

Abstract— We propose in this paper a recursive algorithm for
triangular matrix inversion (TMI) based on the ‘Divide and
Conquer’ (D&C) paradigm. A series of different versions of an
original sequential algorithm are first presented. A theoretical
performance study permits to establish an accurate
comparison between the designed algorithms. Our
implementation is designed to be used in place of dtrtri, the
level 3 BLAS Triangular Matrix Inversion. Efficient
performance could be obtained for large matrix sizes.

Index Terms— Divide and conquer, level 3 BLAS, recursive
algorithm, triangular matrix inversion.

I. INTRODUCTION

RIANGULAR matrix inversion (TMI) is a basic kernel in
large and intensive scientific applications. Given its
cubic complexity, several works addressed the design

of efficient parallel algorithms for solving this problem.
Apart the standard TMI algorithm consisting in solving n
linear triangular systems of size n, n–1,…,1 [1], a recursive
algorithm, of same complexity, has been proposed by
Heller in 1973 [2]-[3]. Our objective here is the design of a
fast sequential algorithms based on Heller’s algorithm.
The remainder of the paper is organized as follows. In
section 2, we present the divide and conquer paradigm, then
we detail a theoretical study on diverse sequential versions
of Heller’s algorithm in section 3. Finally, we present in
section 4 an experimental study.

II. DIVIDE AND CONQUER

A. Review Stage

There are many paradigms in algorithm design.
Backtracking, dynamic programming, and the greedy
method to name a few. One compelling type of algorithm is
called Divide and Conquer. Algorithms of this type split the
problem into subproblems. After the sub-solutions are found
they are combined to form the solution of the original
problem. When the subproblems are of the same type as the
original problem, the same recursive process can be carried
out until the problem size is sufficiently small. This special
type of D&C is referred to as D&C recursion. The recursive
nature of many D&C algorithms makes it easy to express
their time complexity as recurrences. Consider a D&C
algorithm working on an input size N. It divides its input

Manuscript received Mars 23, 2012; revised April 09, 2012. This work

is a part of a thesis prepared by the author.
 Ryma MAHFOUDHI is with the Computer Sciences Department,
University of Tunis El Manar, Faculty of Sciences of Tunis, Campus
Universitaire - 2092 Manar II - Tunis, Tunisia , (e-mail:
rimahayet@yahoo.fr).

into subproblems of size N/b. The combining and
conquering takes f (N) time. The base-case corresponds to n
= 1 and is solved in constant time. The time complexity of
this class of algorithms can be expressed as follows:

 T (N) = O(1) if n = 1,
 = aT (n/b) + f (n) otherwise.

The master theorem for recurrences can in some instances

be used to give a tight asymptotic bound for the complexity
[4]:

 If a=b : T(n) = O(nlogn)
 If a<b and f(n) >0 : T(n) = O(n)
 If a<b and f (n) =0 : T(n) = O(logn)
 If a>b : T(n) = O (nlogba)

III. SEQUENTIAL RECURSIVE TMI ALGORITHMS

We first recall that the well known standard algorithm
(SA) for inverting a triangular matrix (an upper or lower
triangular matrix), say A of size n, consists in solving n
triangular systems. The complexity of (SA) is as follows [1]:

 SA(n)=n3/3+n2/2+n/6 (1)

A. Heller’s Recursive Algorithm (HRA)

Fig1. Matrix Decomposition in Heller’s algorithm

Using the Divide and Conquer paradigm, Heller proposed
in 1973 a recursive algorithm [2]-[3] for TMI. The main
idea he used consists in decomposing matrix A as well as its
inverse B (both of size n) into 3 submatrices of size n/2 (see
Figure 1, A being assumed lower triangular). The procedure
is recursively repeated until reaching submatrices of size 1.
We hence deduce:

 (2)

Therefore, inverting matrix A of size n consists in

inverting 2 submatrices of size n/2 followed by two matrix
products (triangular by dense) of size n/2. In [3] Nasri
proposed a slightly modified version of the above algorithm.

