
Solving Limited-Memory BFGS Systems
with Generalized Diagonal Updates
Jennifer Erway, Member, IAENG, and Roummel F. Marcia, Member, IAENG

Abstract—In this paper, we investigate a formula to solve
systems of the form (Bk + D)x = y, where Bk comes from
a limited-memory BFGS quasi-Newton method and D is a
diagonal matrix with diagonal entries di,i ≥ σ for some
σ > 0. These types of systems arise naturally in large-scale
optimization. We show that provided a simple condition holds
on B0 and σ, the system (Bk + D)x = y can be solved via
a recursion formula that requies only vector inner products.
This formula has complexity M2n, where M is the number of
L-BFGS updates and n � M is the dimension of x. We do
not assume anything about the distribution of the values of the
diagonal elements in D, and our approach is particularly for
robust non-clustered values, which proves problematic for the
conjugate gradient method.

Index Terms—L-BFGS, quasi-Newton methods, diagonal
modifications, Sherman-Morrison-Woodbury

I. INTRODUCTION

L IMITED-memory (L-BFGS) quasi-Newton methods are
powerful tools within the field of optimization [1], [2],

[3], [4] for solving problems when second derivative infor-
mation is not available or computing the second derivative is
too computationally expensive. In addition, L-BFGS matrices
can be used to precondition iterative methods for solving
large linear systems of equations. For both L-BFGS methods
and preconditioning schemes, being able to solve linear
systems with L-BFGS matrices are of utmost importance.
While there is a well-known two-loop recursion (cf. [4], [5])
for solving linear systems with L-BFGS matrices, little is
known about solving systems involving matrix modifications
of L-BFGS matrices.

In this paper, we develop a recursion formula to solve
linear systems with positive-definite diagonal modifications
of L-BFGS matrices, i.e., systems of the form

(Bk +D)x = y, (1)

where Bk is the k-th step n× n limited-memory (L-BFGS)
quasi-Newton matrix, D is a positive-definite diagonal matrix
with each diagonal element di,i ≥ σ for some σ > 0,
and x, y ∈ Rn. Systems of the form (1) arise naturally
in constrained optimization (see, e.g., [6], [7], [8], [9]) and
are often a block component of so-called KKT systems
(see, e.g., [10]). In previous work [11], we developed a
direct recursion formula for solving (1) in the special case
when D is a scalar multiple of the identity matrix, i.e.,

Manuscript received February 16, 2012; revised March 21, 2012. This
work was supported in part by NSF grants DMS-08-11106 and DMS-
0965711.

Jennifer B. Erway is with the Department of Mathematics, Wake Forest
University, Winston-Salem, 27109, USA. E-mail: erwayjb@wfu.edu
(see http://math.wfu.edu/∼jerway).

Roummel F. Marcia is with the Department of Applied
Mathematics, University of California, Merced, 5200 N. Lake Road,
Merced, 95340, USA. E-mail: rmarcia@ucmerced.edu (see
http://faculty.ucmerced.edu/∼rmarcia).

D = αI for some constant α > 0, and we stated that the
formula can be generalized to diagonal matrices. Here, we
explicitly show how to generalize this approach to positive-
definite diagonal matrices D. Furthermore, we compare this
generalized formula to a popular direct method (the Matlab
“backslash” command) and an indirect method (the conjugate
gradients). Numerical results suggest that our approach offers
significant computational time savings while maintaining
high accuracy.

II. THE LIMITED-MEMORY BFGS METHOD

Let f(x) : Rn → R a continuously differentiable function.
The BFGS quasi-Newton method for minimizing f(x) works
by minimizing a sequence of convex, quadratic models
of f(x). Specifically, the method generates a sequence of
positive-definite matrices {Bk} to approximate ∇2f(x) from
a sequence of vectors {yk} and {sk} defined as

yk = ∇f(xk+1)−∇f(xk) and sk = xx+1 − xk,

respectively. (See, e.g., [12] for further background on quasi-
Newton methods).

