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Abstract—The paper presents assessment of various power 
quality events based on Empirical Mode Decomposition 
(EMD) with Hilbert Transform (HT).  EMD method 
decomposes the signal into waveforms modulated in both 
amplitude and frequency. The oscillatory modes embedded in 
the signal are extracted by employing sifting process. These 
oscillatory modes are called Intrinsic Mode Functions (IMFs). 
The magnitude plot of the Hilbert Transform of the first IMF 
correctly detects the event. The characteristic features of the 
first three IMFs of each disturbance are used as inputs to 
Probabilistic Neural Network (PNN) for identification of the 
disturbances. Simulation results show that EMD method can 
effectively classify the power quality disturbances. 
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I. INTRODUCTION 

ower Quality problem has become a major issue both 
for industries and utility. Any variation in magnitude 

and frequency of the voltage or current waveform is defined 
as power quality.  Some of the power quality problems are 
the voltage sag, swell, interruption, flicker, and transients 
etc. which cause mal operation or failure of power 
equipment. To improve the power quality or to find a 
solution to mitigate them, this involves having a powerful 
tool or method which can detect, localize and classify the 
power quality disturbances. This paper aims at classification 
of various power quality disturbances. The rms magnitude of 
voltage supply is used in the power quality standards for 
detection and characterization of voltage events [1]. The 
method is simple and easy to implement but it does not give 
information about the phase angle or the point on wave 
where the event begins [2]. However, rms method has 
important limitations in the detection and estimation of 
magnitude and duration of voltage events. A simple way to 
analyze any signal is by Fourier Transform [3] (FT). It 
provides only frequency content; therefore this method is 
applicable for stationary signals. 
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 Short Time Fourier Transform (STFT)   is proposed [4-5] 
which maps a signal into a two dimensional function of time 
and frequency. The disadvantage of STFT is that the size of 
the window chosen is fixed. This makes a compromise 
between time and frequency resolution. The wavelet analysis 
[6-10] on other hand represents a windowing technique with 
variable regions to overcome   the above deficiency. It 
provides a unified methodology to characterize power 
quality events by decomposing the signal into time and 
frequency resolution. So, wavelet function is localized both 
in time and frequency, yielding wavelet coefficients at 
different scales. The draw back of wavelet transform is 
choice of window function and another disadvantage is the 
use of ranges of frequency.  The S-transform [11] on the 
other hand is an extension to wavelet transform and is based 
on moving and scalable localizing Gaussian window. 

The paper employs Empirical Mode Decomposition 
(EMD), introduced by Huang [12], together with Hilbert 
transform for extracting instantaneous amplitude and 
frequency from multi component non stationary signals. 
These mono component signals are called the Intrinsic Mode 
Functions. The advantage of this method is that it does not 
require predetermined set of functions as in previous 
methods but allows projection of a non stationary signal onto 
a time frequency plane using a mono component signals, 
from the original signal thus making it adaptive in nature.  

The rest of the   paper is organized as follows: Section II 
gives introduction to EMD and Hilbert transform. Section III   
presents the detection capability of the proposed method for 
power quality events. In section IV gives the introduction of 
PNN. Section V the simulation results based on the EMD 
method are discussed. Finally section VI gives the 
conclusions.   

II. EMPIRICAL MODE DECOMPOSITION 

Empirical mode decomposition is a method which 
extracts mono component and symmetric components from   
the non linear and non stationary signals by sifting process. 
The name, sifting, indicates the process of removing the 
lowest frequency information until only the highest 
frequency remains. The key feature of EMD is to decompose 
a signal into so called intrinsic mode functions. These 
Intrinsic Mode Functions extracted from the original signal 
are mono component composing of single frequency or 
narrow band of frequencies. An IMF is defined as an 
oscillating wave, if it satisfies the following two conditions: 

1. For a data set, the number of extreme and the number of 
zero crossings must either be equal or differ at most by 
one.  

2. At any point, the mean value of the envelope defined by 
the local maxima and the local minima is zero.  

 P 
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The algorithm for extracting an IMF by sifting process is 
given below:    
Step1: The upper and the lower envelopes are constructed 
by connecting all the maxima and all the   minima with 
cubic splines, respectively. 
Step 2:  Take the mean of the two envelopes and let it be 
defined as m(t). Subtract the mean m(t)  from  the original 
signal x(t) to get a component h1(t), 

Where         )()()(1 tmtxth                                       
(1)                                                               

Step 3:  If  h1(t) satisfies the two conditions of IMFs , then  
h1(t) is the first intrinsic mode function else it is treated as 
the original function and steps (1) - (3) are repeated to get 
component h11(t)  such that 

                )()()( 1111 tmthth                                      
(2)                                               

Step 4: The above sifting process is repeated k times, h1k(t)  
becomes an first IMF and be known as   IMF1. 
Separate IMF1 from x(t) and let it be r1(t), such that 

                )()()( 11 thtxtr k                                          
(3)             (3) 

Step 5: Now taking the signal r1(t) as the original signal and 
repeating the steps (1)-(4)  second IMF is  obtained.  