Indeed, since B2=–B3A2 and B1= – 1
12

1
3

 AAA , let

A Fast Triangular Matrix Inversion

R.Mahfoudhi

T

Proceedings of the World Congress on Engineering 2012 Vol I
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19251-3-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

Q= 2
1

3 AA . From (2), we deduce:

 (3)

Hence, instead of two matrix products needed to compute
matrix B2, we have to solve 2 matrix systems of size n/2
i.e. A3Q =A2 and (A1)T(B2)T= –QT. We precise that both
versions are of n3/3+O(n2) complexity [3].

Now, for sake of simplicity, we assume that n=2q (q≥1).
Let RA-k be the Recursive algorithm designed by
recursively applying decomposition until reaching a
threshold size n/2k (1≤k≤q. The complexity of RA-k is as
follows [3]:

 RA-k(n)=n3/3+n2/2k+1+n/6 (4)

B. Recursive Algorithm using Matrix Multiplication RAMM

As previously seen, to invert a triangular matrix via
block decomposition, one requires two recursive calls and
two triangular matrix multiplications (TRMM). The cost is
thus RAMM(n) = 2RAMM(n/2) + 2TRMM(n/2). The idea
consists in using the Faster Algorithm for TRMM presented
below.

ALGORITHM 1

RAMM

Begin

If (n= 1) then

B1 =1/A1

B3 = 1/A3

B2 = -B3*A2*B1

Else /* splitting matrices into three blocks of sizes n/2

B1 = RAMM(A1)

B3 = RAMM (A3)

C = TRMM(-B3,A2)

B2 = TRMM(C,B1)

End

 TRMM:

To perform the multiplication of a triangular matrix by a
dense matrix via block decomposition in halves, one
requires four recursive calls and two dense matrix-matrix
multiplications (MM).
The cost is thus TRMM(n) = 4TRMM(n/2)+2MM(n/2).

To optimize this algorithm, we will use a fast Algorithm for
dense MM i.e. Strassen algorithm [5]-[6].

 MM:

In [5] the author reported on the development of an
efficient and portable implementation of Strassen's MM
algorithm. The optimal number of recursive levels depends
on the architecture and must be determined experimentally.

ALGORITHM 2

RAMM

Begin
If (n= 1) then
A11*B11=C11
A11*B12=C12
A21*B11+A22*B21= C21
A21*B12+A22*B22=C22
Else /* splitting matrices into four blocks of sizes n/2
C11 = TRMM(A11,B11)
C12 = TRMM(A11,B12)
C21 = MM(A21,B11) + TRMM(A22,B21)
C22 = MM(A21,B12) + TRMM(A22,B22)
End

C. Recursive Algorithm using Triangular Systems Solving
RATSS

In this version, we replace the two matrix products by

two triangular systems solving of size n/2. Therefore the
algorithm is written as follow:

ALGORITHM 3

RATSS

Begin
If (n=1) then
B1 = 1/A1
B3 = 1/A3
Q = A2/A3
B2 = -Q/A1
Else /* splitting matrices into four blocks of sizes n/2
B1 = RAMM(A1)
B3 = RAMM(A3)
Q = TSS(A3, A2)
B2 = TSS(A1

T,-QT)
End

 TSS:

We now discuss the implementation of solvers for
triangular systems with matrix right hand side (or
equivalently left hand side). This operation is commonly
named trsm in the BLAS convention. In the following, we
will consider, without loss of generality, the resolution of a
lower triangular system with matrix right hand side
(AX=B). Our implementation is based on a block recursive
algorithm to reduce the computation to matrix
multiplications [7]-[8].