The L-BFGS quasi-Newton method can be viewed as the
BFGS quasi-Newton method where only at most M (M �
n) recently computed updates are stored and used to update
the initial matrix B0. The number of updates M is generally
kept very small; for example, Byrd et al. [1] suggest M ∈
[3, 7]. The L-BFGS quasi-Newton approximation to ∇2f(x)
is implicitly updated as follows:

Bk = B0 −
k−1∑
i=0

1

sTiBisi
Bisis

T
iBi +

k−1∑
i=0

1

yTi si
yiy

T
i , (2)

where B0 = γ−1
k I with γk > 0 a constant. In practice, γk

is often taken to be γk 4= sTk−1yk−1/‖yk−1‖22 (see, e.g., [2]
or [4]). Using the Sherman-Woodbury-Morrison formula, the
inverse of Bk is given by

B−1
k = B−1

k−1 +
sTk−1yk−1 + yTk−1B

−1
k−1yk−1

(sTk−1yk−1)2
sk−1s

T
k−1 (3)

− 1

sTk−1yk−1

(
B−1

k−1yk−1s
T
k−1 + sk−1y

T
k−1B

−1
k−1

)
.

There is an alternative representation of B−1
k from which a

two-term recursion can be established:

B−1
k = (V T

k−1 · · ·V T
0 )B−1

0 (V0 · · ·Vk−1) (4)

+
k−1∑
j=1

(V T
k−1 · · ·V T

j )sj−1s
T
j−1(Vj · · ·Vk−1)

+
1

yTk−1sk−1
sk−1s

T
k−1,

Proceedings of the World Congress on Engineering 2012 Vol I 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19251-3-8 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



where
Vj = I − 1

yTj sj
yjs

T
j

(see, e.g., [5]). For the L-BFGS method, there is an efficient
way for computing products with B−1

k . Given a vector
z, the following algorithm (cf. [4], [5]) terminates with
q 4= B−1

k z:

Algorithm 2.1: Two-loop recursion to compute q = B−1
k z

q ← z;
for i = k − 1, . . . , 0

αi ← (sTi q)/(y
T
i si);

q ← q − αiyi;
end
q ← B−1

0 q;
for i = 0, . . . , k − 1

β ← (yTi q)/(y
T
i si);

q ← q + (αi − β)si:
end

The first loop in Algorithm 2.1 for B−1
k z computes and

stores the products (Vj · · ·Vk−1)z for j = 0, . . . , k − 1.
The algorithm then applies B1

0 . Finally, the second loop
computes the remainder of (4). This algorithm can be made
more efficient by pre-computing and storing 1/yTi si for
0 ≤ i ≤ k − 1. The two-term recursion formula requires
at most O(Mn) multiplications and additions. There is
compact matrix representation of the L-BFGS that can make
computing products with the L-BFGS quasi-Newton matrix
equally efficient (see, e.g., [5]).

It is important to note that computing the inverse of Bk+D
is not equivalent to simply replacing B−1

0 in the two-loop
recursion with (B0+D)−1 (c.f. Figure 1 for an illustration).
To see this, notice that replacing B−1

0 in (4) with (B0 +
D)−1 would apply the updates Vi to the full quantity (B0+
D)−1 instead of only B−1

0 . The main contribution of this
paper generalizes the recursion formula in [11] for computing
(Bk +D)−1z in an efficient manner using only vector inner
products.

III. THE RECURSION FORMULA

Consider the problem of finding the inverse of Bk + D,
where Bk is an L-BFGS quasi-Newton matrix and D is a
positive-definite diagonal matrix with each diagional element
di,i ≥ σ for some constant σ > 0. The Sherman-Morrison-
Woodbury (SMW) formula gives the following formula for
computing the inverse of B+uvT , where B is invertible and
uvT is a rank-one update (see [13]):

(B + uvT )−1 = B−1 − 1

1 + vTB−1u
B−1uvTB−1

= B−1 − 1

1 + trace(B−1uvT )
B−1uvTB−1

where u and v are both n-vectors. For simplicity, consider
computing the inverse of an L-BFGS quasi-Newton matrix
after only one update, i.e., the inverse of B1 +D. First, we
simplify (2) by defining

ai =
Bisi√
sTi Bisi

and bi =
yi√
yTi si

. (5)

Then, B1 +D becomes

B1 +D = (γ−1
1 I +D)− a0aT0 + b0b

T
0

We apply the SMW formula twice to compute (γ−1
1 +D)−1.

More specifically, let

C0 = (γ−1
1 I +D),

C1 = (γ−1
1 I +D)− a0aT0 ,

C2 = (γ−1
1 I +D)− a0aT0 + b0b

T
0 .

