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Abstract—The utilization of desktop grid computing in large-
scale computational applications is an important issue at present
for solving compute-intensive problems. However, such large-
scale distributed systems are subject to churn, i.e., continuous
hosts arrival, leaving and failure. In this paper we address the
problem of churn in dynamic grids, and evaluate the impact of
reliability-aware resource allocation on the performance of the
system.

Index Terms—auctions market, grids, grid economics, re-
source management, spot markets.

I. INTRODUCTION

THE utilization of desktop grid computing in large-
scale computational applications is an important issue

at present. Platforms such as BOINC [1], [2] and SZTAKI
[3], [4] that used to provide large-scale intensive computing
capability have attracted recent research interest. Such plat-
forms are referred to as volunteer grids or public resource
grids [5], [2] where the hosts or providers are typically
end-users’ public PCs (e.g. homes, offices, universities or
institutions) located at the edge of the Internet. Studies aimed
at evaluating host availability have shown that providers
connect to and disconnect from the grid without any prior
notification. This effect which is called churn [6]. To opti-
mize the performance of the system that is subject to churn,
we shall consider the churn characteristics of providers i.e.
the rate of connection/disconnection and the duration of the
corresponding time periods. Also, it is significant from the
perspective of the grid user, to consider the number of jobs
failing and succeeding without resubmission being required
[7]. These effects have to be taken into account when
devising an appropriate allocation policy for such systems.

Our main contribution in this paper is to focus on how
to reduce the effect of churn by reducing jobs failure due
to downtime prior to job completion. We look for allocation
strategies that are economically based, but that also take into
account the apparent reliability of the providers. We aim to
do this in a manner as simple as possible, by taking into
account historical information of the providers and using this
to screen the bids they submit to the market.

II. MODELING CHURN

In this paper the model adopted for the churn play a
key role. Basically one models the distribution of the time
durations during which a resource is available or unavail-
able. When the computing system is the resource avail-
able/unavailable translate to machine uptime/downtime. This
is similar to the system-based churn model as described in
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[8]. One can also look at the availability of the CPU, which
might differ, due to the provider policies or preferences, from
the machine availability.

There exists quite a bit of literature on the subject. The
authors in [9] have tackled the problem of modeling machine
availability in enterprise-area and wide-area distributed com-
puting settings. They have used three different data traces
to measure resource availability, namely the UCSB SCIL 1

data set, the Condor [10], [11] data set and the Long-Muir-
Golding data set. The results indicate that either a hyperexpo-
nential or Weibull model most effectively represents machine
availability periods.

The authors in [12] focus on CPU availability. This differs
from the previous work that looks at machine availability.
Here one includes the case where, without the machine
going down, the user or some monitoring daemon makes the
CPU unavailable for grid work. The authors have measured
and characterized the time dynamics of availability in large-
scale Internet distributed systems with over 110,000 hosts.
Their characterization has focused on identifying patterns
of correlated availability. They instrumented the BOINC [1]
client to record start and stop times CPU availability. The
goal was to detect patterns of availability using K-mean
algorithm [13] for clustering resources by their availability
traces.

In [14], the authors studied the availability of resources,
including CPU. They relied on trace data gathered from over
48,000 Internet hosts participating in SETI@home project
under BOINC [2]. They attempted to show that a deployment
of enterprise services in a pool of volatile resources is
possible and incurs reasonable overhead.

The authors in [15] have analyzed the Failure Trace
Archive (FTA) that comprises public availability traces of
parallel and distributed systems. They inspected the basic
statistics of the traces, and, they fit the distributions for
modeling failures in terms of probability distributions of
availability and unavailability intervals. They implemented a
toolbox to facilitate the comparative analysis of failure traces.
This toolbox was implemented in Matlab, enhanced with
several open source Matlab packages. Using the toolbox,
they made a uniform and global statistical analysis of failure
in nine distributed systems. One key finding was that the
Weibull and Gamma distributions are often the best candi-
dates for availability and unavailability distributions.

