as many 
significant principal components should be found as there 
are chemical species in the mixtures [15]. 
     The decomposition in the wavelength space, for a 
system with seven components is given by: 
 

nxpxp

T

nxnxp
EVTX 

7

*

7

*   (2) 

 
     Eq. (2) shows the decomposition of the spectral matrix 
in abstract factors T* and V*T (E is the error). The score 
matrix T* gives the location of the spectra defined by the 
seven principal components. 
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Fig. 1.  Full factorial design (n=128) of synthetic serum samples in 
chloroform solutions.  
 

     In this study, all spectral wavelengths (350-550 nm) 
were used and consequent variable reduction was performed 
as discussed earlier. For 101-dimensional space, feature 
reduction was performed to a 2-dimensional data and the 
resulting principal components, PC1 and PC2 were plotted 
against each other. Generally, it is possible to perform 101 
PCs in this study because the number of variables (m = 101) 
is less than the number of samples (n = 128). However, as 
one continues extracting PCs until m PCs are obtained, 
these will contain less and less variation and less 
information as well as significant loss of information. As 
such, the first two PCs were used in this study for they 
retain the largest information and the most variations [15].  

     After plotting the first two PCs, agglomerative 
hierarchical clustering using Ward’s algorithm was 
performed. The method starts with each point as its own 
cluster. At each step the clustering process calculates the 
Ward’s distance between each cluster and combines the two 
clusters that are closest together. This combining continues 
until all the points are in one final cluster [16]. Specifically, 
for clusters Sw1 and Sw2 whose cardinalities are Nw1 and Nw2 
and centroids cw1 and cw1, respectively, Ward’s distance is 
defined as: 

),(),( 21
21

21
21 ww

ww

ww
ww ccd

NN
NNSSdw


       (3) 

where d(cw1, cw2 ) is the squared Euclidean distance 
between  cw1 and cw2 [17]. Fig. 2 shows the dendogram 
resulting from hierarchical clustering. Each number 
corresponds to the clusters containing the samples of 
similar observations. Ward’s method was used in this study 
for it leads to well-structured dendograms [11]. There are 
no completely satisfactory methods for determining the 
number of population clusters for any type of cluster 
analysis [18], [19]. In this study, the number of clusters was 
determined by using a Scree Plot found below the 
dendogram in Fig. 2. The place where the Scree Plot 
changes from a sharp downward slope to a more level slope 
is an indication of the number of clusters [20]. Eight 
clusters were identified corresponding to different levels of 
the prepared lipids according to the full factorial design of 
synthetic sets. The resulting plot of PC1 versus PC2 and the 
resulting clusters with 0.90 confidence density ellipses are 
shown in Fig. 3. 

 
Fig. 2.  Dendogram of full factorial design synthetic sets. Diagram below it is 
the Scree Plot with eight clusters. 

1 
3 

5 

7 

2 

4 

6 

8 

8 

Proceedings of the World Congress on Engineering 2011 Vol II 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

(revised on 20 September 2011) WCE 2011



 

 
Fig. 3.  Prepared synthetic mixtures of lipids in chloroform solutions. Each 
cluster corresponds to different levels of lipids prepared.         
     Cluster 1 has high cholesterol; average arachidonic, 
EPA, and DHA; and an absence of linoleic, linolenic, and 
CLA. Cluster 2 has high linoleic and EPA; average to high 
linoleic and arachidonic; average DHA; and an absence of 
cholesterol and CLA. Cluster 3 has high cholesterol; 
average to high linoleic, linolenic; average arachidonic, 
EPA, and DHA; and an absence of CLA. Cluster 4 has the 
absence to low cholesterol; low, average, and high linoleic, 
linolenic, arachidonic, EPA, DHA; and low to average 
CLA. Cluster 5, on the other hand has high cholesterol; 
low, average, and high linoleic and linolenic; low to 
average arachidonic, EPA, and DHA; and average to high 
CLA. Cluster 6 an absence of cholesterol; low to average 
linoleic; low, average, and high linolenic, arachidonic, 
EPA, and DHA; and average to high CLA. Cluster 7 has 
high cholesterol; low to average linoleic, arachidonic, EPA; 
and low, average, and high linolenic, DHA and CLA. 
Cluster 8 has the absences of cholesterol and EPA; low to 
average linoleic, linolenic, arachidonic, and DHA; and 
average to high CLA. 

