
 

 
Abstract—Active learning engages students in Computer 

Science (CS) classroom activities. However, instructing novice 
undergraduates to solve programming problems primarily by 
making them generate the solutions puts a heavy load on these 
students’ working memory, preventing them from learning CS 
fundamentals. This appears to have happened in the 2009 
edition of a CS introductory module at the University of 
Minho, given its high failure rates. Studying CS worked-out 
examples directs novice undergraduates’ attention to learning 
the essential of relations between problem-solving moves, 
diminishing their working memory load. This pilot study 
describes how worked-out examples have been successfully 
applied to the 2010 edition of that same CS introductory 
module, reducing its failure rates. The study portrays the 
changes in this module from a program-generation to a 
program-completion approach. The results in terms of success, 
failure, and dropout of a more program-completion approach 
are given and analyzed. 
 

Index Terms—computer science education, novice 
programmers, programming, worked-out examples 
 

I. INTRODUCTION 

T the University of Minho (UM), School of 
Engineering, students who choose to graduate in 

Polymers Engineering Integrated Master (PEIM), which is a 
five-year degree program, have to pass the two-module 
Programming and Numerical Methods (PNM9703) course. 
Programming is a Computer Science (CS) introductory 
module of this second year course of PEIM studies. For 
these novice undergraduates learning CS fundamentals 
entails acquiring and developing complex knowledge and 
practical skills, such as, reading and writing programs [1], 
[3], [6], [10], [15]. But, expecting these students to solve 
programming problems mainly by generating programs may 
have led to the high failure rate associated to the 
programming module of the PNM9703 course in the year of 
2009. 

The referred module, offered by the Department of 
Information Systems, covers two thirds of the semester. So, 
the material taught consisted of programming basic 
constructs (e.g., variables, assignment statements, 
selections, loops, and arrays). In-class active instructional 
activities were used to introduce these CS fundamental 
skills and concepts. That is, during each lab session the 

 
Manuscript received October 03, 2011; revised November 09, 2011.  
I. C. Moura is with the Centro Algoritmi, Universidade do Minho, 4800-

058 Guimarães, Portugal (phone: 351-253-510266; fax: 351-253-510300; 
e-mail: icm@dsi.uminho.pt). 

 

instructor presented a basic programming problem and led 
the students to build the corresponding algorithmic solution 
for them to code, test, and debug [2], [7], [11]. 

In the 2009 edition of the programming module students 
were further assigned a set of basic programming problems 
(to solve both in class and at home on a weekly basis) so 
they could apply those skills and concepts by building, 
coding, testing, and debugging their own solutions. 
Evaluation, which consisted of two individual tests, also 
required the students to write down the algorithmic solution 
and the corresponding code for a basic programming 
problem. But, the reported instructional and learning 
activities failed to positively influence students’ 
programming achievements in this semester. 

Research in education and cognitive load theory suggests 
that, before being able to write a piece of code, novice 
undergraduates should be able to read it. Furthermore, both 
the abilities of reading and writing programs should be 
taught. However, the complexity of these skills may impede 
the learning of novice undergraduates due to the limited 
capacity of the human’s working memory when dealing 
with new information. So, teachers should organize the 
programming knowledge in order to decrease these 
students’ working memory load. For instance, students may 
start being given the complete solutions to programming 
problems (or worked-out examples) and then complete 
increasingly larger parts of incomplete, given solutions. 
Studying worked-out examples further directs students’ 
attention to learning the essential of relations between 
problem-solving moves. The more students learn to 
recognize which moves are required for particular 
programming problems, the more likely they are to succeed 
in learning CS fundamentals (e.g., [4]–[6], [8]–[10], [13], 
[15]). 

