

Jamaiah H. Yahaya and Aziz Deraman

Abstract— Software products do exhibit a behaviour that

closely resembles human ageing. Like people, software too gets

old and similar to human we can’t prevent ageing, but we can

understand its causes and take steps to limit its effects. As a

logical product, software is not getting older physically, but in

some circumstances the relevance and importance of it is getting

lesser and lesser to its environment. Thus, this is the phenomena

of getting older. Unlike human ageing, software ageing function

can be formulated by relevant, failure, cost, technology and etc.

Identifying and detecting these factors will help to rejuvenate the

software and delays the ageing. In this paper, the background

research in software quality and certification are discussed and

explored. The previous works motivated and led us to the

development of software anti-ageing model and its related areas

such as ageing factors and rejuvenation index.

Index Terms—Ageing factors, Software anti-ageing

model, Software quality, Software evolution

I. INTRODUCTION

In software engineering, application software is observed as

exhibiting a behaviour that closely resembles human ageing.

Like people, software too gets old and similar to human we

can’t prevent ageing, but we can understand its causes and take

steps to limit its effects. Two types of software ageing by

David Parnas: 1) caused by the failure of the product’s to

adapt with the dynamic of the environment and 2) is the result

of the changes that are made [10]. As a logical product,

software is not getting older physically, but in some

circumstances the relevance and importance of the software is

getting lesser and lesser to its environment. Thus, this is the

phenomena of getting older. Unlike human ageing, software

ageing function can be formulated by relevant, failure, cost,

technology and etc. The way software is built and the nature

that software can be modified and updated; the requirement

change in dynamic environment, give flexibility and enable it

to stay ‘young’.

Manuscript received March 6, 2012; revised April 14, 2012. This work is

supported in part by the Malaysia Ministry of Higher Education under the

Fundamental Research Grant Scheme (FRGS/1/2012/SG05/UKM/02/10).

Jamaiah H. Yahaya is with the School of Computer Science, Faculty of

Information Science and Technology, Universiti Kebangsaan Malaysia,

Bangi, 43600, Selangor, Malaysia (phone: 60389216181; fax: 60389256732;

e-mail: jhy@ftsm.ukm.my).

Aziz Deraman is with the School of Computer Science, Faculty of

Information Science and Technology, Universiti Kebangsaan Malaysia,

Bangi, 43600, Selangor, Malaysia (e-mail: ad@ftsm.ukm.my).

This process is called software rejuvenation. Identifying and

detecting these factors will help to rejuvenate the software and

delays the ageing.

Previous studies have indicated that the relevant of the

software at any time throughout its life span depends on the

quality of the software, which is not included in current quality

models and maintenance practices. Our previous research

revealed that a significant contribution of the experienced

ageing is due to the external quality measurement. The main

objective of this research is to develop a software anti-ageing

model based on software evolution dynamic environment.

II. RESEARCH BACKGROUND

In software engineering, software ageing refers to

progressive performance degradation or the state of the

software degrades with time. However, time is not the

absolute factor in software ageing. Software ageing is very

closely related to the quality of the software and whether the

particular software can maintain its quality through-out its life

cycle. The quality status of the software might degraded

overtime and a rejuvenation processes are needed to improve

the software and maintain the quality as well as the ageing

factors.

One approach for managing ageing of a software is through

certification. Software certification process can be applied at

anytime during its life span, measure its quality and thus can

anticipated the decay of quality [5].

A. Software Quality

Software product quality can be evaluated via three

categories of evaluations: internal measures, external measures

and quality in use measures [11][16]. Internal measuring is the

evaluation based on internal attributes typically static measures

of intermediate products and artifacts and external measuring

is based on external attributes typically measuring the

behaviour of the code when executed. While the quality in use

measures includes the basic set of quality in use characteristic

that affect the software. This characteristic includes

effectiveness, productivity, safety and satisfaction. This

measurement is an on-going research of SQuaRE which is the

next generation of ISO 9126 but yet not fully published

currently. SQuaRE quality model consists of internal and

external measures that include quality in use aspects. It

presents similar concept of characteristics and

subcharacteristics as in ISO 9126 approach [17. Several

studies in software quality have reveal the important of

Towards the Anti-Ageing Model for Application

Software

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

software measurements that relies on software external metrics

[6][17][18].