  The separation suggests that the pattern can be used to 
examine the patterns generated from different mixtures. 
     A set of data collected by UCT personnel on samples 
from patients was analyzed using similar methods. After 
hierarchical clustering, the Scree Plot was able to identify 
ten clusters as shown in Fig. 4. The medical staff of the 
hospital in Cape Town determined that the clusters 
correspond with the dyslipidemic states of the patients. 
Table I shows the history of patients corresponding to 
clusters in Fig. 5. 
     The general trend that is seen in Fig. 5, to this point, is 
that from top to bottom one goes from the Type V (top) 
through to the Type IIs in clusters 3, 4, and 5 and end with 
control patients being distributed in 8 and 9. The clusters 
were associated according to Fredrickson’s Classification of 
Lipid Disorders [6]. Cluster 1 contains the Type V patient 
pattern. Cluster 2 is Type III and Type IV (2 of each). 
Separation will improve with an increase in the sample size 
of these types and with the inclusion of the fatty acid 
profiles. Cluster 3 is a Type IIa pattern with a majority 
considered to be familial hypercholesterolemia (FH) (8/14) 
and familial combined hyperlipidemia (FCH) (4/14). 
Cluster 4 is a combination of Type IIa, IIb with controls 
with cholesterol values over 220 mg/dL. Cluster 5 is a 
combination of IIa, IIb, and some patients on various stages 
of treatments.  

 
Fig. 4.  Dendogram of UCT samples. Diagram below is the Scree Plot with 
ten clusters. 

 
    Fig. 5.  PC1 vs PC2 of serum samples. 
 
      Cluster 6 is a combination of controls with cholesterol 
over 200 mg/dL. Cluster 7 is a cluster of samples with 
cholesterol between 193 and 240 mg/dL, statin treated 
patients, controls, diet induce d hypercholesterolemia, and 
people under altered diet treatment for 
hypercholesterolemia. Cluster 8 and 9 are clusters of 
controls and some statin treatment patients. The one sample 
in cluster 10 is a sample of a type V patient in cluster 1 that 
was run with half the required volume of serum due to the 
extremely high absorbance of the entire spectra. Although 
the collaborators were able to complete an initial analysis of 
the clusters, all of the following groups are subject to 
change as the fatty acid profile is increased and as more 
information about the medical history is gathered. Further 
collection of data and patients’ histories including diet, 
treatments, and other health conditions will have to be 
collected to determine if this pattern recognition can be 
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used as a screening tool for dyslipidemias in a clinical 
setting. 
     Fig. 6 shows the average spectra for the clusters in Fig. 
5. It is apparent that the corresponding spectra shows 
recognizable clusters that are different from one patient 
type to the other. One good example is the average 
spectrum for cluster 1, which is enormously high 
corresponding to Type V patients. 
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     Fig. 6. Average spectra for the clusters in Fig. 5. 
 

TABLE I.  HISTORY OF PATIENTS CORRESPONDING TO CLUSTERS IN FIG. 5. 

