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Abstract—Distributed processing offers a way of successfully
dealing with computationally demanding applications such as
scientific problems. Over the years, researchers have investi-
gated ways to predict the performance of parallel algorithms.
Amdahl’s law states that the speedup of any parallel program
has an upper bound which is determined by the amount of
time spent on the sequential fraction of the program, no matter
how small and regardless of the number of processing nodes
used. This research discusses some of the short comings of this
law in the current age. We propose a theoretical model for
predicting the behavior of a distributed algorithm given the
network restrictions of the cluster used. The paper focuses on
the impact of latency and bandwidth which affect the cost of
interprocessor communication and the number of processing
nodes used to predict the performance. The model shows good
accuracy in comparison to Amdahl’s law.

Index Terms—Latency, propagation delay, distributed pro-
gramming, bandwidth, performance.

I. INTRODUCTION

D ISTRIBUTED systems are collections of autonomous
computing systems which are connected by some net-

work and work together to solve an overall task using the
notion of divide and conquer. The total processing time of
a distributed program is calculated as the total communi-
cation time plus the total computation time. It is always
unnerving to know what to expect from a system before it is
actually developed. Clients often need to know the expected
performance so that they can make an informed decision on
whether or not to invest in a project. Amdahl came up with a
law for predicting performance of parallel systems. However,
there has been much criticism surrounding Amdahl’s law for
its assertion that parallel processing is unscalable. Amdahl’s
law stipulates that even when the serial fraction of a problem,
say s, is considerably small, the maximum speedup obtain-
able is only 1

s even with an infinite number of processing
nodes [1]. If s is the time spent by N processors executing
the serial fraction of the computation time of a program
and p is the time spent executing the parallel portion, then
Amdahl’s law states that the estimated speedup is given by:

Speedup =
1

(s+ p
N )

, with s=1-p (1)
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Fig. 1. Structure of a dual-core system

Amdahl’s law assumes that the problem size remains fixed
after parallelization. This, however, is not always the case. It
has been shown that in practise, parallel processing workload
often scales up with the number of processing nodes (except
for academic research purposes) [1], [2]. Gustafson [1]
discussed the concept of scalable parallel processing and
introduced the scaled-sized model for speedup, which was
later revised into fixed-time model by Sun & Chen [2] for
multicore hardware systems. Gustafson [1], Hill & Marty [3]
and Sun & Chen [2] argue that workload of parallel problems
should scale up with the increasing computing capability
in powerful machines as these machines are designed for
large problems. According to Gustafson, parallel workload
of massively parallel systems varies linearly with the number
of processors, and hence the scaled-sized speedup model
is a linear function of the number of processors. Although
Hill & Marty successfully model the performance of parallel
processing on multicore systems, they do not cater for
distributed multicore systems.

Distributed computation differs from parallel computation
in the way in which memory is used. In parallel systems,
all processing elements use the same shared memory for
communication, whereas distributed systems are autonomous
systems with private memory connected by a network which
is used for communication between the processing nodes.
Fig. 1 shows an internal structure of a parallel/shared mem-
ory system in the form of a dual-core system, while Fig. 2
shows an example of a multicore distributed system, where
multicore machines are combined by a network to function
as one.

Parallel code often runs on the same system and thus has
no need for external communication. Distributed code, on the
other hand, can not work without external communication.
This communication, however, often consists of some over-
head which, in large amounts, can affect performance drasti-
cally. The performance prediction models discussed above
do not address the communication issue associated with
distributed processing. For this reason, this paper presents
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Fig. 2. Example structure of a multicore cluster

a way of predicting performance for code distributed on
multicore clusters. The rest of the paper is organised in
the following manner: Section 2 discusses the factors which
influence the performance of a distributed system. Section 3
gives the related works and background. Section 4 discusses
the proposed performance model. Section 5 analyzes the
results and Section 6 concludes the paper.

II. FACTORS AFFECTING PERFORMANCE IN
DISTRIBUTED SYSTEMS

The performance of a distributed algorithm is affected by
more than just the application efficiency and the number
of processing nodes used. Since clusters are connected by
networks, network factors like latency and bandwidth have
a considerable impact on the performance of a distributed
system. As such, it is necessary to take into account the
network influence when predicting the performance of these
systems.