If we looked back to previous software quality models

namely were the McCall model (1977), Boehm model (1978),

FURPS model (1987), ISO9126 (1991), Dromey model (1996),

Systemic Quality model (2003), and PQF model (2007), the

software quality characteristics found in most models were:

efficiency, reliability, maintainability, protability, usability and

functionality. In PQF model the new human aspects in

measuring quality was included which was not introduced in

previous models. Measuring quality based on human aspects

which relates to user’s perspective and expectations are

demanding today[6].

Self-assessment or user centric assessment approach is

increasing demanded in software engineering principle and

practice. In this environment users are able to assess the

software products and artifacts within their own environment.

User-centric can be defined as a process in which the

requirements and limitations of end-users of a software

product are given extensive attention at each stage of the

processes. The requirements todays demand the quality model

to be simple, specific and practical to be measured by layman,

users, customers, developers or stakeholders. This relates back

with the general definition of quality, quality is defined as

“fitness for use” and “conformance to requirements”. The term

“fitness of use” usually means characteristics such as

functionality, usability, maintainability, and reusability and

“conformance to requirements” means that software has value

to the users [4][20]. Previous quality models do not

accommodate and focus to this requirement.

B. Software Certification Process

The term certification in general is the process of verifying

a property value associated with something, and providing a

certificate to be used as proof of validity. A software

certification is defined by Jeffry Voas [21] as a fact sheet that

spells out known software output behaviours (and it could also

spell out known internal behaviours. Stanfford and Wallnau

(2001) [24] define certification as a process of verifying a

property value associated with something, and providing a

certificate to be used as proof of validity. It is a new concept in

software engineering but increasingly acceptable to the

software industry. Korea is among the most leading country

that requires certification of software product in their industry.

The quality certification program is called Good Software and

was implemented for the last 10 years [23]. Malaysia is in the

phase of developing Malaysian Certification Program which

involve several groups that consists of professional and

academician from different organisations and industries.

Results from certification will contribute a valuable

recognition on the quality of the software orgnanisation which

can support the buoyancy and trustworthiness of the

organisation.

Many approaches to software certification mostly rely on

formal verification, expert reviews, developer assessment and

software metrics to determine the product quality as described

in Welzel and Hausen [22], Voas [21], Lee, Ghandi & Wagle

[30] and Heck, Klabbers & Eekelen [18]. Another approach is

by integrating ISO9126 model as the certification quality

benchmark. Example is Good Software [23], Requirement-

driven Workbench [30] and SCM-Prod [28]. These models are

suitable for general software assessment with static attributes

such as portability, usability, reliability, maintainability,

functionality and efficiency. Different approach for

certification is using function point [31]. Function point is a

standard metric for the relative size and complexity of a

software system, originally developed by the IBM in the late

1970s. Most of the studies mentioned above focused on certify

software artifacts from develops, suppliers and auditors

perspectives and do not emphasis much on user’s perspective

and involvement.

Many related researches have been actively conducted in

The National University of Malaysia or UKM in the area of

software certification and quality [25][26][27]. Azrina et. al

(2001) started their works in software certification by

investigated certification issues and perception by Malaysian

organisations [25]. This work was then continued by Jamaiah

et. al [6][27][28] and Fauziah et. al [27][29] with the

development of software certification framework. The

framework consists of two distinct certification models: SPAC

and SCM-Prod model. The main objective of these

fundamental researches was to develop software certification

models that could provide quality assurance and warranty to

the users on the status of software products and artifacts at any

time during its lifecycle. SPAC is a certification model based

on process approach while SCM-prod model is a certification

model that focuses on end-product quality approach. SCM-

Prod model has a balance quality measurement by integrating

technical aspects of software together with the human aspects

in the quality assessment model. The quality model is known

as Pragmatic Quality Factor (PQF). The certification model,

SCM-prod model, has been tested and implemented in real

environment. It has been verified for practical working model

and proved by case studies [3][5].

