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Abstract— With the start of the parallel computing era, due to 
power and thermal considerations, there is a growing need to 
bridge the gap between parallel hardware and software. The 
unintuitive nature of parallel programming and the high 
learning curve often prove a bottleneck in the development of 
quality parallel software. We propose HAMP – A Highly 
Abstracted and Modular Programming paradigm for 
expressing parallel programs. We provide the developer with 
high level modular constructs that can use to generate 
hardware specific optimized code. HAMP abstracts programs 
into important kernels and provides scheduling support to 
manage parallelism. By abstracting the scheduling and 
hardware features from the developer, we cannot only, 
considerably reduce the learning curve, but also increase 
software lifetime  

Keywords-  Bottleneck code, highly abstracted, modular 
programming, parallel constructs, customized code  

I.  INTRODUCTION 

Large scale parallelism is a given not only in GPU’s but 
also CPU’s in the near future[1][2][3] and the need of the hour 
is to develop efficient and scalable code that can slow down 
the software aging process. The transition from developing 
serially optimized code to scalable parallel code is not trivial 
and the associated learning curve proves to be a hindrance to 
most potential developers. [5] [6]  

In the past, programming to exploit the architectural 
properties of a parallel machine was limited to a narrow field 
of experts. As the hardware industry shifted towards parallel 
computing, however, a wider field of programmers and 
algorithm developers needed to take advantage of these 
architectural innovations. With the right techniques, 
multicore architectures may be able to continue the 
exponential performance trend, which elevated the 
performance of applications of all types for decades. [7]  
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This paper addresses the gap between parallel hardware 
and parallel software development techniques and aims to 
bridge the same. The current approaches for auto 
parallelization of serial code, including static compile time 
analysis, seems to have hit a rough patch. Moreover the 
overhead associated with speculative parallelism [4], which 
involves monitoring the runtime behaviour of the program, 
leads us to believe that a highly abstracted and modular 
paradigm (HAMP) for parallel programming may hold the 
solution.  

HAMP provides the following features to help bridge this 
gap. High level constructs that can be used to express the 
program. This is done by abstracting the program into 
important kernels and providing scheduling support to 
manage parallelism. HAMP differs from standard libraries as 
HAMP kernels are optimized for the target hardware and 
depending on the hardware where it needs to run, the 
compiler generates code, this ensures enhanced software 
lifetime and portability. HAMP uses extensive profiling of 
its kernels in order to determine optimal allocation of 
resources during simultaneous launch of kernels. 

II. CURRENT CHALLENGES 

Writing parallel code is a huge transition for most 
developers due to the instinctive serialized thought process. 
Due to the high cost involved with developing serial code 
and the large amount of legacy serial code, researchers 
started exploring automatic parallelization to make the 
development of scalable parallel code feasible. An effective 
framework that can help in development of quality parallel 
systems also needs to be addressed even though it only paves 
the path for the way ahead.  

A. Explicit Parallelism 

Automatic parallelization techniques that extract threads 
from single-threaded programs without programmer 
intervention do not suffer from these limitations and seemed 
as an obvious choice at first. Static analysis of the code at 
compile-time, looking for suitable ways to extract 
parallelism, was the initial trend. But the fact that even 
highly parallel applications could not be parallelized, due to 
lack of awareness of parallel programming in the part of the 
developer, led to search for alternative solutions. 
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B. Speculative Parallelism 

Speculative parallelism does not need the code to have 
rigid constraints regarding dependencies as is the case in the 
static analysis. Dependencies that manifest in static analysis 
are speculated upon at runtime to extract as much 
parallelism as possible from them. If the speculation affects 
the correctness of the program suitable rollbacks are made 
to ensure a correct output is given. Speculative parallelism 
provided the solutions to most of the problems but the cost 
of speculation and lack of hardware support to roll back 
made it an expensive option. Software transactional memory 
was needed and the overhead and complication that 
spawned seem to have no elegant solution. Even though 
most of the instruction in a loop could be run in parallel 99 
times out of 100 without altering the output, the 1 case 
where it failed proved to be very expensive and required 
large amount of effort and checks to ensure the output was 
validated [4]. 

C. Semi-Automatic Parallelism 

Often many apparently easily parallelizable programs 
are unable to be parallelized automatically. The 
dependencies that inhibit parallelism are only rarely those 
required for correct program execution, more commonly 
manifesting from artificial constraints imposed by sequential 
execution models. This is because there exist alternative 
ways to express most code and most of the legacy code has 
not been written keeping a parallel architecture in mind. 
There is a simple alternative way of representing the same 
program finding a bypass around the dependencies which 
prevent parallelization in most cases. Semi automatic 
parallelization or tools which help to locate hot loops and 
suggest parallel transforms provide a temporary solution to 
this problem. These tools however still require the developer 
to have adequate knowledge of parallel programming in 
order to achieve scalable parallel programs.  
Continuing exponential growth in transistor density and 
diminishing returns from the increasing transistor count 
have forced processor manufacturers to pack multiple 
processor cores onto a single chip. Multi-core processors 
generally do not improve the performance of single-
threaded applications. There is a need to make parallel 
programming of applications feasible from a software 
engineering perspective. Automatic parallelization that is 
static has limited application while speculative parallelism 
has an associated overhead that makes it unattractive. The 
need to develop scalable parallel programs for applications 
is imminent.  
 