In the 2010 edition of the programming module, students 
were handed over a set of algorithmic solutions that solved 
basic programming problems. These solutions were short, 
textbook-type algorithmic segments of 1 to 30 lines long 
(tops) which started by being complete and flawless. As the 
weeks progressed, flaws and missing lines were increasingly 
added to those solutions for students to complete and/or 
correct. Throughout the programming module of the 
PNM9703 course students were supposed to read, complete, 
and/or correct each algorithmic solution and to code, test, 
and debug it. They were further requested to find out the 
purpose of the given solution (i.e., the basic programming 
problem). The two individual tests consisted mainly of 
multiple-choice questions. These tests aimed at evaluating 
students’ recognition of syntactic errors and understanding 
of the structure and function of simple algorithmic and code 

Worked-out Examples in a Computer Science 
Introductory Module 

Isabel C. Moura 

A

Proceedings of the World Congress on Engineering 2012 Vol II 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



 

sequences [15]. 
This pilot study reports on the impact that the worked-out 

examples implementation of the PNM9703 programming 
module (at the UM in the fall semester of 2010) had on its 
failure rate and students’ academic achievements. Method 
and results are then presented. A discussion follows on this 
pilot study’s results and potential ways of improving such 
an implementation. 

II. THE LEARNING ENVIRONMENT 

It is generally accepted, at the UM, that programming is a 
useful skill for students not majoring in CS. This is the main 
reason why the latter topic is part of the PEIM studies. For 
the second year of these studies, the PNM9703 fall semester 
course comprises two modules–the programming module 
and the numerical methods module. The course is 
mandatory and has no prerequisites. The programming 
module lasts for two thirds of the fall semester and focuses 
in the initial development of programming skills. However, 
these skills are hard to learn in such a short period of time. 
Thus, the CS material taught was reduced to its basic 
constructs (e.g., variables, assignment statements, 
selections, loops, and arrays) to avoid over expose students 
to content through the instructor. This would help them have 
sufficient opportunity to interact with the content in a 
meaningful way and learning would not be blocked [14]. 

Both the 2009 and the 2010 editions of the programming 
module consisted of a weekly 130-minute lab session. In 
each session students were introduced to a basic 
programming problem (refer to Appendix A). Then, first, 
they were lectured, for approximately 5-15 minutes, on the 
algorithmic constructs intended for the solution of that 
problem. Second, students were asked to put together 
(individually or in groups of two) an algorithmic solution 
for the given problem in a couple of minutes (i.e., students 
tried to apply the knowledge lectured). Third, one of the 
students’ solutions was written, discussed, and improved on 
the board by having the instructor asking ‘what-if’ questions 
and students being given time to work on their answers and 
presenting them before class. Finally, using their personal 
computers or the lab ones, students were guided through the 
programming language text book so they could code, test, 
and debug (individually or in groups of two) the algorithmic 
solution discussed in class [1], [2], [5], [7], [11]. Visual 
Basic was the adopted programming language. The MS 
Excel 2007 VBA programming environment was chosen to 
make it easy for students to automate the handling of 
datasheets they work with throughout the PEIM studies. The 
assessment of students’ achievements consisted of two 
individual tests. 

In the fall semester of 2009, the learning of CS 
fundamentals in the programming module of the PNM9703 
course was expected to occur mainly through the practice of 
generating programs to solve basic problems. But, this 
approach seems to have had a negative influence on many 
of the students. Although in-class active instructional and 
learning techniques were used, the bulk of students’ 
activities involved solving a set of basic programming 
problems both in class and at home on a weekly basis, with 
the instructor providing hints and directions as needed. That 

is, students were supposed to come up with an algorithmic 
solution and the corresponding code for each given basic 
programming problem. Both hand-written tests evaluated 
students individually on these same sorts of abilities. 
Overall grades of the 2009 programming module of the 
PNM9703 course were derived 50% from each test. 