Our previous experience in software product certification

exercises have demonstrated that software certification by

product quality approach using our model, SCM-prod model,

can be used as a quality control mechnism throughout the life

cycle of the product. At any stage of its life cycle the quality of

the software can be measured and thus will help the

practitioner and developer to prevent the software of getting

less important and less quality. If the software is getting less

important and less quality in the environment, it is said as

moving to the ageing stage of its life cycle. Fig. 1 and Fig. 2

show examples of score obtained in the certification exercise

done in one case study carried out collaboratively with one

large organisation in Malaysia.

The charts in Fig.1 and Fig. 2 show that the quality of

software products can be measured and transformed into a

more meaningful presentation. With the line chart presentation,

the quality can be monitored regularly at some time intervals.

The application software applied in this exercise was a large

Hospital Information System which was developed by in-

house developers and expertises, and already under

operationed for 5 years in the environment. Therefore, we can

observe that the quality of the software is at higher level in

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

year 2011 compares to the previous assessments in year 2007

and 2009. In the near future, the performance in term of the

quality of this software can be monitored again. This will help

the developer and the stakeholder to ensure that their product

is at high level of quality based technical and user perceptions

that included in the PQF quality benchmark used in the

certification process.

Fig. 1. Quality score by attributes (Efficiency, Functionality &

Maintainability) in years 2007,2009 and 2011

Fig. 2. Quality score by attributes (Reliability, Integrity, Usability &

User Factor) in years 2007,2009 and 2011

III. SOFTWARE AGEING ISSUES

Previous studies on software ageing phenomenon dealt

with the degradation of the exhaustion of operating system

resources, data corruption, and numerical error accumulation

[1][2]. Examples of software ageing in this context are

memory bloating and leaking, unreleased file-locks, storage

space and etc. This work relates to analysis of software ageing

in the Linux OS kernel. Several previous studies in software

ageing and rejuvenation approach focus on operating systems,

systems software and hardware[1][2][8][9]. Huang et.al

developed the basic software rejuvenation model which

included the state transition diagram for software system

[2][15]. Grottke et al. proposed the fault tolerance technique

using environmental diversity to mitigate the ageing effect of a

system software [9]. This research too focused on the ageing

effect on system software that involved internal system state

and resource consumption trends and further studied on the

manifestation of ageing-related bugs [12].

Other approach and view on software ageing was proposed

as ageing phenomena similar to human ageing. Software

behaves similar to human being where it gets older and older

as the time passes by[10]. Thus, we can say that human ageing

factors can be manifested in time or years. Even though

software is not getting older physically, but in some

circumtances the relevant and important of the software is

getting lesser and lesser to its environment. Thus, we can say

that its’ getting older [3][4]. Two types of software ageing can

be categorised as the caused by the failure of the product’s

owner to modify it to meet changing needs and dynamic

environment; and secondly is the result of the changes that are

made [10][13]. Furthermore, certain measures and causes of

software ageing similar to human ageing according to

Parnas(1994) are: lack of movement, ignorant surgery and

kidney failure. Whilst the causes of software failure today are

more toward software error (40%), hardware error (15%) ,

human errors (40%) and others (5%). Software ageing

phenomena mentioned earlier becomes critical in most

applications software [8] because the finding shows that the

software failure comes mostly from the software faults. Few

major causes that may cause ageing are dealing with the

quality of documentation, design for change in software code,

unimposing standard, cost, technology, environment and etc.

The limitation here is that there is no such software anti-ageing

model for application software which can guide the software

owners and developers on the ageing prevention.

Software ageing and software quality are closely related.

Ensuring continuous quality of software operating in certain

environment may delay the ageing of the software [5] and at

the same time a mechanism, guidelines and indicators are

needed to support this prevention. A proactive method to deal

with software ageing phenomenon is software rejuvenation.

Thus, development of software anti-ageing model and

rejuvenation are very significant and demanded. The anti-

ageing model will become the input to the rejuvenation index

construction by formulating and regulating the anti-ageing

factors.