III. PROPOSED SYSTEM 

Large scale parallelism is here to stay and the need of the 
hour is to develop efficient and scalable code. The transition 
from developing serially optimized code to scalable parallel 
code is non trivial and the associated learning curve proves 

to be a hindrance to most potential developers 
[5]

.The 
current approach for auto parallelization of serial code 
seems to have hit a rough patch. The limited scope of static 
analysis and the overhead associated with speculative 

parallelism 
[4] 

leads us to believe that a new approach is 
needed and we propose a highly abstracted and modular 
paradigm (HAMP) for parallel programming that we think 
may hold the solution.  
HAMP takes its inspiration from design patterns. A variety 
of scientific applications today tend to utilise an overlapping 
set of operations. The main idea or inspiration for HAMP is 
that it’s easier to find an implementation for a problem at an 
abstracted level then at the lower level. HAMP provides 
hardware specific implementations for a set of important 
kernels. The same HAMP code morphs itself depending on 
the target hardware we believe that feature is what separate 
HAMP from other high level heterogeneous programming 
languages. While generating the binary files HAMP does so 
based on the target hardware selected on the compiler.  Our 
results show that higher the level of abstraction easier it is 
for the compiler to find implementations that are more 
efficient for a given problem. Also a higher level of 
abstraction reduces the learning curve. We also observed 
that code tuned for one hardware setup does not necessarily 
perform optimally on another hardware setup; therefore 
code generated should be hardware specific. 
  
      We aim to build a highly modular and abstracted system 
which makes extraction of functional parallelism easy.  
Data-parallelism will be implicit by having implementations 
of functions that inherently exploit the same.  
 
      The fact that serial programs that can easily be 
parallelized, can be coded in an obfuscated way that makes 
the detection of this inherent parallelism extremely difficult, 
made us think that if we can provide a framework like 
HAMP that provides the developer with enough to express 
his idea and leaves the best implementation of the idea to 
the compiler we have a solution to our problem. HAMP is 
inspired by the ideas of design patterns and the fact that 
there are a sizeable amount of problems that repeatedly 

show up in the industry 
[4] 

have a finite number of design 
patterns that can be used to represent and solve these 
problems . We believe that if we can map the users idea on 
to a finite number of computational methods that can be 
used to solve most of today’s problems, the task of parallel 
programming becomes much easier. We try to show the 
benefits of the programming model of HAMP by exploring 
its benefits on scientific applications, the modules provided 
by HAMP can be compared to those provided by 
Mathworks- Matlab in the sense various well known 
functions have an efficient implementation that can be used 
in a simple and easy way.    
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      The modular nature of the HAMP language allows us to 
have optimized implementations that can be customized and 
targeted for specific hardware. Parallel programming and 
especially GPGPU computing is facing a lot of resistance 

due to the lack of portability of optimized code
 [17]

.Code that 
has been optimized for a particular hardware configuration 
may not show expected behaviour on other hardware 
configurations. From the perspective of the software 
industry there is a need to make the development process 
more standardized and streamlined while acknowledging the 
diversity of hardware that the application may eventually 
run on. Heterogeneous computing only adds to the 
developers woes in this respect; while the raw 
computational power made available is undeniable a 
feasible method to harness this power still eludes us. Not 
only is “the free lunch over” [5], the road ahead demands 
constant reinvention of the wheel for the multitudes of 
terrain that we might encounter. Even though the Holy 
Grail, “auto-parallelization” seems like the best solution, it 
is important that we acknowledge the paradigm shift in the 
nature of programming from a sequential to a parallel 
model. The non trivial nature of the problem becomes 
evident when we understand the fundamental difference in 
the two programming models. 

 
Figure 1 HAMP Workflow 

            Since each module of HAMP is standardized its 
behavior can undergo intensive profiling. The scalability of 
each module under predefined hardware conditions can be 
obtained and used to find an optimal scheduling as 
described in the following section. 
 
      An optimal scheduling of independent jobs: HAMP 
consists of different predefined modules that can be used to 
express a problem. The modular nature of the language 
makes it easier to identify coarse grain parallelism. Since 
different tasks have different levels of parallelism that can 
be extracted from them the scheduling of these independent 
tasks is of importance from the point of view minimizing 
the overall execution time of an application. 
 
