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Abstract—We present an approach for a generic, multi-
dimensional run-time data structure suitable for high-
performance scientific computing in C++. Our approach for
associating meta-information with the data structure as well
as different underlying datatypes is depicted. The high-
performance, multi-dimensional data access is realized by utiliz-
ing a heterogenous compile-time container generation function.
The generalized data structure implementation is discussed
as well as performance results are shown with respect to
reference implementations. We show that our approach is not
only highly flexible but also offers high-performance data access
by simultaneously relying on a small code base.

Index Terms—multi-dimensional, data structure, Generic
Programming, Meta Programming, C++

I. INTRODUCTION

The plethora of applications in the field of scientific com-

puting introduces different requirements for data structures.

For example, a two-dimensional matrix is used for storing a

linear system of equations [1]. On the contrary, a simulation

may require a set of second-order tensors to describe, for

instance, the stresses in the field of continuum mechanics [2].

Typically, the dimensionality is known during compile-time,

thus the data structure can be optimized by the compiler [3].

However, for a unified data structure interface, a run-time

solution is required. In this context, unified relates to a

single datatype used to reflect data structures of arbitrary

dimensionality. Such an application scenario arises, for ex-

ample, at plugin interfaces within a software component

framework. Each plugin provides and receives data, though

the dimensionality is not known in advance. Therefore, an

approach is required to support multiple dimensions during

run-time.

An additional challenge arises with respect to the under-

lying datatype of the data structure elements. C++, as a

statically typed programming language, enables type checks

during compilation. This not only allows for the compiler to

optimize code, but also to detect errors at the earliest possible

stage of the development. However, such a system imposes

restrictions in regard to the run-time handling of datatypes.

For example, a floating-point number of type double can

only hold a double-precision value, but not a string object.
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This limitation is in principal desired, but it introduces chal-

lenges, when a generic data structure has to be implemented,

where the type is not known in advance. Related to the

previously introduced example of a plugin framework, the

data structure at the plugin interface cannot only vary in its

dimension but also in its type.

The field of scientific computing not only processes sets

of values, but typically also sets of quantities. A quantity is

referred to as a value which is associated with a unit. Sup-

porting or even enforcing units is a vital part for ensuring the

correctness of scientific simulations [4]. However, units may

not be the only additional meta-information. For example,

data values can be related to measurements carried out at a

specific temperature. Overall, the need for a flexible property

system arises, which should not only reside in the run-time

domain, but also be orthogonal to the data structure. In this

context, orthogonality refers to exchanging the data structure

without influencing the attached meta-information. Such an

approach is highly versatile, as it introduces exchangeability.

The continually growing demand for increased simulation

performance introduces the need to parallelize simulation

tools. Ideally, the individual computations should scale be-

yond a multi-core processor, namely to a distributed comput-

ing environment. Typically, the Message Passing Interface

(MPI) is utilized for communication within a distributed

environment. The data structure should support seemless

integration into such an MPI based environment, to ease the

integration process. Therefore a serialization approach for the

data structure should be available, which allows out-of-the-

box transmission by an MPI communication channel.

We introduce an approach for a flexible data structure in

C++, which handles multiple dimensions, run-time genera-

tion, and supports different underlying datatypes. Addition-

ally, we support direct transmission capabilities over MPI

and an orthogonal and flexible coupling of meta-information

with the data structure. We achieve this by utilizing modern

programming techniques, in particular generic [5] and meta-

programming [6], and the Boost Libraries [7]. We show

that our approach does not only provide a high degree

of flexibility, but also offers high-performance data access.

Additionally, due to the heavy utilization of libraries in

conjunction with the application of modern programming

techniques, the required code base can be kept to a minimum.

This fact significantly improves the maintainability of our

implementation.

This work is organized as follows: Section II puts the work

into context. Section III introduces our approach in detail and

Section IV depicts performance results.
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II. RELATED WORK

A flexible run-time data structure for multi-dimensional

problems is provided by Marray [8]. Marray is a C++

header-only library and publicly available under the MIT

License. The library provides not only the generation of

multi-dimensional arrays during run-time, but also views

on sub-spaces of the generated data structures. A C++98

compliant implementation is available as well as a C++11

version, which utilizes, for example, the variadic template [9]

mechanism to provide dimension independent access to the

data structure.