Applying the SMW formula yields:

C−1
1 = C−1

0 +
1

1− trace(C−1
0 a0aT0 )

C−1
0 a0a

T
0 C

−1
0

C−1
2 = C−1

1 − 1

1 + trace(C−1
1 b0bT0 )

C−1
1 b0b

T
0 C

−1
1 ,

giving an expression for (B1+D)−1 = C−1
2 , as desired. This

is the basis for the following recursion method that appears
in [14]:

Theorem 1. Let G and G+H be nonsingular matrices and
let H have positive rank M . Let

H = E0 + E1 + · · ·+ EM−1,

where each Ek has rank one and

Ck+1 = G+ E0 + · · ·+ Ek

is nonsingular for k = 0, . . .M−1. Then if C0 = G, then for
k = 0, 1, . . . ,M − 1, the inverse of C−1

k+1 can be computed
recursively and is given by

C−1
k+1 = C−1

k − τkC−1
k EkC

−1
k ,

where
τk =

1

1 + trace
(
C−1

k Ek

) .
In particular,

(G+H)−1 = C−1
M−1 − τM−1C

−1
M−1EM−1C

−1
M−1.

Proof: See [14].

We now show that applying the above recursion method
to Bk + D, the product (Bk + D)−1z can be computed
recursively, assuming γkσ is bounded away from zero. The
proof follows [11] very closely.

Theorem 2. Let B0 = γ−1
k I , where γk > 0, and let D be a

diagonal matrix with di,i ≥ σ for some σ > 0 and γkσ > ε
for some ε > 0. Let

E0 = −a0aT0 ,
E1 = b0b

T
0 ,

...

E2k−2 = −ak−1a
T
k−1,

E2k−1 = bk−1b
T
k−1,

where ai and bi for i = 0, 1, . . . , k − 1, are given in (5).
Finally, let C0 = B0 +D and

Cj+1 = B0 +D + E0 + E1 + · · ·+ Ej ,

for j = 0, 1, . . . , 2k − 1. Then

C−1
j+1 = C−1

j − τj C−1
j EjC

−1
j , (6)

Proceedings of the World Congress on Engineering 2012 Vol I 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19251-3-8 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



= −

(Bk + D) Bk−1 ak−1a
T
k−1 bk−1b

T
k−1 D

++

!"#$

%&'$

Fig. 1. Pictorial representation of the L-BFGS update method. The matrix Bk is obtained from the previous matrix Bk by adding two rank-one matrices,
ak−1a

T
k−1 and bk−1b

T
k−1, where ak−1 and bk−1 are given in (5). The inverse of Bk is similarly obtained by adding two rank-one updates to B−1

k−1

(see (3)). However, the inverse of Bk +D cannot be obtained by adding two rank-one updates to (Bk−1 +D)−1.

where
τj =

1

1 + trace
(
C−1

j Ej

) . (7)

In particular, since C2k = Bk +D,

(Bk +D)−1 = C−1
2k−1 − τ2k−1C

−1
2k−1E2k−1C

−1
2k−1. (8)

Proof: Notice that this theorem follows from Theorem 1,
provided we satisfy its assumptions. First, we let

G = B0 +D and H = E0 + E1 + · · ·+ E2k−1.

Note that G = B0+D is nonsingular because B0 and D are
positive definite and that G+H = Bk+D is also nonsingular
since Bk and D are positive definite. Thus, it remains only
to show that Cj , which is given by

Cj = G+

j−1∑
i=0

Ei =

(
B0 +

j−1∑
i=0

Ei

)
+D,

is nonsingular for j = 1, . . . 2k, for which we use induction
on j.

For the base case j = 1, since

C1 = C0 − a0aT0 = C0(I − C−1
0 a0a

T
0 ),

the determinant of C1 and C0 are related as follows [15]:

det(C1) = det(C0)(1− aT0 C−1
0 a0).

In other words, C1 is invertible if C0 is invertible and
a0C

−1
0 a0 6= 1. Since C0 is positive definite, it is therefore in-

vertible. To show the latter condition, we use the definition of
a0 = B0s0/

√
sT0 B0s0 together with C−1

0 = (γ−1
k I +D)−1

to obtain the following:

aT0 C
−1
0 a0 =

1

sT0 B0s0
sT0 B

T
0 C

−1
0 B0s0

=
γ−2
k

γ−1
k sT0 s0

sT0
(
γ−1
k I +D

)−1
s0

=
1

γksT0 s0

(
n∑

i=1

1

γ−1
k + di,i

(s0)
2
i

)

≤ 1

γksT0 s0

(
1

γ−1
k + σ

sT0 s0

)
=

1

1 + γkσ
. (9)

By hypothesis, γkσ > ε, which implies that aT0 C
−1
0 a0 < 1

and that det(C1) 6= 0. Therefore, C1 must be invertible.

