
HAMP –A Highly Abstracted and Modular
Programming Paradigm for Expressing Parallel

Programs on Heterogenous Platforms

Srinivas Balasubramanian, Prakash Raghavendra

Abstract— With the start of the parallel computing era, due to
power and thermal considerations, there is a growing need to
bridge the gap between parallel hardware and software. The
unintuitive nature of parallel programming and the high
learning curve often prove a bottleneck in the development of
quality parallel software. We propose HAMP – A Highly
Abstracted and Modular Programming paradigm for
expressing parallel programs. We provide the developer with
high level modular constructs that can use to generate
hardware specific optimized code. HAMP abstracts programs
into important kernels and provides scheduling support to
manage parallelism. By abstracting the scheduling and
hardware features from the developer, we cannot only,
considerably reduce the learning curve, but also increase
software lifetime

Keywords- Bottleneck code, highly abstracted, modular
programming, parallel constructs, customized code

I. INTRODUCTION

Large scale parallelism is a given not only in GPU’s but
also CPU’s in the near future[1][2][3] and the need of the hour
is to develop efficient and scalable code that can slow down
the software aging process. The transition from developing
serially optimized code to scalable parallel code is not trivial
and the associated learning curve proves to be a hindrance to
most potential developers. [5] [6]

In the past, programming to exploit the architectural
properties of a parallel machine was limited to a narrow field
of experts. As the hardware industry shifted towards parallel
computing, however, a wider field of programmers and
algorithm developers needed to take advantage of these
architectural innovations. With the right techniques,
multicore architectures may be able to continue the
exponential performance trend, which elevated the
performance of applications of all types for decades. [7]

Srinivas Balasubramanian is with Department of Information Technology,
NITK – Surathkal, Manglore, India. (email:
srinivasbalasubramanian@acm.org)
Prakash Raghavendra is with the Department of Information Technology,
NITK – Surathkal, Manglore, India. (email: spr@nitk.ac.in)

This paper addresses the gap between parallel hardware
and parallel software development techniques and aims to
bridge the same. The current approaches for auto
parallelization of serial code, including static compile time
analysis, seems to have hit a rough patch. Moreover the
overhead associated with speculative parallelism [4], which
involves monitoring the runtime behaviour of the program,
leads us to believe that a highly abstracted and modular
paradigm (HAMP) for parallel programming may hold the
solution.

HAMP provides the following features to help bridge this
gap. High level constructs that can be used to express the
program. This is done by abstracting the program into
important kernels and providing scheduling support to
manage parallelism. HAMP differs from standard libraries as
HAMP kernels are optimized for the target hardware and
depending on the hardware where it needs to run, the
compiler generates code, this ensures enhanced software
lifetime and portability. HAMP uses extensive profiling of
its kernels in order to determine optimal allocation of
resources during simultaneous launch of kernels.

II. CURRENT CHALLENGES

Writing parallel code is a huge transition for most
developers due to the instinctive serialized thought process.
Due to the high cost involved with developing serial code
and the large amount of legacy serial code, researchers
started exploring automatic parallelization to make the
development of scalable parallel code feasible. An effective
framework that can help in development of quality parallel
systems also needs to be addressed even though it only paves
the path for the way ahead.

A. Explicit Parallelism

Automatic parallelization techniques that extract threads
from single-threaded programs without programmer
intervention do not suffer from these limitations and seemed
as an obvious choice at first. Static analysis of the code at
compile-time, looking for suitable ways to extract
parallelism, was the initial trend. But the fact that even
highly parallel applications could not be parallelized, due to
lack of awareness of parallel programming in the part of the
developer, led to search for alternative solutions.

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

B. Speculative Parallelism

Speculative parallelism does not need the code to have
rigid constraints regarding dependencies as is the case in the
static analysis. Dependencies that manifest in static analysis
are speculated upon at runtime to extract as much
parallelism as possible from them. If the speculation affects
the correctness of the program suitable rollbacks are made
to ensure a correct output is given. Speculative parallelism
provided the solutions to most of the problems but the cost
of speculation and lack of hardware support to roll back
made it an expensive option. Software transactional memory
was needed and the overhead and complication that
spawned seem to have no elegant solution. Even though
most of the instruction in a loop could be run in parallel 99
times out of 100 without altering the output, the 1 case
where it failed proved to be very expensive and required
large amount of effort and checks to ensure the output was
validated [4].