Several multi-dimensional array libraries are available for

the case of fixed dimensions during run-time. For exam-

ple, the Boost MultiArray Library [10] and the Blitz++

Library [11] provide the generation of multi-dimensional

arrays during compile-time. Additionally, views are provided

to access a specific subset of the generated data structures.

III. OUR APPROACH

Our approach focuses on several key-aspects, being:

1) A Polymorphic Datatype

2) Data Structure Generalization

3) Attaching Meta-Information

4) Serialization

PolyData

MultiArray

MetaInfo

MPI

Fig. 1: Our approach is based on a polymorphic datatype

which is used by the multi-dimensional array data struc-

ture. Meta-information is orthogonally coupled with the data

structure. The overall approach is serializable, thus any object

can be transmitted over an MPI communication channel.

Figure 1 depicts an overview of our approach. First, a

polymorphic datatype1 supporting different datatypes during

run-time is introduced. Second, the polymorphic entries

are embedded in a multi-dimensional run-time array data

structure. Third, run-time meta-information is attached to

the data structure. Fourth, our implementation is serialized

to enable convenient transfer by the MPI. Throughout this

section we discuss each of these aspects in detail and provide

our implementation approach.

A. A Polymorphic Datatype

One of the core aspects of our approach is the ability to

support different datatypes during run-time. The challenge

is to provide one datatype which can in fact hold several

different types. This is a peculiar task for statically typed

languages, like C++, as the type system only allows to assign

objects of the same or convertible type. If the types are not

the same, cast operations have to be performed. However,

applying casts can result in information loss, for example,

when a datatype of higher precision, like double, is trans-

formed to a datatype with lower precision, like float.

1Polymorphy denotes the ability to represent different datatypes

We utilize the Boost Variant Library (BVL) [12] for

supporting different datatypes during run-time. Informally,

a BVL datatype can be seen as an enum for datatypes. A

set of possible, supported datatypes has to be provided during

compile-time. During run-time, the instantiated BVL object

can be associated with any of these datatypes.

We identify four different categories of datatypes, which

are listed in the following:

• signed integer

• unsigned integer

• floating-point

• string

A meta-function for the generation of the polymorphic

datatype based on the introduced four categories is provided.

A meta-function is a class or a class template which provides

a nested type typedef [13]. In the following, this mechanism

is introduced in detail. First, the set of supported types is

generated by utilizing an associative heterogeneous container

provided by the Boost Fusion Library (BFL) [14], as depicted

in the following.

1 typedef make_map<

2 Signed, UnSigned, Float, String,

3 int, unsigned int, double, string

4 >::type Types;

The make_map meta-function is utilized to generate an

associative BFL container (Lines 1-4). Note that the tags in

Line 2 represent the individual categories, and the datatypes

in Line 3 relate to the corresponding datatypes. Tags are

typically implemented by so-called empty structures, for

example, struct Signed{};. Generally, in our approach

the datatypes can be set non-intrusively, meaning that the

underlying datatypes can be exchanged, thus significantly

improving the applicability and extendability of our ap-

proach. For example, instead of the double floating-point

datatype, a multi-precision datatype provided by the GNU

Multiple Precision Arithmetic Library (GMP) [15] can be

used, which would significantly improve the accuracy of

subsequent floating-point operations.

In the following, the associative Types container is con-

verted into a Boost Metaprogramming Library (MPL) [13]

vector container by the generate_typeset meta-

function.

1 typedef generate_typeset<Types>::type TypeSet;

This step is necessary, as the subsequent step of utilizing

the BVL is eased, when the supported datatypes are available

as an MPL sequence. A default implementation is available,

which allows convenient generation of this typeset and only

relies on built-in datatypes as shown in the following.

1 typedef generate_typeset<>::type TypeSet;

The typeset is then used to generate the actual polymorphic

datatype based on the BVL. Again a meta-function is used

to generate the polymorphic datatype as depicted in the

following.

1 typedef generate_polyvalue<

2 TypeSet>::type PolyValue;

Internally, the BVL make_variant_over meta-

function is utilized to generate the actual polymorphic

datatype.
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Finally, due to the BVL, it is possible to provide a generic

way to support different datatypes during run-time:

1 PolyValue signed_integer =

2 value_at_key<Types, Signed>::type(4);

3 PolyValue floating_point =

4 value_at_key<Types, Float>::type(4.0);

A type-safe approach for a signed integer and a

floating-point datatype instantiation is implemented by us-

ing the BFL meta-function for key-based element access

(value_at_key). Type safety is accomplished in this case,

by accessing the actual type in the previously provided

Types container.

