
 

 
Abstract— We propose in this paper a recursive algorithm for 
triangular matrix inversion (TMI) based on the ‘Divide and 
Conquer’ (D&C) paradigm. A series of different versions of an 
original sequential algorithm are first presented. A theoretical 
performance study permits to establish an accurate 
comparison between the designed algorithms. Our 
implementation is designed to be used in place of dtrtri, the 
level 3 BLAS Triangular Matrix Inversion. Efficient 
performance could be obtained for large matrix sizes. 

 
Index Terms— Divide and conquer, level 3 BLAS, recursive 
algorithm, triangular matrix inversion. 

 

I. INTRODUCTION 

RIANGULAR matrix inversion (TMI) is a basic kernel in 
large and intensive scientific applications. Given its 
cubic complexity, several works addressed the design 

of efficient parallel algorithms for solving this problem. 
Apart the standard TMI algorithm consisting in solving n 
linear triangular systems of size n, n–1,…,1 [1], a recursive 
algorithm, of same complexity, has been proposed by 
Heller in 1973 [2]-[3]. Our objective here is the design of a 
fast sequential algorithms based on Heller’s algorithm. 
The remainder of the paper is organized as follows. In 
section 2, we present the divide and conquer paradigm, then 
we detail a theoretical study on diverse sequential versions 
of Heller’s algorithm in section 3. Finally, we present in 
section 4 an experimental study. 

II. DIVIDE AND CONQUER 

A. Review Stage 

There are many paradigms in algorithm design. 
Backtracking, dynamic programming, and the greedy 
method to name a few. One compelling type of algorithm is 
called Divide and Conquer. Algorithms of this type split the 
problem into subproblems. After the sub-solutions are found 
they are combined to form the solution of the original 
problem. When the subproblems are of the same type as the 
original problem, the same recursive process can be carried 
out until the problem size is sufficiently small. This special 
type of D&C is referred to as D&C recursion. The recursive 
nature of many D&C algorithms makes it easy to express 
their time complexity as recurrences. Consider a D&C 
algorithm working on an input size N. It divides its input  
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into subproblems of size N/b. The combining and 
conquering takes f (N) time. The base-case corresponds to n 
= 1 and is solved in constant time. The time complexity of 
this class of algorithms can be expressed as follows: 

    T (N ) = O(1)                     if     n = 1, 
               = aT (n/b) + f (n )   otherwise. 
 
The master theorem for recurrences can in some instances 

be used to give a tight asymptotic bound for the complexity 
[4]: 

 
 If a=b : T(n) = O(nlogn) 
 If a<b and f(n) >0 : T(n) = O(n) 
 If a<b and f (n) =0 : T(n) = O(logn) 
 If a>b : T(n) = O (nlogba ) 

III. SEQUENTIAL RECURSIVE TMI ALGORITHMS 

We first recall that the well known standard algorithm 
(SA) for inverting a triangular matrix (an upper or lower 
triangular matrix), say A of size n, consists in solving n 
triangular systems. The complexity of (SA) is as follows [1]:   

       SA(n)=n3/3+n2/2+n/6                    (1) 
 

A. Heller’s Recursive Algorithm (HRA) 

 

 
Fig1. Matrix Decomposition in Heller’s algorithm 

 

Using the Divide and Conquer paradigm, Heller proposed 
in 1973 a recursive algorithm [2]-[3] for TMI. The main 
idea he used consists in decomposing matrix A as well as its 
inverse B (both of size n) into 3 submatrices of size n/2 (see 
Figure 1, A being assumed lower triangular). The procedure 
is recursively repeated until reaching submatrices of size 1. 
We hence deduce:  

                     (2) 
 

 

 
Therefore, inverting matrix A of size n consists in 

inverting 2 submatrices of size n/2 followed by two matrix 
products (triangular by dense) of size n/2. In [3] Nasri  
proposed a slightly modified version of the above algorithm. 

Indeed, since B2=–B3A2 and B1= – 1
12

1
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 AAA , let 
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Q= 2
1

3 AA . From (2), we deduce:         

                            (3)            

 

Hence, instead of two matrix products needed to compute 
matrix B2, we have to solve 2 matrix systems of size n/2 
i.e. A3Q =A2 and (A1)T(B2)T= –QT. We precise that both 
versions are of n3/3+O(n2) complexity [3].  

Now, for sake of simplicity, we assume that n=2q (q≥1). 
Let RA-k be the Recursive algorithm designed by 
recursively applying decomposition until reaching a 
threshold size n/2k (1≤k≤q. The complexity of RA-k is as 
follows [3]: 

     RA-k(n)=n3/3+n2/2k+1+n/6                       (4)   

 

B. Recursive Algorithm using Matrix Multiplication RAMM 

As previously seen, to invert a triangular matrix via 
block decomposition, one requires two recursive calls and 
two triangular matrix multiplications (TRMM). The cost is 
thus RAMM(n) = 2RAMM(n/2) + 2TRMM(n/2). The idea 
consists in using the Faster Algorithm for TRMM presented 
below.  