C. Semi-Automatic Parallelism

Often many apparently easily parallelizable programs
are unable to be parallelized automatically. The
dependencies that inhibit parallelism are only rarely those
required for correct program execution, more commonly
manifesting from artificial constraints imposed by sequential
execution models. This is because there exist alternative
ways to express most code and most of the legacy code has
not been written keeping a parallel architecture in mind.
There is a simple alternative way of representing the same
program finding a bypass around the dependencies which
prevent parallelization in most cases. Semi automatic
parallelization or tools which help to locate hot loops and
suggest parallel transforms provide a temporary solution to
this problem. These tools however still require the developer
to have adequate knowledge of parallel programming in
order to achieve scalable parallel programs.
Continuing exponential growth in transistor density and
diminishing returns from the increasing transistor count
have forced processor manufacturers to pack multiple
processor cores onto a single chip. Multi-core processors
generally do not improve the performance of single-
threaded applications. There is a need to make parallel
programming of applications feasible from a software
engineering perspective. Automatic parallelization that is
static has limited application while speculative parallelism
has an associated overhead that makes it unattractive. The
need to develop scalable parallel programs for applications
is imminent.

III. PROPOSED SYSTEM

Large scale parallelism is here to stay and the need of the
hour is to develop efficient and scalable code. The transition
from developing serially optimized code to scalable parallel
code is non trivial and the associated learning curve proves

to be a hindrance to most potential developers
[5]

.The
current approach for auto parallelization of serial code
seems to have hit a rough patch. The limited scope of static
analysis and the overhead associated with speculative

parallelism
[4]

leads us to believe that a new approach is
needed and we propose a highly abstracted and modular
paradigm (HAMP) for parallel programming that we think
may hold the solution.
HAMP takes its inspiration from design patterns. A variety
of scientific applications today tend to utilise an overlapping
set of operations. The main idea or inspiration for HAMP is
that it’s easier to find an implementation for a problem at an
abstracted level then at the lower level. HAMP provides
hardware specific implementations for a set of important
kernels. The same HAMP code morphs itself depending on
the target hardware we believe that feature is what separate
HAMP from other high level heterogeneous programming
languages. While generating the binary files HAMP does so
based on the target hardware selected on the compiler. Our
results show that higher the level of abstraction easier it is
for the compiler to find implementations that are more
efficient for a given problem. Also a higher level of
abstraction reduces the learning curve. We also observed
that code tuned for one hardware setup does not necessarily
perform optimally on another hardware setup; therefore
code generated should be hardware specific.

 We aim to build a highly modular and abstracted system
which makes extraction of functional parallelism easy.
Data-parallelism will be implicit by having implementations
of functions that inherently exploit the same.

 The fact that serial programs that can easily be
parallelized, can be coded in an obfuscated way that makes
the detection of this inherent parallelism extremely difficult,
made us think that if we can provide a framework like
HAMP that provides the developer with enough to express
his idea and leaves the best implementation of the idea to
the compiler we have a solution to our problem. HAMP is
inspired by the ideas of design patterns and the fact that
there are a sizeable amount of problems that repeatedly

show up in the industry
[4]

have a finite number of design
patterns that can be used to represent and solve these
problems . We believe that if we can map the users idea on
to a finite number of computational methods that can be
used to solve most of today’s problems, the task of parallel
programming becomes much easier. We try to show the
benefits of the programming model of HAMP by exploring
its benefits on scientific applications, the modules provided
by HAMP can be compared to those provided by
Mathworks- Matlab in the sense various well known
functions have an efficient implementation that can be used
in a simple and easy way.

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

 The modular nature of the HAMP language allows us to
have optimized implementations that can be customized and
targeted for specific hardware. Parallel programming and
especially GPGPU computing is facing a lot of resistance

due to the lack of portability of optimized code
 [17]

.Code that
has been optimized for a particular hardware configuration
may not show expected behaviour on other hardware
configurations. From the perspective of the software
industry there is a need to make the development process
more standardized and streamlined while acknowledging the
diversity of hardware that the application may eventually
run on. Heterogeneous computing only adds to the
developers woes in this respect; while the raw
computational power made available is undeniable a
feasible method to harness this power still eludes us. Not
only is “the free lunch over” [5], the road ahead demands
constant reinvention of the wheel for the multitudes of
terrain that we might encounter. Even though the Holy
Grail, “auto-parallelization” seems like the best solution, it
is important that we acknowledge the paradigm shift in the
nature of programming from a sequential to a parallel
model. The non trivial nature of the problem becomes
evident when we understand the fundamental difference in
the two programming models.