The above procedure is repeated n times and such n 
IMFs are obtained. The stopping criterion for the 
decomposition process is when rn(t) becomes a monotonic 
function from which no more IMF can be extracted. 

A. Hilbert Transform 

The Instantaneous frequency of each IMF is calculated by 
using the Hilbert Transform. The Hilbert Transform of a real 
valued time domain signal x(t) is another real valued time 

domain signal, denoted by x̂ (t), such that z(t) = x(t) + j x̂ (t) 
is an analytic signal. From z(t), one can define a magnitude 
function A(t) and a phase function θ(t), where the first 
describes  the envelope of the original function x(t) versus 
time and  θ(t)   describes the instantaneous phase of x(t) 
versus time.  

In terms of x(t) and x̂ (t),   

    )(ˆ)()( 2122 txjtxtA                                 
(4) 
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and the “instantaneous frequency” is given by:  
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The above algorithm is implemented on a voltage sag 
waveform. Fig. 1(a) shows the waveform of voltage sag, (b) 
the magnitude plot of Hilbert transform of IMF1 and (c)- 
(g) corresponding intrinsic mode functions of sag in 
voltage. 
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Fig.  1(a).  Waveform of voltage sag  ,(b) magnitude plot of  hilbert 

transform of IMF1, (c) – (g) IMF1 to IMF5. 
 

III. PQ EVENTS ASSESSMENT BY EMD METHOD 

The detection of various power quality events based on 
Empirical Mode Decomposition   method with Hilbert 
transform. The magnitude plot of the Hilbert transform of 
the first IMF obtained by sifting process gives the 
information of the magnitude and phase of the frequency 
content of the signal and is used to detect the disturbance. 
The power quality disturbances like Voltage Sag, Voltage 
Swell, Harmonic, Transient, Sag with harmonic, Swell with 
harmonic, Outage, Flicker, Notch and Spike are generated 
using MATLAB software. 

A. Voltage swell 

Fig. 2(a) shows the case for voltage swell signal. The 
event occurs from 0.14 to 0.3sec for about 8 cycles with 
1.5pu magnitude. Fig. 2(b) shows the magnitude plot of 
Hilbert transform of the IMF1 which correctly detects the 
swell event.    
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Fig.  2(a).  Waveform of voltage swell  ,(b) magnitude plot of  hilbert 

transform of IMF1. 
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B. Harmonic 

Fig.3 (a) shows the waveform of harmonic signal. The 
signal contains of pure sine of 1pu, 0.14pu of 3rd harmonic, 
0.12pu of 5th harmonic, 0.11pu of 7th harmonic. Fig. 3(b) 
shows the IMF1 which gives the presence of harmonics. 
Fig.3(c) and (d) shows the waveform of harmonic content 
(IMF1-IMF2). 
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Fig.  3(a).  Waveform of voltage harmonics ,(b) magnitude plot of  hilbert 
transform of IMF1, (c) - (d) IMF1- IMF2.  
 
 

C. Sag with harmonic 

Here Fig. 4(a) shows the case of sag with harmonics. The 
signal contains 1pu pure sine wave, 0.12pu 3rd harmonic, 
0.11pu 5th harmonic, 0.10pu 7th harmonic and sag of 0.7pu 
magnitude is introduced from 0.06 to 0.15sec. Fig. 4(b) 
shows the magnitude plot of Hilbert transform of the IMF1 
which rightly detects the sag event and presence of 
harmonics.    
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Fig.  4(a).  Waveform of voltage sag with harmonics ,(b) magnitude plot of  
hilbert transform of IMF1. 

 

 

D. Outage and Flicker 

Here the occurrence of outage for about 6 cycles is shown 
in Fig. 5(a). Fig. 5(b) shows the magnitude plot of HT where 
the voltage goes to zero during that period.  

The phenomenon of flicker is generated by combination 
of pure sine of 1pu magnitude and 0.13pu, 10Hz signal as 
shown in Fig. 6(a).  Fig.  6(b) shows the presence of the low 
frequency signal. Fig. 8(c) shows the IMF1. 
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Fig. 5(a).  Waveform showing outage ,(b) magnitude plot of  hilbert 
transform of IMF1. 
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Fig.  6(a).  Waveform of voltage flicker ,(b) magnitude plot of  hilbert 
transform of IMF1, (c) IMF1. 
 

E. Notch and Spike 

Fig. 7(a) shows the case of signal having 2 notches/cycle. 
The magnitude plot of the IMF1 clearly detects the notches 
as shown in the Fig. 7(b).   

Fig. 8(a) shows the case of signal having spike for 
0.25msec with magnitude of 1.3pu.  The magnitude plot of 
the IMF1 clearly detects the spike as shown in the Fig. 8(b).   