ALGORITHM  1 

RAMM 
 

Begin 
 
If (n= 1) then 

B1 =1/A1 

B3 = 1/A3 

B2 = -B3*A2*B1 

Else /* splitting matrices into three blocks of sizes n/2 

B1 = RAMM(A1) 

B3 = RAMM (A3) 

C  = TRMM(-B3,A2) 

B2 = TRMM(C,B1) 

End 

 
 

 TRMM: 

To perform the multiplication of a triangular matrix by a 
dense matrix via block decomposition in halves, one 
requires four recursive calls and two dense matrix-matrix 
multiplications (MM).  
The cost is thus TRMM(n) = 4TRMM(n/2)+2MM(n/2). 

To optimize this algorithm, we will use a fast Algorithm for 
dense MM i.e. Strassen algorithm  [5]-[6]. 

 MM: 

In [5] the author reported on the development of an 
efficient and portable implementation of Strassen's MM 
algorithm. The optimal number of recursive levels depends 
on the architecture and must be determined experimentally.   

            

ALGORITHM  2 

RAMM 
 

Begin 
If  (n= 1)  then 
A11*B11=C11 
A11*B12=C12 
A21*B11+A22*B21= C21 
A21*B12+A22*B22=C22 
Else /* splitting matrices into four blocks of sizes n/2 
C11  = TRMM(A11,B11) 
C12  = TRMM(A11,B12) 
C21 = MM(A21,B11) + TRMM(A22,B21) 
C22 = MM(A21,B12) + TRMM(A22,B22) 
End 

     

C. Recursive Algorithm using Triangular Systems Solving 
RATSS 

 
In this version, we replace the two matrix products by 

two triangular systems solving of size n/2. Therefore the 
algorithm is written as follow: 

ALGORITHM  3 

RATSS 
 

Begin 
If (n=1) then 
B1 = 1/A1 
B3 = 1/A3 
Q  = A2/A3 
B2 = -Q/A1 
Else /* splitting matrices into four blocks of sizes n/2 
B1 = RAMM(A1) 
B3 = RAMM(A3) 
Q  = TSS(A3, A2) 
B2 = TSS(A1

T,-QT) 
End 
 

 TSS: 

We now discuss the implementation of solvers for 
triangular systems with matrix right hand side (or 
equivalently left hand side). This operation is commonly 
named trsm in the BLAS convention. In the following, we 
will consider, without loss of generality, the resolution of a 
lower triangular system with matrix right hand side 
(AX=B). Our implementation is based on a block recursive 
algorithm to reduce the computation to matrix 
multiplications     [7]-[8]. 
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ALGORITHM  4 

TSS 
 

Begin 
If (n=1) then 
X = B/A 
Else /* splitting matrices into four blocks of sizes n/2 

            
X11 = TSS(A11,B11) 
X12 = TSS(A11,B12) 
X21 = TSS(A22, B21-MM(A21,X11)) 
X22 = TSS(A22, B22-MM(A21,X12)) 
End 

 

D. Complexity of algorithms 

The complexity of the Strassen’s Algorithm is 
 

    The cost function ARMM(n) satisfies the following 
equation:  RAMM(n) = 2RAMM(n/2) + 2TRMM(n/2) 

But TRMM(n) = 4TRMM(n/2)+2MM(n/2)  

=4TRMM(n/2)+ = =  

So we obtain: 

RAMM(n)=2RAMM(n/2)+2TRMM(n/2) 

= =  

By the same method we prove that: TRASS(n)=  

 

IV. EXPERIMENT STUDY 

 
This section presents experiments of our implementation 

of the different versions of triangular matrix inversion 
described above. We determinate the optimal number of 
recursive levels for each one (as precised, the optimal 
number of recursive levels depends on the architecture and 
must be determined experimentally). The experiments use 
BLAS library in the last level. We used the g++ compiler 
under Ubuntu 11.01. 

The experiments use BLAS library. We recall that dtrtri 
refers to the BLAS triangular matrix inversion routine over 
double precision floating points. We named our routines 
RAMM, RATSS. 
 

 

TABLE I 
TIMING OF TRIANGULAR MATRIX INVERSION (SECOND) 

Matrix Size dtrtri RAMM RATSS RATSS/dtrtri 

256 0.01 0.02 0.01 1 
512 0.02 0.03 0.02 1 

1024 0.23 0.25 0.20 1.15 
2048 2.03 2.08 1.71 1.16 
4096 15.54 15.58 13.27 1.17 
8192 121.64 127.77 102.90 1.18 

16384 978.17 981.35 810.68 1.21 

 
TIMING OF TRIANGULAR MATRIX INVERSION (SECOND) 

 

For increasing matrix dimensions, the RATSS becomes 
even more efficient (improvement factor between 15% and 
21%).  

We can notice that dtrtri is quite efficient compare to 
RAMM. 
 

V. CONCLUSION 

 
We have achieved the goal of outperforming the 

efficiency of the well known BLAS and LAPACK libraries 
for triangular matrix inversion. We showed notice that our 
algorithm benefit from Strassen matrix multiplication 
algorithm, recursive solvers for triangular systems and the 
use of Blas routines in the last level. This performance is 
achieved through efficient reduction to matrix 
multiplication where we took care of minimizing the ratio 
and also by reusing the numerical computation as much as 
possible.  
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