In this work we consider provider availability, a binary
value that indicates whether a provider is reachable and
responsive. This corresponds to the definition of availability
in [16], [17]. By contrast, the authors in [18], [19] addressed
the problem of CPU availability instead of provider or host
availability. Of course provider unavailability implies CPU

1At the University of California, Santa Barbara (UCSB) they gathered
measurements of the time between machine reboots of the publically
accessible workstations in the Computer Science Instructional Laboratory
(CSIL)
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Fig. 1. Provider availability and unavailability time periods indicated in
the uptime and downtime intervals.

unavailability, but the converse is not true, particularly when
multi-processor and or multi-core machine are involved. The
state transition of provider availability to unavailability and
back is depicted in figure 1 that represents a timeline with
the following time intervals:-
• uptime stage: a provider is available and when a job is

allocated to the provider it uses all the CPU power of
that provider

• downtime stage: a provider has withdrawn from the grid
system because of policy decision, shutdown, . . . etc

Churn is modeled with two provider-level characteriza-
tions. Firstly, the uptime length distribution, which is one of
the most basic properties of churn. It captures the period of
time that the providers remain active in the grid system each
time they appear. Secondly, the downtime can be defined as
the interval between the moment a provider departs from
the grid system and the moment of its next arrival in the
system (see Figure 1). Most churn studies use these two
distributions to model a churn. A provider’s lifetime is the
time between the moment that a provider first participates
in the grid system and the time that a provider finally and
permanently exits from the grid system.

We will in the remainder of this paper refer to the
provider’s reliability over an interval of elapsed time [ta, tb].
Given uptime periods uptime(k) for k = 0, 1, 2, ... starting
respectively at time tik and ending at tfk , the reliability is
defined as the aggregate of the uptime periods within that
time interval, divided by the elapsed time

R =
∑

k max(tb, t
f
k)−min(ta, tik)

tb − ta
(1)

The reliability index R thus represents the fraction of the
elapsed time that the provider was available in the time
interval from ta to tb. Obviously, the higher R the more
available the provider. This is a narrow definition that equates
reliability with provider availability.

III. GES MODEL

In this section we present the model and scenarios used
in the Grid Economic Simulator to analyse methods for
alleviating the effects of churn in dynamic grid systems.

The simulation model consists of three key elements.
Firstly, a set of N geographically distributed grid providers
”resource owners” denoted by P1, P2, ..., PN , each of which
is committed to deliver computational power. In addition,
there is a group of potential providers, providers that are
in a waiting state but that are ready to join and deliver
computational resources in the grid.

Secondly, a market for resource allocation and job schedul-
ing. All resource owners follow the same pricing strategy
for determining the outcome of the bidding process in the
market.

Fig. 2. An overview of the auction market architecture in GES.

Thirdly, M resource consumers or ”users” denoted by
U1, U2, ..., UM , that are also geographically distributed and
each has a queue of jobs to be executed. A job is specified
by its job length and budget and is used to acquire resources
for the job execution. In our simulation, the job lengths
are randomly selected from a uniform distribution. The jobs
are a CPU-bound computational task. The consumers are
subdivided into four groups such that each has different
deadlines for the jobs to be finished. That is, the jobs of
each group have to be completed before the deadline of
that particular group with the initial budget that has been
allocated to the job.

The consumers interact with resource brokers that hide the
complexities of grids by transforming user requirements into
schedules for jobs on the appropriate computing resources.
The brokers also manage the job submission and collect the
results when they are finished. For instance, the consumer
Um, where (m = 1, 2, ...,M ) sends the job Jj,m with its
bidding value bj,m to the broker. In accordance to consumer’s
request, one of the available resource providers Pn, where
(n = 1, 2, ..., N ) will receive this request. The broker
plays a complex role of a wide range of tasks, i.e. it is
an intermediary between resource providers and consumers.
Beside this functionality, the broker provides information
about the status of CPU usage in the grid system.

Finally, an entity that functions as a bank is used. When a
job failure occurs, the broker in this case will send a report to
the bank. The bank refund the money that had already been
prepaid by Um to the account number of Pn. This enables
the consumer to recover the money and use it to resubmit
the failed jobs.

In Figure 2 one finds a graphical representation of all the
entities involved in the model and the key steps in the flow
of control.
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A. Decentralized marketplace

As mentioned previously, GES applies market-based prin-
ciples for resource allocation to application scheduling. In
this section we describe how resources are priced. In effect,
we adopt an auction market for the pricing of computational
resources. In contrast to the previous work [20], where the
motivation was focused on price stability using a commodity
market, the auction market has been engineered to be more
realistic in geographically distributed systems.