Proceedings of the World Congress on Engineering 2012 Vol I
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19251-3-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

ALGORITHM 4

TSS

Begin
If (n=1) then
X = B/A
Else /* splitting matrices into four blocks of sizes n/2

X11 = TSS(A11,B11)
X12 = TSS(A11,B12)
X21 = TSS(A22, B21-MM(A21,X11))
X22 = TSS(A22, B22-MM(A21,X12))
End

D. Complexity of algorithms

The complexity of the Strassen’s Algorithm is

 The cost function ARMM(n) satisfies the following
equation: RAMM(n) = 2RAMM(n/2) + 2TRMM(n/2)

But TRMM(n) = 4TRMM(n/2)+2MM(n/2)

=4TRMM(n/2)+ = =

So we obtain:

RAMM(n)=2RAMM(n/2)+2TRMM(n/2)

= =

By the same method we prove that: TRASS(n)=

IV. EXPERIMENT STUDY

This section presents experiments of our implementation

of the different versions of triangular matrix inversion
described above. We determinate the optimal number of
recursive levels for each one (as precised, the optimal
number of recursive levels depends on the architecture and
must be determined experimentally). The experiments use
BLAS library in the last level. We used the g++ compiler
under Ubuntu 11.01.

The experiments use BLAS library. We recall that dtrtri
refers to the BLAS triangular matrix inversion routine over
double precision floating points. We named our routines
RAMM, RATSS.

TABLE I
TIMING OF TRIANGULAR MATRIX INVERSION (SECOND)

Matrix Size dtrtri RAMM RATSS RATSS/dtrtri

256 0.01 0.02 0.01 1
512 0.02 0.03 0.02 1

1024 0.23 0.25 0.20 1.15
2048 2.03 2.08 1.71 1.16
4096 15.54 15.58 13.27 1.17
8192 121.64 127.77 102.90 1.18

16384 978.17 981.35 810.68 1.21

TIMING OF TRIANGULAR MATRIX INVERSION (SECOND)

For increasing matrix dimensions, the RATSS becomes
even more efficient (improvement factor between 15% and
21%).

We can notice that dtrtri is quite efficient compare to
RAMM.

V. CONCLUSION

We have achieved the goal of outperforming the

efficiency of the well known BLAS and LAPACK libraries
for triangular matrix inversion. We showed notice that our
algorithm benefit from Strassen matrix multiplication
algorithm, recursive solvers for triangular systems and the
use of Blas routines in the last level. This performance is
achieved through efficient reduction to matrix
multiplication where we took care of minimizing the ratio
and also by reusing the numerical computation as much as
possible.

REFERENCES

[1] Quarteroni, A., Sacco, R., Saleri, F. : Méthodes numériques.
Algorithmes, analyse et applications, Springer, Milano, 2007.

[2] Heller, D.: A survey of parallel algorithms in numerical linear
algebra, SIAM Review 20, pp. 740–777, 1978.

[3] Nasri, W., Mahjoub, Z.: Design and implementation of a general
parallel divide and Conquer algorithm for triangular matrix
inversion, International Journal of Parallel and Distributed Systems
and Networks 5(1), pp. 35–42, 2002.

[4] Time Complexity and the divide and conquer strategy or: how to
measure algorithm run-time And: design efficient algorithms, course,
Télécom 2A – Algo Complexity, Oct. 2005.

[5] StevenH., Elaine M., Jeremy R., Anna T. and Thomas T.,
Implementation of Strassen's Algorithm for Matrix Multiplication,
IEEE, 1996.

[6] Strassen, V.: Gaussian elimination is not optimal. Numer. Math., 13,
354–356, 1969.

[7] Andersen, B. S., Gustavson, F., Karaivanov, A., Wasniewski, J., and
Yalamov, P. Y.: LAWRA - LINEAR ALGEBRA WITH
RECURSIVE ALGORITHMS, Lecture Notes in Computer Science,
Volume 1823/2000, 629-632, 2000.

[8] Dumas, J.G., Pernet, C. and Roch, J.L.: Adaptive triangular system
solving, Challenges in Symbolic Computation Software 2006.

Proceedings of the World Congress on Engineering 2012 Vol I
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19251-3-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