Bandwidth and latency capture the volume and time di-
mensions of information processing, respectively. Latency
measures the time taken to complete a request, while band-
width measures the volume of information transmitted in
a time interval [4]. The next subsections go into greater
detail about the factors that impact information processing
performance.

A. Application Efficiency
If an algorithm is not efficient in its execution, even the

most powerful machines can not improve its performance.
There are a lot of ways to help improve the efficiency
of parallel programs. Code has to be optimized on two
levels; per-processors and across processors, (i.e. each core
of a multicore machine and communication across the clus-
ter). Optimization techniques include code modifications and
compiler optimizations. Per-processor optimizations include
but no limited to, loop optimization, floating point arithmetic
optimization, prefetching, and use of optimized mathematical
libraries. Across processors optimizations mainly deal with
minimizing communication, reducing overhead associated
with communication through the use of efficient network in-
terconnections. Using latency hiding techniques to reduce the
effects of latency. These techniques include using operations
such as MPI Isend/IRecv [5] which enable an application
to send data before it is needed and keep working while
sending. Compilers like GNU come with optimization flags
such as -ffast-math which optimizes mathematical functions.

B. Application Latency

Application latency is defined by Shaffer [6] as the total
amount of time that an application has to wait for a response
after issuing a request for some data. The application delay
reflects the total wait time incurred by the system, including
all subsystems and kernel overhead as well as network
latency [6]. Network latency is the time spent waiting, from
the instantiation of an operation until the return of the desired
results [6]. A distinction can be made amongst the different
types/sources of network latency. Three types of network
latencies are discussed; the propagation delay, transmission
delay, and physical latency. Fig. 3 is a representation of these
two network latency sources as a single server open queueing
system.

Fig. 3. Network latency presented as a propagation and transmission delay
server (adapted from [4])

1) Propagation Delay: Propagation delay is defined as the
time taken waiting for the last bit to arrive plus the overhead
that comes with the device [6]. The propagation delay can
not be eliminated or avoided because the speed of light
is inviolable [6]. Transmission speed can not be improved
beyond propagation delay. A propagation of a certain system
indicates the maximum transmission rate that the system can
achieve.

2) Physical latency: Physical latency measures the pro-
cessing time on a device without waiting (i.e. the service
time). It varies according to device utilization or load [4]. The
physical latency can be halved to double the bandwidth. Ding
[4] showed that halving the physical latency yields better
results than actually doubling the bandwidth. The system is
able to perform twice the amount of work without saturation.

3) Transmission Delay: Transmission delay is the amount
of time taken to transmit all the packet’s bits into the link. In
most networks, transmission of packets occurs in a first come
first serve manner, which results in queueing for transmission
rates that are not high [7]. It is determined by the packet
size and the transmission rate of the network and not at all
affected by the distance.

C. Bandwidth

Bandwidth determines how much information can be pro-
cessed within a certain time interval. It has a direct impact
on the response time of data acquisition [4]. Low bandwidth
can result in extremely slow systems. If an application must
be able to transmit at a certain rate in order to be effective,
then that application must transmit and receive at that rate.
If that amount of bandwidth is not available, the application
is most likely to give up [7]. Bandwidth may be increased
to improve performance of a certain system and compensate
for the propagation delay. However, increasing the bandwidth
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does not automatically guarantee performance gain. In order
to benefit from high bandwidth, software often needs to
be modified in order to leverage the high bandwidth. For
example, applications developed for 32-bit systems may run
slower on 64-bit systems [4].

III. RELATED WORK

Performance prediction methods in literature can be clas-
sified into three categories; analytical [1], [2], [6], [8]–
[10], profile-based [11], [12] and simulation-based [13]–[16].
This paper uses an analytical approach based on Sun &
Chen’s [2] and Shaffer’s [6] works. Analytical solutions have
the advantage of efficiency over the rest of the prediction
methods, however, it is limited by the fact that many complex
systems are analytically intractable [17]. While Amdahl’s law
is only concerned with software, Hill & Marty’s corollary
is hardware-based. Sun & Chen’s study which revises Hill
& Marty’s work assumes a symmetric architecture with
each core having its own L1 cache, where the memory
bound is the cumulated capacity of the L1 caches. Following
the conclusion made by Hill & Marty that the symmetric
multicore architecture has a speedup of:

Speedup =
1

1−f
perf(r) +

f.r
perf(r).n

(2)

where perf(r) is defined as the sequential performance of
a powerful core with r Base Core Equivalents (BCEs). Sun &
Chen’s fixed-time speedup model for multicore architectures
reveals the scalability of multicore architectures. Sun & Chen
define the fixed-time speedup as:

SpeedupFT =
Sequential Time of Solving Scaled workload

Parallel Time of Solving Scaled workload
(3)

Let w be the original workload and w′ be the scaled
workload. Supposing the time taken to process w sequentially
is the same as the time taken to process w′ in parallel using
m processors. Assuming that the scale of the workload is
only on the parallel portion; w′ becomes:

w′ = (1− f)w +mfw (4)

Therefore

SpeedupFT =
Sequential Time of Solving w’

Parallel Time of Solving w’
(5)

SpeedupFT =
Sequential Time of Solving w’
Sequential Time of Solving w

(6)

w′

w
=

(1− f)w +mfw

w
= (1− f) +mf (7)

which gives Gustafson’s law [1]. The scaled-sized model
assumes that the scaling is only at the parallel portion.
Based on this assumption and following (2), Sun & Chen
constructed the fixed-time speedup model to be:

(1− f)w

perf(r)
+

fw

perf(r)
=

(1− f)w

perf(r)
+

fw′

perf(r)m
(8)

If we let n = mr be the scaled number of cores, with
n = r being the initial point, then w′ = mw. The final
scaled speedup compared with n = r becomes:

SpeedupFT =
Sequential Time of Solving w’
Sequential Time of Solving w

=

(1−f)w
perf(r) +

fw′

perf(r)
w

perf(r)

= (1− f) +mf

(9)

The fixed-time speedup model demonstrates the scalability of
multicore systems. Like the scaled-sized model, it is linearly
dependent on the number of processors m. Efficiency of a
parallel algorithm is measured by the speedup attained. If
T1 is the execution time for the serial implementation, the
speedup can be computed as T1

TN
, where TN is the execution

time attained when using N processors. Efficiency is then
calculated as:

EN =
TN
N

(10)

An efficient algorithm attains a speedup close to N for
every TN , (i.e. EN = 1). It has been established in the
literature that for distributed systems, this is not always the
case. As the number of processors increases, speedup of the
distributed systems starts to decline. This is usually because
of the increased interprocessor communication, known as
message passing. Adding computation nodes increases the
networks communication links which ultimately increases
propagation delay.

IV. PERFORMANCE MODEL

This research focuses on the performance of multicore
clusters. Multicore clusters are ideal for hybrid programming,
(i.e. a mixture of distributed and parallel processing). While
distributed programming deals with coarse grain parallelisa-
tion, parallel programming focuses on fine grain parallelism
within the computing nodes. It is clear to see the advantage
in this form of an architecture. MPI can be used for the
coarse grain parallelism and use p-threads or OpenMP for
fine grain parallelism per node. While multicore systems are
scalable and provide high performance, they have their limits.
Writing thread-safe programs is not easy, especially as the
number of threads increases. Enrico Clementi, a former IBM
fellow and pioneer in computational techniques for quantum
chemistry and Molecular dynamics, once said ”I know how
to make 4 horses pull a cart - I don’t know how to make
1024”. Introducing clustered systems relieves the strain of
using too many threads on one machine.

A. Computational Cost
In distributed processing, an application can only run as

fast as the slowest processor. Thus, following Sun & Chen’s
fixed-time model, we redefine perf(r) to be:

perf(r′) = max(perf(ri)) (11)

where perf(ri) is the sequential performance of a power-
ful core of a processing node i with r BCEs. Using (9) and
the assertion that w′ = mw we get the following,

(1− f)w

perf(r′)
+

fw′

pref(r′)m
=

(1−f)w
perf(r′) +

fw
perf(r′)

w
perf(r′)

= (1−f)+mf

(12)
This gives us the expected speedup.
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B. Communication Cost

The communication overhead associated with message
passing can be quite large. Shaffer [6] proposed a theoretical
predictive measure of communication cost in wide area
distributed systems to be:

Comm Time = m× [
s

b
+ d× 7.67× 10−6 + ε] (13)

where m is the frequency of messages needed during the
task, b is the bandwidth in bits/second, ε is the overhead
incurred per message and s and d represent the size of the
message and the length of the communication channel in
mile, respectively.