Now we assume that Cj is invertible and show that Cj+1 is
invertible. If j is odd, then j+1 = 2i for some i and Cj+1 =
Bi + D, which is positive definite because both Bi and D
are positive definite. Therefore Cj+1 must be nonsingular. If
j is even, i.e., j = 2i for some i, then Cj = Bi +D, and

Cj+1 = Cj − aiaTi = Bi −
1

sTi Bisi
Bisis

T
i B

T
i +D.

We will demonstrate that Cj+1 is nonsingular by showing
that it is positive definite. Consider z ∈ Rn with z 6= 0.
Then

zTCj+1z

= zT
(
Bi −

1

sTi Bisi
Bisis

T
i B

T
i

)
z + zTDz

= zTBiz −
(zTBisi)

2

sTi Bisi
+ zTDz

= ‖B1/2
i z‖22 −

(
(B

1/2
i z)T (B

1/2
i si)

)2
‖B1/2

i si‖22
+ zTDz

= ‖B1/2
i z‖22 − ‖B1/2

i z‖22 cos2
(
∠(B1/2

i z,B
1/2
i si)

)
+ zTDz

= ‖B1/2
i z‖22

(
1− cos2

(
∠(B1/2

i z,B
1/2
i si)

))
+ zTDz

≥ σ‖z‖22
> 0, (10)

since each di,i ≥ σ > 0. This demonstrates that Cj+1 is
positive definite, and therefore, it is nonsingular.

We have now thus satisfied all the assumptions of Theorem
1. Therefore, (Bk + D)−1, which is equal to C−1

2k , can be
computed recursively and is specifically given using (6) and
(8).

Now, we show that computing C−1
k+1z can be done effi-

ciently as is done in [11]. We note that using (6), we have

C−1
k+1z = C−1

k z − τkC−1
k EkC

−1
k z (11)

=


C−1

k z + τkC
−1
k a k

2
aTk

2

C−1
k z if k is even

C−1
k z − τkC−1

k b k−1
2
bTk−1

2

C−1
k z if k is odd.

Proceedings of the World Congress on Engineering 2012 Vol I 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19251-3-8 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



We define pk according to the following rules:

pk =

{
C−1

k a k
2

if k is even

C−1
k b k−1

2
if k is odd.

(12)

Thus, (11) simplifies to

C−1
k+1z = C−1

k z + (−1)kτk(pTk z)pk.

Applying this recursively to C−1
k z yields the following

formula:

C−1
k+1z = C−1

0 z +
k∑

i=0

(−1)iτi(pTi z)pi, (13)

with C−1
0 z = (γ−1

k I+D)−1z. Thus, the main computational
effort in forming C−1

k z involves the inner product of z with
the vectors pi for i = 0, 1, . . . , k.

What remains to be shown is how to compute τk in (7)
and pk in (12) efficiently. The quantity τk is obtained by
computing trace(C−1

k Ek), which after substituting in the
definition of Ek, is given by

trace(C−1
k Ek) =

−a
T
k
2

C−1
k a k

2
if k is even

bTk−1
2

C−1
k b k−1

2
if k is odd.

=

−a
T
k
2

pk if k is even

bTk−1
2

pk if k is odd.

using (12). Thus, τk simplifies to

τk =


1

1− aTk
2

pk
if k is even

1

1 + bTk−1
2

pk
if k is odd.

Finally, notice that we can compute pk in (12) by evaluating
(13) at z = a k

2
or z = b k−1

2
:

pk =


C−1

0 a k
2
+

k−1∑
i=0

(−1)iτi(pTi a k
2
)pi if k is even

C−1
0 b k−1

2
+

k−1∑
i=0

(−1)iτi(pTi b k−1
2
)pi if k is odd.