The first three IMFs are considered for the feature 
extraction. The following three features are (1) Energy 
distribution, (2) Standard deviation of the amplitude and (3) 
Standard deviation of the phase. Thus, we have   nine 
features from the three IMFs from each disturbance.  
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Fig.  7(a).  Waveform  showing notch  ,(b) magnitude plot of  hilbert 
transform of IMF1. 
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Fig.  8(a).  Waveform  showing spike ,(b) magnitude plot of  hilbert 
transform of IMF1. 

 
 

IV. PROBABILISTIC  NEURAL NETWORK  

The Probabilistic Neural Network (PNN) is a supervised 
neural network that is widely used in the area of pattern 
recognition. The fact that PNNs offer a way to interpret the 
network’s structure in terms of probability density functions 
(PDF) is an important merit of this type of networks. The 
following features are distinct from those of other networks 
in the learning processes. 

 It is implemented using the probabilistic model, 
such as Bayesian classifiers. 

 A PNN is guaranteed to converge to a Bayesian 
classifier provided that it is given enough training 
data. 

 No learning processes are required. 
 No need to set the initial weights of the network. 
 No relationship between learning processes and 

recalling processes. 
 The differences between the inference vector and 

the target vector are not used to modify the weights 
of the network. 

 

The standard training procedure for PNNs requires a 
single pass over all to the patterns of the training set. This 
characteristic renders PNNs faster to train suitable for 
classification of power system faults. The architecture of 
PNN is composed of radial basis layer and competitive layer 
as shown in Fig.9.  

The probabilistic neural network (PNN) is a supervised 
neural network that is used for classification. 

Multi-layer neural network with three layers – input, hidden 
and output layers is also implemented. The input layer has 3 
nodes represented by features extracted by EMD; hidden layer 
has 11 nodes, while output layer has 10 nodes representing 10 
classes of disturbances: voltage sag, voltage swell, interruption 
and harmonic distortion etc. 

 In this paper, an approach of probabilistic neural network is 
explored to classify power quality problems. The performances 
of EMD based PNN and MLNN are compared in the next 
section. 

Fig.10 shows the block diagram for classification of 
power quality events using probabilistic neural network and   
multilayer neural network.  

 

 
Fig 9.  Architecture of  PNN 

 

 

 
Fig 10.  EMD based block diagram used for classification of PQ 

disturbances. 

 

V. RESULTS AND DISCUSSION 

Ten types of PQ disturbances are taken for case study as 
S1-Sag; S2-Swell; S3-Harmonic; S4-Transient; S5-Sag with 
Harmonic;S6-Swell with Harmonic;S7-Outage; S8-Flicker; 
S9- Notch and  S10-Spike. Simulations are performed to 
generate about 1500 signals, 500 data sets are used for 
training the MLNN classifier and 1000 are used for testing. 
The classification result using the PNN method is shown in 
Table I and MLNN is shown in Table II. The application of 
EMD decomposes the disturbance signal into number of 
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IMFs. The number of IMFs for a given disturbance depends 
upon the severity of distortion and magnitude of harmonic 
content. The first IMF magnitude plot of Hilbert transform 
provides the true instantaneous amplitude change in case of 
sag and swell.  

 It is found that by adopting the proposed technique, the 
signal features can be correctly identified for a disturbance 
like notch and spike which occurs for a very small duration 
of time ,ie few milliseconds . In the case of harmonics and 
flicker, as IMFs are mono component signals extracted from 
the disturbance, they directly give the information of the 
frequency content of the signal.  As previously mentioned, 
EMD is a sieving process and the first IMF represents the 
finest scale of oscillation of the signal. Hence, an event like 
notch and spike which occurs for milliseconds of time can 
be classified very accurately by this methodology. 

VI. CONCLUSIONS 

In this paper EMD with Hilbert transform is used to 
analyze and classify the power quality disturbances. EMD 
method was able to decompose different modes of 
oscillations from the original signal into mono component 
signals to extract instantaneous frequency information for 
each mode of oscillation thus, making it a better method in 
assessing power quality events. The results show the 
superiority of the method in correctly classifying the 
disturbances. Hence the proposed method is suitable for 
classification of non-stationary signals.   
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Table I 
 Percentage classification accuracy of PNN 

Signal Sag Swell Harmonics Transient 
Sag with 

Harmonics 
Swell with 
Harmonics 

Outage Flicker Notch Spike 

Sag 100          
Swell  100         
Harmonics   98 2       
Transient   5 95       
Sag with Harmonics 3    97      
Swell with Harmonics  5    95     
Outage       100    
Flicker   2     98   
Notch         100  
Spike          100 
Classification Accuracy: 98.3% 

Table II 
 Percentage classification accuracy of MLNN 

 
 

Signal Sag Swell Harmonics Transient 
Sag with 

Harmonics 
Swell with 
Harmonics 

Outage Flicker Notch Spike 

Sag 100          
Swell  100         
Harmonics   96 4       
Transient   6 94       
Sag with Harmonics     100      
Swell with Harmonics      100     
Outage 2      98    
Flicker   6     94   
Notch         91 9 
Spike         12 88 

Classification Accuracy: 96.1% 
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