Propagation delay is normally calculated as the reciprocal
of the speed of light which is currently 299792.458 km/s.
However, Shaffer stated that this value is not the same for all
types of cables. Different types of cables transmit at different
speeds, which is less than the actual speed of light. This
speed is known as the normal velocity of propagation (NVP).
Optical fiber has an NVP close to 0.7 [6].

We define the cost of sending an L bit message between
two processors as:

Tcomm(L) ≤ L

τ
+ (σmax × dist) + εL (14)

where τ is the upper bound of the network latency, σmax

is the maximum delay incurred by the system, dist is the
physical distance between the network points and ε(L) is
the overhead associate each message of size L bits, i.e. the
send and receive overhead.

V. EXPERIMENTS

The total estimated running time is calculated as:

TEST (m) = Tcomp(m) + Tcomm(m,L) (15)

where Tcomp(m) is the computation time as defined in
Section 4.1 and Tcomm(m,L) is the total time spent by m
nodes communicating messages of sizes L.

Tcomp(m) = Tseq/SpeedupFT (16)

Tcomm(m,L) =
∑

Tcomm(L) (17)

Tseq is sequential time and SpeedupFT is defined in (12).
The performance model was tested on two different applica-
tions; one communication intensive and one computationally
intensive. The experiments were performed on a cluster with
the specifications given in table 1.

TABLE I
SYSTEM CONFIGURATION

Model SuperMicro

Filesystem GPFS

Network Gigabit Infiniband

Number of nodes 5

CPU Cores 80

CPU Cores per Node 16

CPU Model Intel Xeon

CPU Speed 2.4 GHz

Peak Performance 16 TFlops

A. Application 1: Large Array Application
This application takes in two large array of numbers in

two 1 MB files, then performs a series of mathematical
functions (matrix multiplication, covariance matrix, trans-
pose and eigenvectors) and finally writes back the results
to a 4 GB file. The application has minimal interprocessor
communication. Only the file names are broadcasted.

B. Application 2: Distributed Fingerprint Enhancement Ap-
plication

The fingerprint enhancement application consists of a
series of computationally intensive image processing oper-
ations [18]. Image processing operations require intensive
communication with neighbouring processors in order to
access neighbouring pixels. Hence, the application has a lot
of message passing making it a bit harder to scale with
respect to processing nodes.

C. Results Analysis
The system used for testing has an NVP of 0.67, hence

the expected propagation delay per km is

propagation delay =
1

299792.458 ∗ 0.67
= 0.0049ms

(18)
Fig. 4 shows the prediction results vs. the observed per-

formance of application 1. A comparison between Amdahl’s
law and our model is made. Amdahl’s predictions show
unscalability, performance does not improve beyond the 114
seconds mark. Our model shows great scalability and the
error margins are better than those experienced by Amdahl’s
law. Fig. 5 shows the results obtained through using the
prediction model for application 2. From the graph, an
increase in the communication time is evident as the number
of processors increase. This is mainly due to the frequency of
message passing during prefetching of boundary cells as well
as the size of the messages. Fig. 6 plots the predicted per-
formance of the fingerprint enhancement application against
the observed performance using the model discussed in this
paper, Amdahl’s law and Sun & Chen’s model. From Fig.
6 its clear to see that Sun & Chen’s model over estimates
the speedup, whereas Amdahl’s law under estimates. Sun &
Chen’s model does not consider the effects of communication
associated with distributed systems. Amdahl’s law on the
other hand performs better than Sun & Chen in this case. Our
model does not give the exact estimates, it over estimates
the speedup but the error margins are better than those
experienced by Amdahl’s law and Sun & Chen’s model.

Application one has minimum communication (only two
broadcast messages to share the filenames). In comparison
to computation, communication time is insignificant hence
the model becomes almost identical to that of Sun & and
Chen’s.

VI. CONCLUSIONS

When communication is insignificant in comparison to the
computation, our model gives the same performance as that
of Sun & Chen’s model. But when there is extensive com-
munication, our model strives. While Sun & Chen’s model
over estimates the speedup, Amdahl’s law under estimates
it. Our model considers both the computation capability of
multicore systems as well as the limitations of the network.
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Fig. 4. Results of the predicted performance for the big array application. (a) Performance of the application using only one node. (b) Performance using
two nodes. (c) Performance using three nodes. (d) Performance using four nodes. (e) Performance using five nodes

Fig. 5. Results of the predicted performance for the fingerprint enhance-
ment application
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