Several software quality assessment and measurements

methods and techniques have been introduced since earlier

years of software development. The direct internal

measurements used in those years such as compexity and large

size of the program are no longer necessities in the current

technology while the external measurements are getting more

important and relevant [3][6]. The external measurements are

related to measuring software quality attributes through the

users and developers experience the software. They are

subjective factors and the measurement of internal attributes of

the software that relates to the external attributes will enable

the objective judgement about these attributes. The

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

relationship between software static metrics and software

ageing were investigated and found the encouraging result as

discussed in section 2. Furthermore, Cotroneo, Natella and

Pietrantuono (2011) discovered that the software applications

can be categorised into two distinct groups (littleAging and

bigAging) based on software static metrics toward ageing

criteria [12]. The limitation of this work is that it still requires

further investigations on the software ageing effects related to

software metrics.

IV. THE AGEING FACTORS

The initial literature study has discovered that some of the

factors that may cause software ageing are: environment

change, functional failure, technology challenges (hardware

and software), competition, business compatibility, process

ontology change and etc. The actions needed to maintain and

keep the high quality of the software via rejuvenation process

includes the maintenance activities (corrective, adaptive,

perfective, preventive), restructuring, reallignment, redesign

and etc [14]. These actions will be carried out continuosly till

the software life ends and terminates, and replace with a new

system.

The system requirements are likely to change while the

software is being developed because the environment is

changing. Therefore, a delivered software won’t meet its

requirements. Software must be changed if they are useful in

an environment. This is one of the law or observation

according to evolution dynamic that can be used as the

software ageing phenomena and its associated measurement.

The other evolution dynamic laws are continuing growth,

increasing complexity, organisational stability and feedback

system [11]. These will be considered in identifying factors

that influence software ageing and use as the formation of anti-

ageing model for application software.

The human ageing is defined as “the gradual changes in the

structure and function of humans and animals that occur with

the passage of time, that do not result from disease or other

gross accidents, and that eventually lead to the increased

probability of death as the person or animal grows older” [19].

In human ageing, the ageing function can be formulated as:

Human Ageing =

 ƒ(time, physical, psychological, social change)

Similarly, the ageing in human can be categorised into

three levels: young old (age 65-74), middle old (age 75-84)

and oldest old (age 85+). In [31] discusses the first formal

studies of human ageing, which appear to be those of

Muhammad ibn Yusuf al-Harawi (1582) in his book Ainul

Hayat, published by Ibn Sina Academy of Medieval Medicine

and Sciences. The original manuscript of Ainul Hayat was

scribed in 1532 by the author Muhammad ibn Yusuf al-Harawi

and was translated by Hakim Syed Zillur Rahman (2007). The

book discusses behavioural and lifestyle factors putatively

influencing ageing including diet, environment and housing

conditions [32] Also discussed are drugs that may increase and

decrease ageing rates. In recent years, studies are being

conducted to investigate the ageing factors and study the

rejuvenation activities to delay the human ageing.

Application software ageing is still a new innovation topic.

Understanding the human ageing might useful to explore it

into a new software domain. The ageing function of software

can be formulated as:

Software Ageing = ƒ(Requirment evolution, failure,

cost, business compatibility, environment dynamic ...)

Various factors have been recognised as the software

ageing factors. Table 1 shows the software ageing factors for

application software and the prevention actions. The actions

listed in the table are the possible activity to prevent the

software from reaching the ageing phenomena and the actions

can be considered as rejuvenation activity of the software. The

rejevenation actions will ensure the software stay young and

healthy.

TABLE 1

 SOFTWARE AGEING FACTORS AND PREVENTION ACTIONS

Ageing

Factors

Environment dynamic

Failure

Technology challenges

(Hardware and Software)

Competition

Business compatibility & stability

Requirement evolution

High cost

Ontology change

Declining quality

Feedback system

Increasing complexity

Prevention

Actions

Corrective

Perfective

Adaptive

Restructuring

Redesign

Reallignment

Redeployment

More works need to be conducted to identify factors that

contributes to software ageing. Correlation between the factors

might be needed to identify the main and vital factors as well

as to prioritise them. Our research group will continue and

enhance this reseach to develop the anti-ageing model and

further to deliver a rejuvenation index based on the proposed

idea in this paper.