B. Data Structure Generalization

Based on the previously introduced polymorphic datatype

the actual array data structure can be implemented. The

implementation has two goals: First, multiple dimensionality

should be supported during run-time. Second, the data access

should be as fast as possible. In this work we do not focus

on advanced functionality, as, for example, provided by the

Marray library. Instead, we aim for a straightforward data

structure, coordinate-based access, and a high-performance

implementation.

The following code snippet outlines the creation of a

two-dimensional data structure, where the first and second

dimension holds three and four elements, respectively.

1 typedef MultiArray<PolyValue> MultiArrayT;

2 MultiArrayT::dimensions_type dim;

3 dim.push_back(3);

4 dim.push_back(4);

5 MultiArrayT multiarray(dim);

The MultiArray implementation can be configured to hold

arbitrary value types. In this case, the previously introduced

polymorphic value type based on the BVL is used (Line 1).

The dimensions are formulated by utilizing a Standard

Template Library (STL) vector container [16], where the

type is accessed by the member-type dimensions_type

(Line 2). Each element of the dimensions container holds the

number of elements of the respective dimension (Lines 3-4).

The number of dimensions is therefore inherently provided

by the size of the container. A MultiArray object is instanti-

ated with the dimension configuration (Line 5). Internally, an

STL vector container, which represents a linear memory

block, is used. Data Structures of arbitrary dimensionality

are mapped on this linear container, as depicted in Figure 2

for the two-dimensional case. The individual columns of the

respective domains are stored consecutively. This approach

minimizes the allocation time, as only one memory allocation

step is necessary. However, a linear storage approach requires

index handling to map the coordinate index tuple on the

corresponding position within the linear data structure. This

is the performance critical part, as the data access implemen-

tation is likely to be called on a regular basis.

The central challenge of providing coordinate index access

is the handling of data structures of arbitrary dimension, as

the number of access-indices correspond to the number of

dimensions. Typically, the elements of a two dimensional

array are accessed in coordinates, like array(i,j). From

the software development point of view, the challenge is

to implement an access mechanism which is both high-

performing and can be used for arbitrary dimensionality.

Fig. 2: A two-dimensional array is mapped on our internal,

one-dimensional data structure.

Several approaches for the access implementation and

the related index computation have been investigated. One

approach is based on so-called variadic functions provided

by the C programming language [17]. The primary drawback

of this approach is the fact that the number of indices has

to be provided explicitly. In addition, this approach is not

type-safe, as it is based on macros. Another approach is

based on utilizing an STL vector for the index container.

The number of indices can easily vary during run-time.

However, this approach suffers due to run-time overhead

for the creation and the traversal of the index-vector for

each data access. In the end, a BFL vector sequence is

utilized, which offers superior performance due to the fact

that the sequence is a compile-time container. The run-time

generation is performed by a generation function provided

by the BFL, like depicted in the following.

1 multiarray(make_vector(2,3)) = Numeric(3.5);

Note that the BFL generation function (make_vector)

is utilized to generate the compile-time index container in-

place. This can be considered a drawback with respect to

usability, as it requires additional coding. However, con-

venience specializations can be implemented to hide the

vector generation step from the user. Due to restrictions of

the C++98/03 standard, these specializations can only be

provided for a finite set of dimensions, thus such an approach

cannot be considered truly multi-dimensional. Internally,

the BFL make_vector function relies on a macro, for

the generation of arbitrary dimensional compile-time data

structures. However, we consider this to be an excellent

compromise, at least until the C++11 standard is broadly

available. This standard introduces the so-called variadic

template mechanism, which is also applied by Marray in

its C++11 extension. Our investigations revealed, that with

variadic templates the same performance as with our current

approach can be achieved but simultaneously the required

access interface (multiarray(2,3)) for arbitrary dimen-

sions can be realized.

Our high-performance index computation is implemented

based on the BFL algorithms which allow partial compile-

time computation, as depicted in the following.