Expecting novice undergraduates to learn CS 
fundamentals by making them solve problems can be 
ineffective for some of them [4], [6], [9], [10], [13]. Thus, in 
the fall semester of 2010, the instructor started each lab 
session putting into practice the above referred in-class 
active instructional and learning activities (and revisiting CS 
fundamentals previously taught as needed). The remainder 
of the class was used to make undergraduates study a couple 
of algorithmic solutions (or worked-out examples) that 
solved basic programming problems. These solutions were 
textbook-type algorithmic segments (of 1 to 30 lines long, 
tops) applying the basic construct(s) intended for a 
particular lab session (see Appendix B). The solutions were 
made available to students on the course web site the week 
before the session took place. Throughout the module flaws 
and missing lines were increasingly added to the given 
algorithmic solutions. Students were supposed to study, 
complete, and/or correct them, plus, code, test (by 
compiling and running the programs), and debug these 
solutions under MS Excel 2007 VBA programming 
environment. The instructor wandered around giving advice 
and directions as needed. Having both the error-free 
algorithmic solution and the corresponding coded one, 
students were asked to summarize the function of it (i.e., 
somehow, to find the basic programming problem being 
solved). At home, and on a weekly basis, students were 
supposed to finish the worked-out examples started in class. 
Many novice undergraduates are unable to write a piece of 
code by the end of a whole semester practicing 
programming [6]. So, the first test consisted entirely of 
multiple-choice questions (of four options each) to evaluate 
students’ recognition of syntactic errors and understanding 
of the structure and function of simple algorithmic and code 
sequences [15]. The second test further required students to 
fill-in the gaps for a given simple algorithmic segment and 
to write a simple piece of code equivalent to a given one. 
Overall grades of the 2010 programming module of the 
PNM9703 course were derived 40% from the first test and 
60% from the second test. 

III. RESEARCH QUESTIONS AND METHOD 

Research in education and cognitive load theory suggests 
that instructors shall organize the programming knowledge 
so novice undergraduates start by reading (and further 
completing) worked-out examples of programs instead of 
generating them to solve problems. Studying worked-out 
examples directs students’ attention to learning the essential 
of relations between problem-solving moves and reduces 
students’ working memory load. The more students learn to 
recognize which moves are required for particular 
programming problems, the more likely they are to succeed 
in learning CS fundamentals (e.g., [4]–[6], [8]–[10], [13], 
[15]). This hypothesis raised the following research 
questions: 

Proceedings of the World Congress on Engineering 2012 Vol II 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



 

1) Are there differences in the programming module 
approval, failure, and dropout rates between the edition 
of the PNM9703 course taught in the fall of 2010 and 
the one taught in the fall of 2009? 

2) Are there differences in approved students’ final 
programming achievements (on average) for the 
programming module between the edition of the 
PNM9703 course taught in the fall of 2010 and the one 
taught in the fall of 2009? 

In the current study quantitative methodologies were used 
in the analysis and interpretation of data. 

IV. RESULTS 

Data spanning two semesters were collected. The students 
are from the PEIM degree program. A few of them were 
excluded from the sample of the fall semester of 2010 
because they have already been taught a similar content in 
the fall of 2009, and thus, the improvement in their grades is 
expected. Overall, data from a total of 77 students were 
examined. In the fall semester of 2010, the 28 sample 
students registered in PNM9703 were enrolled in the second 
year of PEIM studies. But, this was not the case in the fall 
semester of 2009 (refer to Table I, where data from six 
students is missing regarding the ‘Year’ variable): two 
students were enrolled in the fifth year of PEIM studies, 
three in the fourth year, seven in the third year, and the 
remaining 31 in the second year of these same studies. The 
undergraduates participating in this study had different 
backgrounds since statistically significant differences 
between semesters were found in the distribution of the 
students’ academic index (Z = -3.03, p-value < 0.01). 
Because of their higher academic index, it is expected that 
the students who attended the 2009 edition of the PNM9703 
course would be in a better position to learn CS 
fundamentals mainly by generating programs and to 
perform better on tests compared to the colleagues who 
attended the 2010 edition. In fact, all the fifth year 
undergraduates got approval in the 2009 programming 
module. But, none (out of three) of the fourth year students 
were approved and only two (out of seven) of the third year 

students passed this same module. 
In the fall semester of 2010, out of 28, 20 students were 

approved (i.e., 71% of approvals) and two students were 
failed (i.e., 7% of failures). The remaining six students 

dropped the programming module of the PNM9703 course 
(i.e., 21% of withdrawals). According to Fig. 1, the 
programming module failure rate of this semester indicates 
that undergraduates might have responded favorably to the 
worked-out examples implementation of this particular 
PNM9703 course module. For students involved in this 
approach: the failure rate was five times lower (7%) than the 
one of the fall semester of 2009; and the approval rate 
almost doubled (71%) the one of the fall semester of 2009. 
The drop rates were about the same in both semesters. 