The decentralized auction is a first-price sealed-bid (FPSB)
auction with no reserve price (see the diagram 2), where
the auctioneer collects all received bids and subsequently
computes the outcome. The bidders can submit only one
bid. The resource is allocated to the highest bidder at the
end of the auction. Consumer Um typically, has its own
valuation v(Ri,n) for resource Ri,n to bid. The consumer Um

communicates its willingness to pay (bj,m) for resource Ri,n

and the required processing time for job, Jj,m. The resource
information concerning resource Ri,n of provider Pn consists
of information about the CPU such as the CPUspeed, µi.
The information on job Jj consists of the job length, lj , the
job deadline dj and the budget Bj available for execution of
the job.

When the auction ends by awarding the highest bid, the
auctioneer charges the winner an amount of cn (i.e. cn =
(bj,m)) per time step of the job for resource usage. That
is, the charges are determined at allocation time and remain
fixed throughout job execution. The required time for the
Jj,m to execute on Ri,n and the associated cost are computed
using the equations 2 and 3 respectively.

T (Jj,m, Ri,n) =
lj,m
µi

(2)

B(Jj,m, Ri,n) = cm ∗ T (Jj,m, Ri,n) (3)

B. The role of churn

When churn is incorporated in the above model, leading to
a dynamic grid system, jobs may fail because the provider
withdraws from the grid system. Also users can withdraw
from the grid system. The churn itself is modeled through
system uptimes and downtimes as explained in section II.
As a matter of fact, we have only included provider churn in
the model. In case a consumer withdraws from the market,
their results do not get recovered by them and they will have
to resubmit their jobs. There is however no impact on the
functioning of resource allocation of the grid system as a
whole.

When providers withdraw from the market, jobs execution
fails. Consequently, consumers have to be reimbursed; they
have to resubmit their jobs. In an effort to meet their
deadlines the consumer may have to increase their bids. Thus
it is necessary to try and submit the jobs to a provider that
is not likely to fail. In the next section we propose such an
approach.

C. Alleviating the role of churn

In order to alleviate the adverse effect of churn on
the usefulness of the grid system we propose a simple,
straightforward algorithm that only exploits the historical
information on uptimes and downtimes. This information is

maintained in the grid information system and is certainly
not privileged information. The basic quantity that is used in
the algorithm is the reliability index introduced previously
(equation 1) for provider Pi in the time interval from ta to
tb

R(Pi) =
∑

k max(tb, t
f
k)−min(ta, tik)

tb − ta
(4)

where tik and tfk are the start and end times respectively
of the kth uptime period of Pi in that time interval. The
reliability index thus represents the fraction of the elapsed
time that the provider was available in the time interval from
ta to tb, and characterizes each provider individually. We also
consider a threshold number which we denote γ and refer
to as the reliability threshold. This threshold is
the applied in a very straightforward manner: consumer will
only bid with providers Pi such that

R(Pi) ≥ γ (5)

That is, providers whose reliability index exceeds gamma.
This has the effect of screening the less reliable providers. It
is of course a simple heuristic rule, based on information of
the provider’s track records. It does not involve any statistical
evaluation nor does it evolve any quality of service elements.
It does however lead to quantitative improvements of the job
failures rates due to churn as we shall see from the simulation
results in the next section.

IV. SIMULATION RESULTS

In this section, we evaluate the effect of churn in the above
model through two simulation scenarios. The key parameters
that apply in all scenarios discussed in this section are listed
in table I. The relative workloads on the grid system that are
assigned are roughly the same for those scenarios that we
compare with and without churn. The relative workload, φ,
can be defined as the ratio of aggregate workload, l, to the
aggregate computational capacity, α.

φ =
∑

m lm∑
n αn

(6)

This relative workload φ highly affects the system perfor-
mance. Because of this, scenarios where we directly compare
the effects of churn by executing the scenario with and
without churn have been designed to run under the same
relative workloads.

In all experiments we have divided the users into four
groups, each characterized by a different range of deadlines
to be met for the jobs that the user needs to have executed
(see table I). In some of the experiments we have also sub-
divided the providers into groups with different parameters
for the uptime churn distribution. Simulation parameters that
differ per scenario are reported in the appropriate subsection.

A. Performance metric

The performance objective for consumers is a high rate
of successfully executed jobs within the deadline. Jobs may
fail to meet this objective because of provider churn but
also simply because the aggregate computational load on
the grid system is such that the consumer fails to acquire
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TABLE I
SIMULATION PARAMETERS.