      We define a bottleneck section as a section between two 
explicit global sync statements. We further analyze the 
scheduling of m independent jobs across n processors that 
are available for our bottleneck section. It is evident that the 
rate of completion of a task in the bottleneck section is 
determined by the maximum time taken by any of the m 
independent jobs. 
 
BottleNeck_Tc= maximum (Ji_Tc) for i from 1 to m.  
 
      Where BottleNeck_Tc is the time taken to complete the 
bottleneck section and Ji_Tc is the time taken to complete 
the ith job. HAMP uses a longest job first greedy approach 
for allocation of the n processors across the m jobs. We 
assume large scale parallelism is available, implying the n is 
sufficiently larger than m. To begin with we allocate a 
single processor to each job and then allocate the next 
processor to the job currently taking the maximum time for 
completion. If there are multiple jobs with the same 
completion time the processor is allocated to the job which 
has the maximum reduction in its running time due to the 
addition of the processor. The behavior of the jobs on being 
provided additional processing power is made available by 
extensive profiling that has been carried out beforehand. 
 
      As shown in Figure 1, we specify the target hardware 
which allows us to generate intermediate code targeted for 
the hardware. We use information about the cache, number 
of processors, registry size etc to come up with suitable 
constants that give us values such as unroll factor, work 
group size etc. In the second stage we scan for task 
parallelism and alter these constants based on extensive 
profiling. We aim to get the best perform under the limited 
resources that has been made available to us. After 
necessary processing we come up with new constants which 
improve the performance of the group of tasks as a whole. 
Depending on our targeted hardware we then generate 
binaries using CUDA/ OpenCL or other third party 
compilers. 
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The simultaneous launch of kernels that has become a new 
feature in heterogeneous computing also helps us exploit 
task parallelism. Parallel tasks that are competing for the 
same resource pool are scheduled internally using the 
longest job first scheduling algorithm. These parallel tasks 
are nothing but HAMP kernels that are independent of each 
other.  
 

IV. ILLUSTRATION OF CONCEPT WITH AN EXAMPLE 

      Consider the following example suppose we want to 
find the Number of paths in an undirected graph given its 
adjacency matrix. Further we impose a condition that we 
only want those paths whose length is a prime less than say 
a constant c and our graph is assumed to be a sparse graph. 
Writing this program in MPI, CUDA or Open CL code can 
be quite tedious but using HAMP our code will look 
something like this: 
 

ReadSparseVector(A); 

ReadConstant( c) ; 

Sync; 

K=GererateUniquePrimeLessThan ( c ); 

If(K) // there is a prime number not yet generated 

and its value is K 

{ 

B=MatrixPower(A,K); // Exponentiate matrix 

S=MartixScanSum(B,K);// If B(I,j) is equal to K 

add it to S 

Answer=Answer+S ; 

} 

Else 

END 

Sync; 

 

In the program flow the developer need only specify the 
order of invocation of various tools functions at his disposal 
as seen above. Current challenges like scheduling the 
threads on the processors, which make the code very 
cumbersome can be avoided. Further by abstracting the 
implementation we can ensure that a suitable solution for 
the problem which extracts maximum data parallelism in 
incorporated automatically in the code. 
 
      We notice that here GererateUniquePrimeLessThan(), 
Matrix power(), MartixScanSum(B,K) and the updating of 
the answer are all independent tasks that are sandwiched 
between sync statements. Each of these tasks can be 

performed independently and we may need to share the 
computational resources. This may alter the hardware 
specific optimizations that are present in the intermediate 
code which assumes that the entire hardware is at the 
disposal of each task. We use the method described in the 
previous section in order to allocate resources in an effective 
manner and thus come up with a solution that reduces the 
combined running times of the jobs listed above. 
 
      In the above example generating prime numbers less 
than a certain number provides scope for both pipeline 
parallelism and data parallelism. While choosing the next 
suitable number can be pipelined efficiently testing the 
primarily of a number can exploit both data and pipeline 
parallelism. Further synchronization and scheduling which 
requires an in-depth understating of parallel programming 
are hidden from the developer thus ensuring a low learning 
curve. 
 
     Our primary inspiration remains the fact that there are 
frequently occurring problems in the computer world and by 
documenting theirs solution; we can avoid reinventing the 
wheel. Even the reuse of code requires understanding of 
ideas behind parallel programming. 
 
      Sparse matrices are encountered very often in scientific 
applications today; there remain a variety of methods to go 
about sparse matrix multiplication depending on the 
distribution of non-zero elements. In our program as we 
have defined our input vector as a sparse matrix in line 1, 
the matrix power operation in line 5 is aware of the sparse 
matrix representation and uses a suitable algorithm to 
exploit the nature of the input while carrying out the 
exponentiation. 
 