Regarding the first research question, the test result (z = -
2.74, p-value < 0.01) for the proportion of failures indicates 
that the failure rate of the programming module in the 2010 
edition of the PNM9703 course (N = 28) is numerically and 
statistically different from the failure rate of the fall 
semester of 2009 (N = 49). A similar test performed on the 
proportion of approvals of the 2010 programming module 
reached a similar result (z = 2.37, p-value < 0.05). 

Concerning students’ achievements, the final 
programming grade average for the approved ones was 
equal to 12 (SD = 2.06; Maximum = 16; Minimum = 10; N 
= 20), on a 0-20 scale, in the fall semester of 2010. In the 
fall of 2009, the final programming grade average for the 
approved students of the PNM9703 class equaled the same 
mark (SD = 2.19; Maximum = 19; Minimum = 10; N = 21). 
Examining the second research question, no numerically 
and statistically significant differences between semesters 
were found in the distribution of the approved students’ 
final programming grades. 

V. DISCUSSION, CONCLUSIONS, AND RECOMMENDATIONS 

This pilot study reports on a worked-out examples 
implementation in an undergraduate CS introductory 
module of the PNM9703 course (i.e., the programming 
module offered by the Department of Information Systems) 
at the UM in the fall of 2010. This module implementation 
comprised: 
1) In-class active instructional and learning activities. 
2) Studying and, later on, completing and/or correcting 

short, textbook-type algorithmic solutions for basic 
programming problems (or worked-out examples that 
were handed over complete and flawless, in the 
beginning, and increasingly incomplete and/or flawed 
as the module progressed). 

3) Coding, testing, and debugging the referred algorithmic 
solutions. 

4) Two individual test assignments consisting of, mainly, 
multiple-choice questions. 

 
The results of the 2010 programming module 

implementation indicate that students responded favorably 

TABLE I 
THE STUDENTS’ DISTRIBUTION (IN PERCENTAGE) BY ACADEMIC YEAR 

Year Fall 2010 (N = 28) Fall 2009 (N = 43) 

2nd 100 72 
3rd - 16 

4th - 7 
5th - 5 

 

71%

7%

21%

43%

35%

22%

0%

10%

20%

30%

40%

50%

60%

70%

80%

Approval Fail Drop

Fall 10 Fall 09

Fig. 1.  Approval, failure, and withdrawal rates on the programming module
of the PNM9703 course in the fall of 2010 and in the fall of 2009. 
  

Proceedings of the World Congress on Engineering 2012 Vol II 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



 

to the worked-out examples approach. That is, given Fig. 1 
results, the referred implementation of the programming 
module of the PNM9703 course (in the fall semester of 
2010) provided a better learning environment for novice 
undergraduates to recognize which moves are required to 
solve basic programming problems; and it might have 
reduced students’ working memory load compared to the 
implementation of the fall semester of 2009. Thus, the more 
likely students were to succeed in learning CS fundamentals 
[4]–[6], [8]–[10], [13], [15]. Still, with respect to those 
students who passed, the PNM9703 course programming 
module final grade average for the fall semester of 2010 
equaled (reaching the 12 mark, on a 0-20 scale) the final 
grade average for the fall semester of 2009. The statistically 
significant differences concerning the students’ 
backgrounds between semesters, with the supposedly most 
programming experienced ones taking the latter 
programming module, may explain this result [7], [16]. 

Active learning techniques may keep students highly 
engaged in generating programs. But, the heavy load on 
novice undergraduates’ working memory that the latter 
implies prevents some of them from learning CS 
fundamentals [4], [6], [8]–[10]. The reported worked-out 
examples implementation may mitigate this problem as long 
as the instructor motivates the students to study the 
examples. This can be done by alternating an algorithmic 
solution (or worked-out example) with the coding, testing, 
and debugging of it. Plus, reminding students (throughout 
the semester as needed) that they will be tested on the 
understanding of the structure and function of algorithmic 
and code sequences structurally identical to the given 
examples [12]. Furthermore, the algorithmic solutions shall, 
somehow, resemble the code intended for that solution, 
since novice undergraduates have a hard time going 
between different representations of the same solution. That 
is, appropriately constructed worked-out examples shall 
avoid rising the cognitive load on these students’ working 
memory [6]. 