Thus, by computing and storing aTk
2

pk and bTk−1
2

pk, we can
form τk and pk rather easily. The following pseudocode
summarizes the algorithm for computing C−1

k+1z:

Algorithm 3.1: Proposed recursion to compute q = C−1
k+1z.

q ← (γ−1
k+1I +D)−1z;

for j = 0, . . . , k
if j even

c← aj/2;
else

c← b(j−1)/2;
end
pj ← (γ−1

k+1I +D)−1c;
for i = 0, . . . , j − 1

pj ← pj + (−1)ivi(pTi c)pi;
end

TABLE I

n
Relative Residual

Direct CG Recursion
1, 000 1.27e-15 8.78e-16 7.21e-16
2, 000 1.91e-15 1.21e-15 1.20e-15
5, 000 2.83e-15 1.61e-15 1.41e-15

10, 000 3.47e-15 1.29e-15 8.98e-16
20, 000 5.03e-15 2.12e-15 1.51e-15

A SAMPLE RUN COMPARING THE RELATIVE RESIDUALS OF THE
SOLUTIONS USING THE MATLAB “BACKSLASH” COMMAND, CONJUGATE

GRADIENT METHOD, AND THE PROPOSED RECURSION FORMULA. THE
RELATIVE RESIDUALS FOR THE RECURSION FORMULA ARE USED AS THE

CRITERIA FOR CONVERGENCE FOR CG.

TABLE II

n
Time (sec)

Direct CG Recursion
1, 000 0.0249 0.0152 0.0053
2, 000 0.2015 0.0188 0.0102
5, 000 1.5276 0.0473 0.0158

10, 000 8.0836 0.1549 0.0170
20, 000 51.8179 0.2519 0.0198

THE COMPUTATIONAL TIMES TO ACHIEVE THE RESULTS IN TABLE I.

vj ← 1/(1 + (−1)jpTj c);
q ← q + (−1)ivi(pTi z)pi;

end

Algorithm 3.1 requires O(k2) vector inner products. Op-
erations with C0 and C1 can be hard-coded since C0 is a
scalar-multiple of the identity. Since k is kept small the extra
storage requirements and computations are affordable.

IV. NUMERICAL EXPERIMENTS

We demonstrate the effectiveness of the proposed recur-
sion formula by solving linear systems of the form (1)
where the matrices are of the form (2) and of various sizes.
Specifically, we let the number of updates M = 5 and
the size of the matrix range from n = 103 up to 107.
We implemented the proposed method in Matlab on a Two
2.4 GHz Quad-Core Intel Xeon “Westmere” Apple Mac
Pro and compared it to a direct method using the Matlab
“backslash” command and the built-in conjugate-gradient
(CG) method (pcg.m). Because of limitations in memory,
we were only able to use the direct method for problems
where n ≤ 20, 000. For our numerical experiments, we let
the entries in D to be evenly distributed between 1 and
n/10. The relative residuals for the recursion formula are
used as the criteria for convergence for CG. In other words,
the time reported in this table reflects how long it takes for
CG to achieve the same accuracy as the proposed recursion
method. Often, CG terminated without converging to the
desired tolerance because the method stagnated (flag =
3 in Matlab).

Results. The three methods were run on numerous problems
with varying problems sizes. Tables I–IV show the time
and the relative residuals for each method. In Tables I
and II, n ranges from 1,000 to 20,000; Tables III and IV
contain results for n ≥ 20, 000. We note that all methods
achieve very small relative residual errors for each of the
problems we considered. Besides from memory issues, the
direct method suffers from significantly longer computational

Proceedings of the World Congress on Engineering 2012 Vol I 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19251-3-8 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



TABLE III

n
Relative residual

CG Recursion
100, 000 5.68e-16 2.31e-16
200, 000 6.66e-16 2.34e-16
500, 000 5.35e-16 2.32e-16

1, 000, 000 6.32e-16 2.29e-16
2, 000, 000 7.24e-16 2.30e-16
5, 000, 000 8.21e-16 2.28e-16

10, 000, 000 7.85e-16 2.33e-16

COMPARISON BETWEEN THE PROPOSED RECURSION METHOD AND THE
BUILT-IN CONJUGATE GRADIENT (CG) METHOD IN MATLAB. THE

RELATIVE RESIDUALS FOR THE RECURSION FORMULA ARE USED AS THE
CRITERIA FOR CONVERGENCE FOR CG. IN ALL CASES, CG

TERMINATED WITHOUT CONVERGING TO THE DESIRED TOLERANCE
BECAUSE “THE METHOD STAGNATED.”