Cluster 
Assay 
Code Treatment Dysproteinemia Diagnosis 

Cluste
r 

Assay 
Code Treatment Dysproteinemia Diagnosis 

1 6 New type V / FCH V 6 3 New mixed hyperlipidemia IV 

1 551 New 
severe hypertriglyceridemia secondary to 
diabetes milletus, diet, obesity V 6 4 New consider FCH II a 

2 10 New Dys-Beta III 6 7 New  moderate dyslipidemia II a 

2 13 New Dys-Beta III 6 8 New moderate hypercholesterolemia II a 
2 21 New IV , FCH IV 6 9 New considered for FH II- FH 

2 163 New IV , FCH IV 6 10.5 New  Dys-Beta, confirmed III 

3 5 New FH II a 6 344 New 
mild mixed hyperlipidemia with 
hypo-alpha II b 

3 12 New Dys-Beta III 6 475 New 
diabetes, possibly underlying 
lipolytic deffect V 

3 160 New possible FCH II a 6 496 New  FH II a 

3 264 New FCH is possible, high levels on excellent diet II a 6 497 New FH II a 
3 266 New likely FH II a 6  791 Normal (N) N N 
3 267 New could be FH but does not have Xanthomata II a 6  793 N N N-treated 

3 385 New 
serve primary low density lipoprotein (LDL), 
could be FCH but no family history to support II a 6 781 N N N 

3 422 New homo FH II a 6 782 N N N 
3 425 New possible FH but also consider FCH II a 6 783 N N N 

3 426 New 
serve primary LDL, could be FCH but no family 
history to support II a 6 784 N N N 

3 485 New achilles tendon suggestive of FH II a 6 785 N N N 
3 499 New dysbeta or FH II b 6 786 N N N 

3 564 trail, treated FH II a - tt 6 787 N N N 
3 571 new  FH Afrikaner II a 6 788 N N N 

4 2 first visit 
likely low density lipoprotein receptor 
mutation/ B-100 genes II a 7 25 

new, diet 
control only 

hypercholesterolemia, primary 
LDL II a 

4 14 New consider FH/FCH II a 7 104 
new, diet 
control only 

hypercholesterolemia, primary 
LDL II a 

4 20 New consider FH  II a 7 113 New very, very much the diet II b 

4 140 New 
moderate mixed hyperlipidemia, could be 
polygenic, FCH (needs family history) II b 7 162 New diet, Increased triglycerides II b 

4 152 New FH II a 7 217 

New, father 
of assay # 
215 and 216 FH II a 

4 161 New consider FCH or possibly polygenic II a 7 352 New Polygenic II a 

4 223 New Polygenic and diet aggravation  II a 7 555 trail, treated FH II a - tt 

4 268 New 
FH most likely though total cholestetol (TC ) 
low for FH II a 7 559 trail, treated FH II a - tt 

4 269 New FH Afrikans I and apo E2/E2 II a 7 560 trail, treated FH II a - tt 
4 273 New Moderate hypercholesterolemia II a 7 581 N N N 
4 424 New IIa could be FCH  II a 7 588 N N N 

4 478 New diabetes control, possibly lipolytic V 8 1 
New, but on 
treatment 

likely moderate mixed 
hyperlipidaemia II 

4 481 New could be secondary dyslipidemia II a 8 16 New FH II a 

4 483 New moderately severe, Hyper-LDL-cholesterolemia II b 8 159 New  Normolipidemic N 

4 488 New FH phenotype II b 8 214 New severe hypertriglyceridaemia V 
4 489 New IIa likely primary, could be FCH II a 8 216 New  FH II a 
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4 490 New IIa, could be FCH considering family history II a 8 225 New no major gene defect, dietary  II a 

4 491 New 
severe hypercholesterolemia, particularly 
related to renal disease II 8 554 trail, treated FH II a – tt 

4 493 New severe hypertriglyceridemia V 8 556 trail, treated FH II a – tt 

4 494 New 
primary LDL hypercholesterolemia, could be 
FCH but no family history II a 8 557 trail, treated FH II a – tt 

4 498 New FCH or polygenic  II a 8 562 trail, treated FH II a – tt 

4 558 trail, treated FH II a – tt 8 565 trail, treated FH II a – tt 

4 592 N N N 8 573 New 
mixed hyperlipidemia, possible 
dys-Beta II b 

4  728 New FCH or polygenic  IIa 8 576 N N N 
4 733  New FCH or polygenic  IIa 8 577 N N N 
5 15 New FCH/ FH II a 8 582 N N N 