      Further the exponentiation can be carried out in 
logarithmic time as opposed to the less effective trivial 
linear method. These ideas have already been proved to be 
computationally effective and will provide substantial scale-
up in the application. 
 
 
 

V. RESULTS 

      Optimization techniques are numerous and the same 
technique may lead to varying results depending on the 
target hardware. General optimization techniques in a GPU 
involve modifying mappings, altering access patterns and 
modifying algorithms. Sometimes use of alternative 
functions may also provide an increase in code efficiency. 
We discuss our findings for the example considered in the 
previous section and the implication of our results as well. 
For generation of prime numbers we used the sieve of 
Eratosthenes here we noticed that even a parallel 
implementation is not necessarily better. A naive parallel 
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implementation for the GPU in fact is outperformed by its 
serialized CPU counterpart. This shows that one needs to 
understand parallel algorithms well in order to harness its 
powers. The naive GPU version spawns off a thread for 
striking out the multiples of each number but this fails to 
exploit the parallelism offered by the GPU and is limited by 
the number of multiples of 2. We then modify the algorithm 
to overcome this implicit bottle neck.  
 

 
Figure 2. Time taken for Matrix Multiplication (ms)(lower is better) 

 
Table 1. Time taken for Matrix Multiplication (ms) 

Power 
Matrix 

Size 
Naϊve 

MatMul 
Optimized 
MatMul 

Modified 
MatExp 

1024 64x64 268 247 8 

512 256x256 8589 635 323 

128 512x512 17179 11338 1073 

 
Table 2. Time for Sieve (ms) 

Problem 
Size 

CPU Sieve Naive GPU 
Sieve 

Modified 
GPU Sieve 

210 11 54 5 
225 1240 2240 231 
250 66210 97520 4521 

 
      The use of various hardware dependent features like 
shared memory, texture memory etc to enhance caching 
effects. The use of optimal instructions per threads by use of 
methods such as loop unrolling or use of advanced 
instructions which modify number of cycles for execution 
can help reduce the execution time of the kernel. Choosing 
algorithms that best suit your hardware is also critical. 
Different algorithms have different levels of parallelism that 
can be extracted and different number of computations to 
carry out a specified task. We illustrate the above by 
implementing modules that help calculate the number of 
prime paths in a graph. Suitable implementations of 
different modules or building blocks that have been fine 
tuned for NVidia Tesla 1060c to carry out the above task 
help us illustrate our concept.  
 

      As seen in Table 1 hardware specific optimizations can 
reduce the running time by up to 35 percent. Use of an 
optimal work group size, exploitation of different levels of 
memory hierarchy and spawning an optimal number of 
threads specific to the hardware seems to have a positive 
effect on the efficiency of the code. The modified MatMul is 
an alternate algorithm that greatly reduces the number of 
computations needed to evaluate the Nth power of a matrix 
and gives a tremendous amount of speedup, almost 30 
times, compared the Naïve MatMul available in the CUDA 
3.2 Toolkit. The comparison of the running times is 
illustrated clearly in figure 2.  
    
  Table 2 illustrates a prime number sieve. We notice that it 
is not always necessary that a parallel algorithms out 
performs its serial counterpart. A naïve parallel 
implementation in fact takes more time than its CPU 
counterpart due to the fact that the amount of parallelism 
available is very less. But by modifying the access patterns 
we were able to a speedup of almost 14 times. 
 
The modified MatExp shows that abstracting the task 
further, provides the compiler the opportunity to perform 
more optimizations and thus present a far superior solution. 
We also notice that even if individual components are 
optimized their combination need not be optimum. The task 
discussed in the example before when written using HAMP 
shows a 21.8 times speedup on a Tesla 1060c as compared 
to a naïve implementation. This illustrates the power of 
HAMP   and strengthens our belief that it is a step forward 
in the right direction. 

 

VI. CONCLUSION AND FUTURE WORK 

The results clearly indicate the advantages of parallel 
programming and the pitfalls it might pose to novice 
developers. This further strengthens our belief in HAMP 
which abstracts such details from developers and provides 
an easy and efficient way to develop good parallel code. We 
will continue to add more modular building blocks and fine 
tune it for multiple hardware platforms. HAMP is just in its 
inception stage, we hope to uncover more features that can 
help HAMP bridge the gap between existing technology and 
the need of the industry to exploit the same.  
 
      In the future we will be trying to further increase the 
scope of HAMP by expanding the modules and the targeted 
hardware that it is applicable for. We hope to expand into 
other domains and also provide optimized code for 
heterogeneous computational units using OpenCL. We will 
also need to carry out extensive profiling of existing 
components for different hardware configurations before 
using then in order to come up with a effective scheduling. 
Constant innovation in the front of GPGPU architecture will 
always leave us with scope for further improvement. 
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