V. CONCLUSIONS

The initial works related to software ageing has been

presented in this paper. Our previous research experiences in

software quality and certification have motivated us to

investigate and explore further on the issues of software ageing.

Analysis of certification and quality data gathered from year

2007 till 2011 has demonstrated that quality can be monitored

continuously through software metrics. The symptoms of

degradation in term of quality of software operating in certain

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

environment can be observed to prevent or delay the ageing.

The potential ageing factors were presented and further study

and exploration are needed to confirm the correlation of the

factors and develop the anti-ageing model.

REFERENCES

[1] D. Cotroneo, R. Natella, R. Pietrantuono and S. Russo,

“Software aging analysis of the Linux operating system,” in

Proc. IEEE 21st International Symposium on Software

Reliability Engineering IEEE Computer Society, Washington,

DC, USA, 2010.

[2] B. Wah, Software aging and rejuvenation. Wiley Encyclopedia

of Computer Science and Engineering, John Wiley & Son, Inc,

2008.

[3] A. Deraman. Memburu kualiti perisian (Inaugural Speech).

UKM Publisher. ISBN 978-967-942-967-1.A. 2010.

[4] A.Deraman, “Software certification: The way forward

(keynote)”, in Proc. The 5th Malaysian Software Engineering

Conference (MySec2011), Johor Bharu., 2011.

[5] J.H. Yahaya, A. Deraman and A. R. Hamdan, “Continuosly

ensuring quality through software product certification: A case

study,” in Proc. The International Conference on Information

Society (i-Society 2010), London, UK, 28-30 June 2010.

[6] J.H. Yahaya and A. Deraman, “Measuring the unmeasurable

characteristics of software product quality,” International

Journal of Advancements in Computing Technology (IJACT)

vol.2, no. 4, pp. 95-106, 2010.

[7] P.J. Denning. “What is software quality?” ACommentary from

Communications of ACM, January 1992.

[8] T. Thein. (2011). ”Proactive software rejuvenation solution for

software aging,” [Online]. Available: http://eurosoutheastasia-

ict.org/wp-content/plugins/alcyonis-event-

agenda//files/Thandar-Thein.pdf

[9] M. Grottke, R. Matias Jr. and K. S. Trivedi. “The

Fundamentals of Software Aging”, in Proc. The 1st

International Workshop on Software Aging and Rejuvenation,

IEEE, 2008.

[10] D. L. Parnas. (1994). “Software aging”, in Proc. ICSE '94

Proceedings of the 16th international conference on Software

engineering, ACM DL [Online]. Available:

http://dl.acm.org/citation.cfm?id=257788

[11] Sommerville, Software Engineering, 9th edition, Pearson

Education, Boston, USA, 2011.

[12] D. Cotroneo, R. Natella and R. Pietrantuono. “Is software aging

related to software metrics?” in Proc. The 2st IEEE

International Workshop on Software Aging and Rejuvenation

(WoSAR 2010) in conj. with International Symposium on

Software Reliability Engineering (ISSRE) 2010. San Jose CA,

USA, November 2010.

[13] C. Constantinides and V. Arnaoudova. (2009). “ Prolonging

the aging of aoftware systems,” Encyclopedia of Information

Science and Technology [Online]. Second Edition (8 Volumes).

Available: http://www.igi-

global.com/viewtitlesample.aspx?id=14041

[14] H. V. Vliet, Software engineering: principles and practices.

third edition. Chichester: John Wiley & Sons, 2008.

[15] Y. Huang, C.Kintala, N. Kolettis and N.D. Fulton. (1995).

“Software rejuvenation: Analysis, module and applications,”

IEEE [Online]. Available:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=466

961

[16] W. Suryn, A. Abran, P. Bourque and C. Laporte, “Software

Product Quality Practices: Quality Measurement and

Evaluation Using TL9000 and ISO/IEC9126,” in Proc. The

10th International Workshop, Software Technology and

Engineering Practice (STEP), 2002.

[17] W. Suryn, A. Abran and A. April. (2003). ISO/IEC SQuaRE:

The Second Generation of Standards for Software Product

Quality [Online], Available:

http://www.lrgl.uqam.ca/publications/pdf/799.pdf

[18] P. Heck, M. Klabbers and M. Eekelen, “A Software Product

Certification Model”, Software Quality Journal vol. 18, pp. 37-

55, 2010.