TABLE IV

n
Computational Time (sec)

CG Recursion
100, 000 1.006 0.066
200, 000 3.069 0.123
500, 000 4.568 0.471

1, 000, 000 28.573 1.404
2, 000, 000 113.832 2.934
5, 000, 000 362.982 6.801

10, 000, 000 540.158 12.208

COMPARISON OF THE COMPUTATIONAL TIMES BETWEEN THE PROPOSED
RECURSION METHOD AND THE BUILT-IN CONJUGATE GRADIENT (CG)

METHOD IN MATLAB.

time, especially for the larger problems. Compared to CG for
the larger problems, not only does the proposed method yield
more accurate solutions (its relative residuals are smaller than
those from CG), but it is also significantly faster.

V. CONCLUSION

In this paper, we proposed an algorithm based on the
SMW formula to solve systems of the form Bk +D, where
Bk is an n × n L-BFGS quasi-Newton matrix. We showed
that as long as the diagonal elements of D are bounded
away from zero, the algorithm is well-defined. The algorithm
requires at most M2 vector inner products. (Note: We assume
that M � n, and thus, M2 is also significantly smaller
than n.) Numerical results demonstrate that the proposed
method is not only accurate (the resulting relative residuals
are comparable to the Matlab direct solver and the conjugate
gradient method), but it is also efficient with respect to
computational time (often up to about 50× faster than
CG). The algorithm proposed in this paper can be found
at http://www.wfu.edu/∼erwayjb/software.

REFERENCES

[1] R. H. Byrd, J. Nocedal, and R. B. Schnabel, “Representations of quasi-
Newton matrices and their use in limited-memory methods,” Math.
Program., vol. 63, pp. 129–156, 1994.

[2] D. C. Liu and J. Nocedal, “On the limited memory BFGS method
for large scale optimization,” Math. Program., vol. 45, pp. 503–528,
1989.

[3] J. Morales, “A numerical study of limited memory BFGS methods,”
Applied Mathematics Letters, vol. 15, no. 4, pp. 481–487, 2002.

[4] J. Nocedal, “Updating quasi-Newton matrices with limited storage,”
Math. Comput., vol. 35, pp. 773–782, 1980.

[5] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New
York: Springer-Verlag, 2006.

[6] A. Fiacco and G. McCormick, Nonlinear programming: sequential
unconstrained minimization techniques, ser. Classics in applied math-
ematics. Society for Industrial and Applied Mathematics, 1990.

[7] P. E. Gill and D. P. Robinson, “A primal-dual augmented Lagrangian,”
Computational Optimization and Applications, pp. 1–25, 2010.
[Online]. Available: http://dx.doi.org/10.1007/s10589-010-9339-1

[8] N. I. M. Gould, “On the accurate determination of search directions for
simple differentiable penalty functions,” IMA J. Numer. Anal., vol. 6,
pp. 357–372, 1986.

[9] M. H. Wright, “The interior-point revolution in optimization: history,
recent developments, and lasting consequences,” Bull. Amer. Math.
Soc. (N.S, vol. 42, pp. 39–56, 2005.

[10] M. Benzi, G. H. Golub, and J. Liesen, “Numerical solution of
saddle point problems,” in Acta Numerica, 2005, ser. Acta Numer.
Cambridge: Cambridge Univ. Press, 2005, vol. 14, pp. 1–137.

[11] J. B. Erway and R. F. Marcia, “Limited-memory BFGS systems with
diagonal updates,” Linear Algebra and its Applications, 2012, accepted
for publication.

[12] J. E. Dennis, Jr. and R. B. Schnabel, Numerical methods for un-
constrained optimization and nonlinear equations. Philadelphia,
PA: Society for Industrial and Applied Mathematics (SIAM), 1996,
corrected reprint of the 1983 original.

[13] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed.
Baltimore, Maryland: The Johns Hopkins University Press, 1996.

[14] K. S. Miller, “On the Inverse of the Sum of Matrices,” Mathematics
Magazine, vol. 54, no. 2, pp. 67–72, 1981.

[15] J. E. Dennis Jr. and J. J. Moré, “Quasi-Newton methods, motivation
and theory,” SIAM Review, vol. 19, pp. 46–89, 1977.

Proceedings of the World Congress on Engineering 2012 Vol I 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19251-3-8 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012