5 17 New FH / familial fefective apolipoprotein B-100 II a 8 583 N N N 
5 22 New diet and increased triglycerides II b 8 585 N N N 

5 23 New 
moderate mixed hyperlipidemia, could be 
polygenic, FCH (needs family history) II b 8 589 N N N 

5 26 New FH II a 8 591 N N N 

5 29 New 
dysbetalipoproteineamia, likely 2 or 
Apolipoprotein E2/E2 III 8 593 N N N 

5 215 New FH II a 8  771  N  N N 
5 226 New FH II a 8  773  N  N N 

5 345 New  could be FCH, but no family history known II b 9 290 New severe hypertriglyceridemia V 

5 550 New 
IIa pattern, no clinical signs of FH, FCH 
possible II 9 346 New isolated hypertriglyceridemia IV 

5 552 trail, treated FH II a – tt 9 553 trail, treated FH II a – tt 

5 561 trail, treated FH II a – tt 9 578 N N N 

5 563 trail, treated FH II a – tt 9 579 N N N 

5 566 trail, treated FH II a – tt 9 580 N N N 

5 567 trail, treated FH II a – tt 9 586 N N N 
5 584 N N N 9 590 N N N 
5 587 N N N 9  775  N  N N 

5 600 New FH II a 10 551 New 

severe hypertriglyceridemia 
secondary to diabetes milletus, 
diet, obesity V 

5 602 New  FH II a       
 

IV. CONCLUSIONS 
 
     A cluster diagram created from PCA data derived 
from serum spectra had ten clusters which suggest 
separation based on dyslipidemias. Prepared mixtures 
also yielded separations based on the components present 
and the concentration ranges of each of the components. 
Both cluster analyses suggest that the spectrum itself can 
offer a benefit as a possible screening tool for 
dyslipidemias. Further studies with an in depth analysis 
of medical histories must be completed before any final 
conclusion about the clustering can be established. Once 
completed, the assay will be a useful clinical assay for a 
wide variety of research projects including further studies 
on the clustering and possible pattern recognition 
methods for the screening of dyslipidemias. The main 
advantages of the assay are reduction in time and costs to 
carry out the analyses. This would be most appropriate in 
a typical clinical setting. 

 
ACKNOWLEDGMENTS 

     We sincerely acknowledge the receipt of serum 
samples and assistance of the medical staff at the 
University of Cape Town’s Lipid Clinic. 
 

 
 

REFERENCES 
 

[1]. S. Fiorucci, S. Cipriani, F. Baldelli, A. Mencarelli, “Bile acid-
activated receptors in the treatment of dyslipidemia and related 
disorders,” Progress in Lipid Research, vol. 49, pp. 171–185, 2010. 

[2]. D.G. Smith, “Epidemiology of dyslipidemia and economic burden on  
 the healthcare system,” Am J Manag Care, vol. 13, no. (3 suppl), pp.    
 s69-s71, 2007. 

[3]. D.S. Fredrickson, “An International classification of hyperlipidemias  
       and hyperlipoproteinemias,” Annals of Internal Medicine, vol. 75,  
        no. 3, pp. 471-472, 1971. 
[4]. C.G. Magnussen, O.T. Raitakari, R. Thomson, M. Juonala, D.A.Patel,  
       J.S.A. Viikari, “Marniemi, J.; Srinivasan, S. R.; Berenson, G. S.;  
       Dwyer, T.; Venn, A. Utility of currently recommended pediatric  
       dyslipidemia classifications in predicting dyslipidemia in adulthood:  
       Evidence from the childhood determinants of adult health (CDAH)  
       study, cardiovascular risk in Young Finns Study, and Bogalusa Heart  
       Study,” Journal of the American Heart Association, vol. 117, 
        pp.32-42, 2007. 
 [5]. V.N. Malakhov, V.V. Pedchenko, “Enzymatic methods for  
      quantitative determination of total cholesterol in blood serum,” Vopr  
     Med Khim, vol. 37, no. 4, pp. 85-91, 1991. 
[6]. A. Lohninger, P. Preis, L. Linhart, S.V. Sommoggy, M. Landau, E.  
      Kaiser, “Determination of plasma free fatty acids, free cholesterol,  
      cholesteryl esters, and triacylglycerols directly from total lipid extract  
      by capillary gas chromatography,” Analytical Biochemistry, vol. 2,  