[19] Biology-online (2005). “Aging” [Online], Available:

http://www.biology-online.org/dictionary/Aging

[20] I. Tervonen, “Support for Quality-Based Design and

Inspection”, IEEE Software, pp. 44–54, January 1996

[21] J. Voas, “Certifying software for high assurance environments”,

IEEE Software, pp. 22-25, July/August 1999.

[22] D. Welzel and H. Hausen, “Practical concurrent software

evaluation for certification,” Journal System Software, vol. 38,

pp. 71-83, 1997.

[23] IT Times. (2011). “30 Korean Software Worthy of Global

Recognition in 2012” [Online]. Available:

http://www.koreaittimes.com/story/15607/30-korean-software-

worthy-global-recognition-2012

[24] J. Stanford and K. Wallnau, “Is third party certification

necessary?” in Proc. The 4th ICSE Workshop on Component-

Based Software Engineering: Component Certification and

System Prediction, 2001.

[25] A. Kamaruddin, A. Deraman, S. Yahya, H. Selamat and H.

Zulzalil, "Perception on Software Certification Model: An

Empirical Study," in Proc. The International Conference on

Information Technology and Multimedia (ICIMU, 2001),

Uniten, Malaysia, pp.464-469, August 2001.

[26] A. F. Amalina Farhi and A. Deraman, “Measuring the usability

of software applications: metrics for behaviorness,” in Proc.

The 2007 International Conference in Computational Science

and Its Applications, vol. Part II, Springer-Verleg Berlin,

Heidelberg, 2007.

[27] J. H. Yahaya, F. Baharom, A. Deraman and A. R. Hamdan,

“Software Certification from Process and Product

Perspectives”, International Journal of Computer Science and

Network Security, vol. 9, no. 3, March 30 (2009). ISSN: 1738-

7906.

[28] J. H. Yahaya, A. Deraman and A. R. Hamdan. “Software

certification model based on product quality approach,”

Journal of Sustainability Science and Management, vol. 3, No.

2, pp. 14-29. Dec. 2008, ISSN: 1985-3629.

[29] F. Baharom, J. H. Yahaya, A. Deraman and A. R. Hamdan,

“SPQF: Software process quality factor for software process

assessment and certification,” in Proc. The IEEE International

Conference on Electrical Engineering and Informatics,

Bandung, Indonesia, 17-19 July 2011.

[30] S.W. Lee, R.A. Ghandi and S. Wagle. (2007). “Towards a

requirements-driven workbench for supporting software

certification and accreditation”, Software engineering for

secure systems, 2007. SESS’07:ICSE Workshops 2007. Third

International Workshop. IEEE [Online]. Available:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=427

3334

[31] IFPUG. (2008). “International Function Points Users Group”

[Online]. Available:

http://www.ifpug.org/certification/software.htm

[32] Wikipedia. (2012), “Ageing” [Online] Available:

http://en.wikipedia.org/wiki/Ageing

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

http://eurosoutheastasia-ict.org/wp-content/plugins/alcyonis-event-agenda/files/Thandar-Thein.pdf
http://eurosoutheastasia-ict.org/wp-content/plugins/alcyonis-event-agenda/files/Thandar-Thein.pdf
http://eurosoutheastasia-ict.org/wp-content/plugins/alcyonis-event-agenda/files/Thandar-Thein.pdf
http://dl.acm.org/citation.cfm?id=257788
http://www.igi-global.com/viewtitlesample.aspx?id=14041%20
http://www.igi-global.com/viewtitlesample.aspx?id=14041%20
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=466961
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=466961
http://www.lrgl.uqam.ca/publications/pdf/799.pdf
http://www.biology-online.org/dictionary/Aging
http://www.koreaittimes.com/story/15607/30-korean-software-worthy-global-recognition-2012
http://www.koreaittimes.com/story/15607/30-korean-software-worthy-global-recognition-2012
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4273334
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4273334
http://www.ifpug.org/certification/software.htm
http://en.wikipedia.org/wiki/Ageing