Figure 1 HAMP Workflow

 Since each module of HAMP is standardized its
behavior can undergo intensive profiling. The scalability of
each module under predefined hardware conditions can be
obtained and used to find an optimal scheduling as
described in the following section.

 An optimal scheduling of independent jobs: HAMP
consists of different predefined modules that can be used to
express a problem. The modular nature of the language
makes it easier to identify coarse grain parallelism. Since
different tasks have different levels of parallelism that can
be extracted from them the scheduling of these independent
tasks is of importance from the point of view minimizing
the overall execution time of an application.

 We define a bottleneck section as a section between two
explicit global sync statements. We further analyze the
scheduling of m independent jobs across n processors that
are available for our bottleneck section. It is evident that the
rate of completion of a task in the bottleneck section is
determined by the maximum time taken by any of the m
independent jobs.

BottleNeck_Tc= maximum (Ji_Tc) for i from 1 to m.

 Where BottleNeck_Tc is the time taken to complete the
bottleneck section and Ji_Tc is the time taken to complete
the ith job. HAMP uses a longest job first greedy approach
for allocation of the n processors across the m jobs. We
assume large scale parallelism is available, implying the n is
sufficiently larger than m. To begin with we allocate a
single processor to each job and then allocate the next
processor to the job currently taking the maximum time for
completion. If there are multiple jobs with the same
completion time the processor is allocated to the job which
has the maximum reduction in its running time due to the
addition of the processor. The behavior of the jobs on being
provided additional processing power is made available by
extensive profiling that has been carried out beforehand.

 As shown in Figure 1, we specify the target hardware
which allows us to generate intermediate code targeted for
the hardware. We use information about the cache, number
of processors, registry size etc to come up with suitable
constants that give us values such as unroll factor, work
group size etc. In the second stage we scan for task
parallelism and alter these constants based on extensive
profiling. We aim to get the best perform under the limited
resources that has been made available to us. After
necessary processing we come up with new constants which
improve the performance of the group of tasks as a whole.
Depending on our targeted hardware we then generate
binaries using CUDA/ OpenCL or other third party
compilers.

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

The simultaneous launch of kernels that has become a new
feature in heterogeneous computing also helps us exploit
task parallelism. Parallel tasks that are competing for the
same resource pool are scheduled internally using the
longest job first scheduling algorithm. These parallel tasks
are nothing but HAMP kernels that are independent of each
other.

IV. ILLUSTRATION OF CONCEPT WITH AN EXAMPLE

 Consider the following example suppose we want to
find the Number of paths in an undirected graph given its
adjacency matrix. Further we impose a condition that we
only want those paths whose length is a prime less than say
a constant c and our graph is assumed to be a sparse graph.
Writing this program in MPI, CUDA or Open CL code can
be quite tedious but using HAMP our code will look
something like this:

ReadSparseVector(A);

ReadConstant(c) ;

Sync;

K=GererateUniquePrimeLessThan (c);

If(K) // there is a prime number not yet generated

and its value is K

{

B=MatrixPower(A,K); // Exponentiate matrix

S=MartixScanSum(B,K);// If B(I,j) is equal to K

add it to S

Answer=Answer+S ;

}

Else

END

Sync;

In the program flow the developer need only specify the
order of invocation of various tools functions at his disposal
as seen above. Current challenges like scheduling the
threads on the processors, which make the code very
cumbersome can be avoided. Further by abstracting the
implementation we can ensure that a suitable solution for
the problem which extracts maximum data parallelism in
incorporated automatically in the code.

 We notice that here GererateUniquePrimeLessThan(),
Matrix power(), MartixScanSum(B,K) and the updating of
the answer are all independent tasks that are sandwiched
between sync statements. Each of these tasks can be

performed independently and we may need to share the
computational resources. This may alter the hardware
specific optimizations that are present in the intermediate
code which assumes that the entire hardware is at the
disposal of each task. We use the method described in the
previous section in order to allocate resources in an effective
manner and thus come up with a solution that reduces the
combined running times of the jobs listed above.

 In the above example generating prime numbers less
than a certain number provides scope for both pipeline
parallelism and data parallelism. While choosing the next
suitable number can be pipelined efficiently testing the
primarily of a number can exploit both data and pipeline
parallelism. Further synchronization and scheduling which
requires an in-depth understating of parallel programming
are hidden from the developer thus ensuring a low learning
curve.