1 template<typename IndexSequ>

2 Element& operator()(IndexSequ const& indices) {

3 return container[

4 accumulate(pop_front(indices),at_c<0>(indices),

5 make_index<dimensions_type>(dimensions)

6 ) ]; }

Lines 4-5 compute the actual index, which is then used to

access the element in the linear container in Line 3. The

index computation is based on various BFL mechanisms,

like, accumulate.

Proceedings of the World Congress on Engineering 2012 Vol II 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



For example, for a two-dimensional problem, the index is

evaluated as follows: i = I0 + I1 ·D0, where I0 and I1 refer

to the first and second index, respectively. D0 relates to the

number of elements in the first dimension. This procedure

can be extended to arbitrary dimensionality.

The introduced data structure generalization approach can

also be applied for the tensor-valued elements. Therefore, a

two-level hierarchy of the proposed MultiArray data structure

supports tensor datasets of arbitrary dimension and varying

datatypes.

C. Attaching Meta-Information

Scientific computations do not merely process values,

but physical quantities. This is a subtle difference, as the

former indicate simple values, like, a double, but the latter,

associates the respective value with a unit, promoting the

value to a physical quantity. This is rather important, as

scientific computations should not just imply a unit system,

they should enforce it to eliminate unit-related errors [4].

Keeping in mind that units might not be the only additional

property which can be associated with a dataset, a flexible

approach is required to associate additional meta-information

with the data structure.

Another important aspect, however, is to ensure extend-

ability and exchangeability. As such, the approach has to

support the exchange of the data structure as well as the

meta-information package. For example, it should be possible

to exchange our data structure with the Marray implemen-

tation [8], without changing the associated meta-information

package. Such an approach is considered orthogonal, as the

exchange of one part does not influence the behavior of

another part. Obviously, the implementation of the meta-

information package has to be non-intrusive with respect

to the data structure. More concretely, the package should

not be placed inside the data structure class, but externally

associated with it.

We implement an approach for storing arbitrary meta-

information during run-time, which is straightforwardly

based on the STL map container.

1 typedef map<string, string> MetaInformation;

2 MetaInformation minfo;

3 minfo["unit"] = "kg";

This approach is very flexible, as arbitrary properties can

be added. Most importantly, though, the implementation

effort is kept to a minimum, as already available functionality

is utilized.

Finally, the data structure and the meta-information is

coupled by the associative container of the BFL, which has

already been introduced in Section III-A.

1 typedef make_map<

2 data, metainf,

3 MultiArrayT, MetaInformation

4 > QuantityDataset;

Note the orthogonal and extendable association of the

data with additional properties. Orthogonality can be identi-

fied when, for example, exchanging MultiArrayT with

the corresponding Marray datatype, which neither has

an impact on the associated meta-information package

MetaInformation nor on the overall handling of the

QuantityDataset.

Extendability refers to the fact, that, by adding additional

tags, further data can be associated with the dataset.

If the availability of a unit should be enforced, then the

unit information should be moved from the minfo container

one level up to the QuantityDataset. By utilizing a new

tag and a string value, a QuantityDataset expects the

unit information, like depicted in the following.

1 typedef make_map<

2 data, metainf, unit,

3 MultiArrayT, MetaInformation, string

4 > QuantityDataset;

5 QuantityDataset quantity_dataset = make_map<

6 data,metainf,unit>(multiarray,minfo,"kg");

This also outlines the flexibility of our approach, as different

setups of the QuantityDataset can be enforced.

Our approach presumes that the unit applies to the com-

plete dataset. In case heterogeneous units should be sup-

ported, an additional layer has to be introduced assigning

a unit to a specific value.

D. Serialization

Serialization refers to the process of storing and retrieving

the elements of a data structure. Typically, input/output

mechanisms utilize serialization processes, as, for example,

a matrix is written to a file. This is usually performed

by implementing dedicated file writer functions. However,

a major disadvantage is, that for each new file format a

new writer has to be implemented. One approach to ease

the burden of serialization, is to introduce an additional

layer, which provides a common ground between the data

structure and the target storage format. Thus, it is possible

to implement the serialization mechanism for a data structure

once, and then access the already available functionality

based on the additional layer. However, serialization cannot

only be used for file input/output processes, but also for

MPI communication [18]. For this purpose we utilize the

Boost Serialization Library (BSL) [19], which provides a

serialization facility for arbitrary data structures. Based on

our previously introduced quantity dataset (Section III-C),

serialization extensions have been implemented. In the fol-

lowing, Process 0 transmits an available quantity dataset to

Process 1.