Simulation steps 2000s

Number of consumers 6000
Number of providers 1000
Initial budget 1000000
di(Group1) {1, · · · , 100}
di(Group2) {1, · · · , 1300}
di(Group3) {1, · · · , 1700}
di(Group4) {1, · · · , 2000}
microsoft99 Scenario K λ
uptime 0.55 35.30
downtime 0.60 9.34
pl05 Scenario K λ
uptime 0.33 19.35
downtime 0.36 5.59

TABLE II
SCENARIO I SIMULATION PARAMETERS WITH PL05 DISTRIBUTION.

pl05 case K λ
Job duration in time steps {100 · · · , 110}
Nr. of jobs per user at injection step 3
uptime 1 0.33 14.51
uptime 2 0.33 19.35
uptime 3 0.33 24.19

the necessary computational resources within deadline and
within their budget constraint. We are interested in studying
the former effect.

In order to discriminate between both effects we define
the failure rate (Frate) with the following equations:

Frate =
FJ

TJ
− FratenoChurn

(7)

FJ : number of jobs fail (8)
TJ : number of total jobs (9)

FratenoChurn
: failure rate with no churn (10)

Thus, the failure rate represents the fraction of jobs that
fail, but we do not count those that would fail even if there
were no churn in the system. That is to say, the failure rate
measures the job failures directly attributable to provider
churn in the grid system.

B. Scenario I: The effect of the mean uptime

In this scenario we want to explore how is sensitive the
evolution of the grid system, the providers, user, and executed
jobs, with respect to parameters of the churn model. We have
done a number of experiments in this respect and report here
on one such experiment that is representative of this type of
exploration.

We have the simulation with the parameters as in ta-
bles I and II. We use the pl05 churn model with the
parameter determining the uptime at three different values:
λ = 14.51, 19.35, 24.19. The middle value is the actual
pl05 value, the other two are an increase and decrease by 25
percent respectively. An increase of λ represents an increase
of the average provider uptime.

As the mean uptime increases or decreases for different λ
the number of providers churned out of the grid system in-
creases and decreases respectively. This inverse relationship
confirms what one would expect a priori.

Fig. 3. Scenario I: the number of jobs resubmitted at least once, at least
twice, etc. with churn of the pl05 distribution.

Figure 3 indicates the number of jobs that need to be
resubmitted because of failure at least once, at least twice,
. . . . Again we show the results for simulations based on
the three different λ parameters. The total number of jobs
initially in the system for this case is 18000.

The results of Figure 3 lead to a number of observations.
Apparently this system has a heavy workload and churn.
Approximately one in two jobs needs to be resubmitted at
least once, one in five at least twice. The tail of multiple jobs
submissions is quite long.

The differences between the different λ cases is as one
would expect: smaller λ means shorter uptimes and leads
to more resubmissions, larger λ means longer uptimes and
leads to fewer resubmissions. There is no noticeable effect
on the multiplicity of the resubmissions.

TABLE III
SCENARIO II SIMULATION PARAMETERS.

microsoft99 case
Nr. of jobs per user at injection step 7
Job duration in time steps {40 · · · , 50}
pl05 case
Nr. of jobs per user at injection step 3
Job duration in time steps {100 · · · , 110}

C. Scenario II: The threshold algorithm

In this scenario, the experiments are effected using the
parameters listed in tables I and II. In the experiments we
explore the effect of applying the threshold algorithm. The
differences in job duration between the microsoft99 and
pl05 cases are related to the differences in the average
uptime in the two churn distributions. They have been set
to generate roughly identical relative workloads in the grid
system in both cases.

For each provider, at every point in time, the reliability
index is computed. Users the screen providers i.e. they
submit bids for computational resources only with those
providers whose reliability index exceeds a preset threshold
value. We explore the effect of changing the threshold on the
job failure rate observed in the grid system.

Figure 4 shows the failure rate as a function of the
threshold, both for the micrsoft99 and pl05 churn
distributions. For the latter the rate decreases slightly up
to γ = 70% while the former hardly changes at all. Form
γ = 70% on the failure rate steadily climbs.
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Fig. 4. Scenario II: the job failure rate for different thresholds γ.

The first observation is somewhat disappointing because
it basically indicates that the threshold algorithm does not
really improve the failure rate compared to the situation
with γ = 0% i.e. when no reliability screening is applied.
The second observation is rather easy to understand: when
one increases γ, the pool of providers available for bidding
shrinks. Thus, the higher γ the smaller the set of available
providers. Even though these might be the more reliable ones,
the computational capacity shrinks in such a manner these
jobs simply to find computational resources to run on and
fail to meet deadline.