APPENDIX A: AN EXAMPLE OF A BASIC PROGRAMMING 

PROBLEM 

Build a program that computes the average of three given 
grades for a student. 

APPENDIX B: AN EXAMPLE OF AN ALGORITHMIC SOLUTION 

Version 1.1  
grade1, grade2, grade3: REAL; 
sum, average: REAL; 
 
Read(grade1); Read(grade2); Read(grade3); 
 
sum  grade1 + grade2 + grade3; 
average  sum / 3; 
 
Write(average). 

declaration of variables 

data input 

computation 

data output 

REFERENCES 
[1] M. Barak, J. Harward, G. Kocur, and S. Lerman, “Transforming an 

introductory programming course: from lectures to active learning via 
wireless laptops,” Journal of Science Education and Technology, vol. 
16, no. 4, pp. 325–336, 2007. 

[2] R. Felder and R. Brent. (2009). Active learning: an introduction. ASQ 
Higher Education Brief [Online]. 2(4). Available: 
http://www.asq.org/edu/2009/08/best-practices/active-learning-an-
introduction.%20felder.pdf 

[3] A. Forte and M. Guzdial, “Motivation and nonmajors in computer 
science: identifying discrete audiences for introductory courses,” 
IEEE Transactions on Education, vol. 48, no. 2, pp. 248–253, 2005. 

[4] P. Kirschner, J. Sweller, and R. Clark, “Why minimal guidance during 
instruction does not work: an analysis of the failure of constructivist, 
discovery, problem-based, experiential, and inquiry-based teaching,” 
Educational Psychologist, vol. 41, no. 2, pp. 75–86, 2006. 

[5] M. Linn and M. Clancy, “The case for case studies of programming 
problems,” Communication of the ACM, vol. 35, no. 3, pp. 121–132, 
1992. 

[6] R. Lister, “After the gold rush: toward sustainable scholarship in 
computing,” in Proc. 10th Conference on Australasian Computing 
Education, Wollongong, 2008, pp. 3–17. 

[7] J. McConnell, “Active learning and its use in computer science,” in 
Proc. 1st Conference on Integrating Technology into Computer 
Science Education, Barcelona, 1996, pp. 52–54. 

[8] M. Prince and R. Felder, “The many faces of inductive teaching and 
learning,” Journal of College Science Teaching, vol. 36, no. 5, pp. 
14–20, 2007. 

[9] M. Prince and R. Felder, “Inductive teaching and learning methods: 
definitions, comparisons, and research bases,” J. Engr. Education, 
vol. 95, no. 2, pp. 123–138, 2006. 

[10] A. Robins, J. Rountree, and N. Rountree, “Learning and teaching 
programming: a review and discussion,” Computer Science 
Education, vol. 13, no. 2, pp. 137–172, 2003. 

[11] K. Smith, S. Sheppard, D. Johnson, and R. Johnson, “Pedagogies of 
engagement: classroom-based practices,” J. Engr. Education, vol. 94, 
no. 1, pp. 87–101, 2005. 

[12] J. Sweller and G. Cooper, “The use of worked examples as a 
substitute for problem solving in learning algebra,” Cognition and 
Instruction, vol. 2, no. 1, pp. 59–89, 1985. 

[13] J. van Merriënboer, P. Kirschner, and L. Kester, “Taking the load off 
a learner’s mind: instructional design for complex learning,” 
Educational Psychologist, vol. 38, no. 1, pp. 5–13, 2003. 

[14] M. Weimer, Learner-Centered Teaching. Five Key Changes to 
Practice. San Francisco, CA: Jossey-Bass, 2002. 

[15] S. Wiedenbeck, “Novice/expert differences in programming skills,” 
International. Journal of Man-Machine Studies, vol. 23, no. 4, pp. 
383–390, 1985. 

[16] B. Wilson and S. Shrock, “Contributing to success in an introductory 
computer science course: a study of twelve factors,” ACM SIGCSE 
Bulletin, vol. 33, no. 1, pp. 184–188, 2001. 

 
 

Proceedings of the World Congress on Engineering 2012 Vol II 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012