1 if (world.rank() == 0) {

2 for_each(quantity_dataset, send(comm, 1));

3 }

Process 1 receives the quantity dataset from Process 0:

1 if (world.rank() == 1) {

2 QuantityDataset quantity_dataset;

3 for_each(quantity_dataset, recv(comm, 0));

4 }

Note that the unary auxiliary functor send/recv gets

an element of the quantity dataset, being a BFL pair data

structure, and sends/receives the data element of the re-

spective pair. The BFL for_each algorithm is utilized

to traverse the elements of the quantity dataset. Finally

note, that additional convenience levels can be implemented

to further wrap code away from the user. For example, a

generic serialization implementation can be provided, which

is capable of handling arbitrary BFL data structures.

Proceedings of the World Congress on Engineering 2012 Vol II 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



IV. PERFORMANCE

This section presents performance results for our data

structure, especially our BFL based index computation ap-

proach. The tests have been carried out on an AMD Phenom

II X4 965 with 8 GB of memory running a 64-Bit Linux

distribution. The GNU GCC compiler in version 4.4.5 is

used with the flags -O2 -DNDEBUG. Benchmarks are av-

eraged over five runs to reduce noise. The element access

performance for various problem sizes and different array

dimensions is depicted, based on storing double values.

The reference implementation is based on a hierarchy of

STL vectors, as no index computation is required for the

element access procedure. Additionally, we compare our

approach with the already mentioned, publicly available

Marray library [8]. Furthermore, we investigate the influence

of optimal and non-optimal traversal, identified with OPT

and NOPT, respectively. In the optimal case, the element

access is as sequential as possible, meaning that the elements

are accessed in the same consecutive manner as they are

stored in the memory. Sequential access is favored by the so-

called prefetching mechanism [20]. We investigate the non-

optimal case, by exchanging the traversal loops for the two-

and three-dimensional problems.

Figure 3 depicts the results for a one-dimensional array.

Our approach is equally fast as the reference implementation,

and takes around 0.15 seconds for writing data on all 108

elements. The Marray implementation is about a factor of 2.9

slower. The two-dimensional results are depicted in Figure 4.

For 108 elements and the optimal traversal case our ap-

proach is again equally fast as the reference implementation,

whereas Marray is a factor of 7 slower. In the non-optimal

case, all implementations are significantly slower, and take

approximately equally long (around 3.3 seconds for 108

elements). Figure 5 shows the results for a three-dimensional

problem. Our optimal traversal implementation is a factor of

1.5 faster than the reference. For 108 elements Marray is a

factor of 9.9 slower than our approach. As expected, the non-

optimized traversal implementations are significantly slower,

for instance, our optimal traversal approach is a factor of 48

faster than the non-optimized one.

Our implementation takes for all presented dimensions

approximately equally long, which is not only due to the

utilization of a linear storage but also due to the compile-time

based index evaluation algorithm. This fact underlines the

applicability for high-dimensional data storage applications.

V. CONCLUSION

We have introduced a flexible, multi-dimensional run-time

data structure. Our approach offers high extendability, and

can be applied in MPI based computing environments. The

presented performance results depict that our access mecha-

nism offers excellent performance for different dimensions

and problem-sizes. The drawback of additional coding at

the user-level access code will be rendered obsolete with

the availability of variadic templates provided by the C++11

standard. Finally, our approach offers a small code base, as

only around 100 code lines are required to implement the

introduced functionality.
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Fig. 3: A one-dimensional array structure is benchmarked.

Our approach is equally fast than the reference implementa-

tion, whereas Marray is a factor of 2.9 slower.
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OPT and NOPT refers to optimal and non-optimal traversal,
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reference implementation. All approaches are equally slower

in the non-optimized case, namely around 3.3 seconds for

108 elements.
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Fig. 5: A three-dimensional array structure is benchmarked.

OPT and NOPT refers to optimal and non-optimal traversal,

respectively. For 108 elements, our approach and Marray is a

factor of 1.4 and 6.5, respectively, slower than the reference

implementation. Non-optimal traversal significantly reduces

the performance for all implementations.
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