In the panels in Figure 5 the results of the same exper-
iments are shown, but now differentiated per user group.
Four subgroups of users have been introduced that each
differs in the deadlines that are set for their jobs. The
relevant parameters are listed in see table I. The deadlines
for Group1 are the most stringent, those of Group4 are the
least stringent.

The results in these figures indicate that the failure rate
in the pl05 case is more responsive to application of
threshold algorithm than that in the microsoft99 case.
This observation is consistent with the aggregate (over the
user groups) failure rate shown in Figure 4.

The results also indicate that the improvement in the
failure rate, even if slight, is most pronounced when the
deadline is the least stringent and vice versa. We have
no clear, unambiguous indications as to the cause of this
relation because of the complexity of the system. However,
we conjecture that the effect is most probably due to the
fact that the more stringent the deadline, the less effective
the mechanism of resubmissions and because of that also the
less effective the screening of unreliable providers.

TABLE IV
SCENARIO IV SIMULATION PARAMETERS.

microsoft99 case
Nr. of jobs per user for load 1 7
Nr. of jobs per user for load 2 4
Nr. of jobs per user for load 3 2
Job duration in time steps {40 · · · , 50}
pl05 case
Nr. of jobs per user for load 1 3
Nr. of jobs per user for load 2 2
Nr. of jobs per user for load 3 1
Job duration in time steps {100 · · · , 110}
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Fig. 5. Scenario II: job failure rates per consumer group for different γ
for microsoft99 (top panel) and p105 (bottom panel) distributions.

D. Scenario III: Relative workload

In this scenario we study the effect of the system workload
on the failure rate. To do so, we run the same experiments
under different workload conditions by changing the number
of jobs per consumer (see table IV for a listing the simulation
parameters).

Figure 6 shows the failure rates as a function of γ, the
reliability threshold, for each of the workload conditions,
both for the microsoft99 (top panel) and pl05 (lower
panel) churn distributions. It is obvious here that the lighter
the effective workload on the grid system, the more pro-
nounced the improvement of the failure rate due to the
threshold algorithm. This can be understood in the following
sense. The application of the threshold criterion has two
inherent, counteracting effects: the higher the threshold is
set, the more reliable the providers satisfying the criterion
but also the fewer the number of providers passing it. The
first effect will lower the failure rate because providers are
less likely to churn out and cause the jobs to fail. The second
effect will increase the failure rate because there are fewer
providers available, which lowers the total computational
capacity in the grid and causes jobs not to finish before
deadline or not be run at all. At a certain threshold value
γ an optimum equilibrium between these opposing effects is
achieved and the failure rate is at its lowest value, given the
other parameters of the problem.

As we lower the total effective workload in the grid
system, the second effect i.e. decreasing the number of
available providers due to the mismatch in the reliability
criterion, has less impact. Thus the optimum failure rate is
lower at lower workloads and occurs at higher γ-values. This
is indeed what we observe, for both churn distributions.
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Fig. 6. Scenario III: The effect of workload on the failure rate for
different (γ). The microsoft99 (top panel) and p105 (bottom panel)
churn distributions and 5 provider groups.

V. FUTURE WORK

Future work in this area of study includes introduction
more refined definitions of reliability, more refined criteria
for screening the providers that also take into account the
lapsed time in the uptime interval. In addition the formulation
of quality of service guarantees needs to be investigated.

VI. CONCLUSION

In desktop and peer-to-peer dynamic grids job failure due
to churn in the grid system are inevitable. There is a need
to minimize the impact of these job failures on the quality
of service provided by such grids. In order to find effective
approaches that can alleviate the impact of churn we need
to model churn. In our work we have used models that are
available in the literature.

In the context of the Grid Economics simulator framework
we have programmed these churn models and developed
resource allocation scheme based on first-price-sealed-bid
auctions. We have then used this to investigate an algorithm,
which we refer to as the threshold algorithm, to alleviate
the impact of churn. The algorithm is based on a simple
criterion which limits the bids only to reliable providers,
where reliability is defined as having a reliability index above
a certain threshold. The reliability index is a simple measure
of availability based on average aggregate uptime.

We analyse experiments in a number of scenarios and
arrive at the conclusions that firstly the effect of the threshold
algorithm is fairly transparent and secondly it has the poten-
tial of improving failure rates significantly if the effective
workload in the grid system is not too high.
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