 pp. 243-250, 1990. 
[7]. G.G. Dumancas, M. Muriuki, N. Purdie, L. Reilly, “Simultaneous  
      spectrophotometric and chemometric determination of lipids in  
      synthetic mixtures and human serum,” Lipid Technology, vol. 21, no.  
      (5/6), pp. 127-130, 2009. 
[8]. G.G. Dumancas, M. Muriuki, N. Purdie, L. Reilly, “Chemometric  
       algorithms for the direct determination of lipids in synthetic mixtures  
       and human serum,” Journal of Biotech Research, vol. 2, pp. 34-43,  
       2010. 

Proceedings of the World Congress on Engineering 2011 Vol II 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

(revised on 20 September 2011) WCE 2011



 

[9]. G.G. Dumancas, M. Kimani, N. Purdie, L. Reilly, “Partial least  
      squares (PLS1) algorithm for quantitating cholesterol and  
      polyunsaturated fatty acids in human serum,” Journal of Biotech  
     Research, vol. 2, pp. 121-130, 2010. 
[10]. M.A. Sharaf, D.L. Illman, B.R. Kowalski, Chemometrics. Wiley- 
        Interscience, 1986, pp.183-188. 
[11]. M. Otto, Chemometrics: Statistics and computer application in  
        analytical chemistry. Wiley-VCH, 1999, pp. 155, 201-203. 
[12]. SAS. JMP 8 Statistical Discovery Software, 4.0, SAS Institute,  
        Inc.: Cary, NC, USA, 2008. 
[13]. B. Zak, J.D. Artiss, “Decreased water: increased solids: distorted  
        serum concentrations,” Microchemical Journal, vol. 72, no. 3, pp.  
        235-240, 2002. 
[14]. A.C. Atkinson, A.N. Donev, Optimum experimental designs.  

Oxford, 1992, p. 62.    
[15]. D.L. Massart, B.G.M. Vandeginste, L.M.C. Buydens, S. De Jong,     
        P.J. Lewi, J. Smeyers-Verbeke, Data Handling in Science and  
        Technology Volume 20 Handbook of Chemometrics and  
        Qualimetrics: Part A. Elsevier Science, 1997, pp. 519-527, 541. 
[16] SAS JMP. JMP 8 Statistics and graphics guide volume 1, SAS  
        Institute, Inc.: Cary, NC, USA, 2008. 
[17]. B. Mirkin, B., Clustering for data mining: a data recovery 

approach  Chapman & Hall/CRC, 2005, p. 114. 
[18]. B.S. Everitt, “Unresolved problems in cluster analysis,” Biometrics,  
        vol. 35, pp. 169–181, 1979. 
[19]. J.A. Hartigan, “Statistical theory in clustering,” Journal of  
        Classification, vol. 2, pp. 63–76, 1985. 
[20]. J. Sall, L. Creighton, A. Lehman, JMP Start statistics 3rd Ed.: A  

guide to statistics and data analysis using JMP and JMP IN 
software. SAS Institute, Inc.: Cary, NC, USA, 2005. 

 
 
Date of modification: September 6, 2011 
Brief description of changes: Address and email of  Dr. 
Neil Purdie changed to OSU Chemistry Department, 018 
Physical Science Building, Stillwater, OK 74078, USA 
(email: neil.purdie@okstate.edu)  
 
 
 
 

Proceedings of the World Congress on Engineering 2011 Vol II 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

(revised on 20 September 2011) WCE 2011