 Our primary inspiration remains the fact that there are
frequently occurring problems in the computer world and by
documenting theirs solution; we can avoid reinventing the
wheel. Even the reuse of code requires understanding of
ideas behind parallel programming.

 Sparse matrices are encountered very often in scientific
applications today; there remain a variety of methods to go
about sparse matrix multiplication depending on the
distribution of non-zero elements. In our program as we
have defined our input vector as a sparse matrix in line 1,
the matrix power operation in line 5 is aware of the sparse
matrix representation and uses a suitable algorithm to
exploit the nature of the input while carrying out the
exponentiation.

 Further the exponentiation can be carried out in
logarithmic time as opposed to the less effective trivial
linear method. These ideas have already been proved to be
computationally effective and will provide substantial scale-
up in the application.

V. RESULTS

 Optimization techniques are numerous and the same
technique may lead to varying results depending on the
target hardware. General optimization techniques in a GPU
involve modifying mappings, altering access patterns and
modifying algorithms. Sometimes use of alternative
functions may also provide an increase in code efficiency.
We discuss our findings for the example considered in the
previous section and the implication of our results as well.
For generation of prime numbers we used the sieve of
Eratosthenes here we noticed that even a parallel
implementation is not necessarily better. A naive parallel

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

implementation for the GPU in fact is outperformed by its
serialized CPU counterpart. This shows that one needs to
understand parallel algorithms well in order to harness its
powers. The naive GPU version spawns off a thread for
striking out the multiples of each number but this fails to
exploit the parallelism offered by the GPU and is limited by
the number of multiples of 2. We then modify the algorithm
to overcome this implicit bottle neck.

Figure 2. Time taken for Matrix Multiplication (ms)(lower is better)

Table 1. Time taken for Matrix Multiplication (ms)

Power
Matrix

Size
Naϊve

MatMul
Optimized
MatMul

Modified
MatExp

1024 64x64 268 247 8

512 256x256 8589 635 323

128 512x512 17179 11338 1073

Table 2. Time for Sieve (ms)

Problem
Size

CPU Sieve Naive GPU
Sieve

Modified
GPU Sieve

210 11 54 5
225 1240 2240 231
250 66210 97520 4521

 The use of various hardware dependent features like
shared memory, texture memory etc to enhance caching
effects. The use of optimal instructions per threads by use of
methods such as loop unrolling or use of advanced
instructions which modify number of cycles for execution
can help reduce the execution time of the kernel. Choosing
algorithms that best suit your hardware is also critical.
Different algorithms have different levels of parallelism that
can be extracted and different number of computations to
carry out a specified task. We illustrate the above by
implementing modules that help calculate the number of
prime paths in a graph. Suitable implementations of
different modules or building blocks that have been fine
tuned for NVidia Tesla 1060c to carry out the above task
help us illustrate our concept.

 As seen in Table 1 hardware specific optimizations can
reduce the running time by up to 35 percent. Use of an
optimal work group size, exploitation of different levels of
memory hierarchy and spawning an optimal number of
threads specific to the hardware seems to have a positive
effect on the efficiency of the code. The modified MatMul is
an alternate algorithm that greatly reduces the number of
computations needed to evaluate the Nth power of a matrix
and gives a tremendous amount of speedup, almost 30
times, compared the Naïve MatMul available in the CUDA
3.2 Toolkit. The comparison of the running times is
illustrated clearly in figure 2.

 Table 2 illustrates a prime number sieve. We notice that it
is not always necessary that a parallel algorithms out
performs its serial counterpart. A naïve parallel
implementation in fact takes more time than its CPU
counterpart due to the fact that the amount of parallelism
available is very less. But by modifying the access patterns
we were able to a speedup of almost 14 times.

The modified MatExp shows that abstracting the task
further, provides the compiler the opportunity to perform
more optimizations and thus present a far superior solution.
We also notice that even if individual components are
optimized their combination need not be optimum. The task
discussed in the example before when written using HAMP
shows a 21.8 times speedup on a Tesla 1060c as compared
to a naïve implementation. This illustrates the power of
HAMP and strengthens our belief that it is a step forward
in the right direction.

VI. CONCLUSION AND FUTURE WORK

The results clearly indicate the advantages of parallel
programming and the pitfalls it might pose to novice
developers. This further strengthens our belief in HAMP
which abstracts such details from developers and provides
an easy and efficient way to develop good parallel code. We
will continue to add more modular building blocks and fine
tune it for multiple hardware platforms. HAMP is just in its
inception stage, we hope to uncover more features that can
help HAMP bridge the gap between existing technology and
the need of the industry to exploit the same.

 In the future we will be trying to further increase the
scope of HAMP by expanding the modules and the targeted
hardware that it is applicable for. We hope to expand into
other domains and also provide optimized code for
heterogeneous computational units using OpenCL. We will
also need to carry out extensive profiling of existing
components for different hardware configurations before
using then in order to come up with a effective scheduling.
Constant innovation in the front of GPGPU architecture will
always leave us with scope for further improvement.

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

REFERENCES

[1] Amdahl’s Law in the Multicore Era, Mark D. Hill,
University of Wisconsin-Madison, Michael R.
Marty, Google.

[2] From a Few Cores to Many: A Tera-scale
Computing Research Overview by: Jim Held, Jerry
Bautista, Sean Koehl

[3] The Landscape of Parallel Computing Research: A
View from Berkeley: Krste Asanovic, Ras Bodik,
Bryan Christopher Catanzaro, Joseph James Gebis,
Parry Husbands, Kurt Keutzer, David A. Patterson,
William Lester Plishker, John Shalf, Samuel Webb
Williams and Katherine A. Yelick

[4] A Design Pattern Language for Engineering
(Parallel) Software:The key to writing high-quality
parallel software is to develop a robust software
design. By Kurt Keutzer and Tim Mattson, Dr.
Dobb's Journal May 18, 2010

[5] The Free Lunch Is Over :A Fundamental Turn
Toward Concurrency in Software. By Herb Sutter

[6] Understanding Parallel Performance. By Herb
Sutter, October 31, 2008

[7] Analysis of Benefits of various MATLAB
functions for multithreaded processing.
http://www.mathworks.com/support/solutions/en/d
ata/1-4PG4AN/?solution=1-4PG4AN

[8] When to use GPU for Matrix Operations.
http://www.mathworks.com/help/toolbox/distcomp
/bsic3by-1.html.

[9] U. Bondhugula, M. Baskaran, A. Hartono, S.
Krishnamoorthy, J. Ramanujam, A. Rountev, and
P. Sadayappan. Towards effective automatic
parallelization for multicore systems. In Parallel
and Distributed Processing, 2008. IPDPS 2008.
IEEE International Symposium on, pages 1-5,
April 2008.

[10] B. Armstrong and R. Eigenmann. Application of
Automatic Parallelization to Modern Challenges of
Scientific Computing Industries. In ICPP, pages
279– 286,2008.

[11] Programming Multicores: Do Applications
Programmers Need to Write Explicitly Parallel
Programs? Arvind, David I. August, Keshav
Pingali, Derek Chiou, Resit Sendag, and Joshua J.
Yi IEEE Micro, Volume 30, Number 3, May 2010.

[12] M. Baskaran, J. Ramanujam, and P. Sadayappan.
Automatic c-to-cuda code generation for affine
programs. In Proceedings of the International
Conference on Compiler Construction (ETAPS
CC'10), lncs, Cyprus, March 2010. Springer-
Verlag.

[13] H. Vandierendonck, S. Rul, and K. D. Bosschere.
The paralax infrastructure: Automatic
parallelization with a helping hand. In Proc. of
PACT, 2010.

[14] S. Sethumadhavan, N. Arora, R. B. Ganpathi, J.
Demme, and G. Kaiser. COMPASS: Community
Driven Parallelization Advisor for Sequential
Software. In 2nd Intl. Workshop on Multicore
Software Engg., 2009.

[15] LAMPVIEW: A Loop-Aware Toolset for
Facilitating Parallelization,Thomas Rorie Mason,
Master's Thesis, Department of Electrical
Engineering, Princeton University, August 2009.

[16] J. Chung, H. Chafi, C. Cao Minh, A. McDonald, B.
D. Carlstrom, C. Kozyrakis, and K. Olukotun. The
Common Case Transactional Behavior of
Multithreaded Programs. In the Proceedings of the
12th Intl. Conference on High- Performance
Computer Architecture (HPCA), Austin, TX, Feb.
2006.

[17] K. Komatsu, K. Sato, Y. Arai, K. Koyama, H.
Takizawa, and H. Kobayashi, "Evaluating
performance and portability of OpenCL programs,"
in The Fifth International Workshop on Automatic
Performance Tuning (iWAPT2010), 2010.

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

