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Fast, Parallel Algorithm for Multiplying
Polynomials with Integer Coefficients

Andrzej Chmielowiec

Abstract—This paper aims to develop and analyze an effective The complexity of such a multiplication algorithm is
parallel algorithm for multiplying polynomials and power series
with integer coefficients. Such operations are of fundamen- O((nlogn)(klogk)),
tal importance when generating parameters for public key
cryptosystems, whereas their effective implementation trans- heren is the degree of the polynomial, akds the number
lates directly into the speed of such algorithms in practical ¢ yiis of the largest factor. However, the application of an
applications. The algorithm has been designed specifically to icallv f laorith I',I b b
accelerate the process of generating modular polynomials, but asymptotlca y tast algorithm to muitiply num_ ers becomes
due to its good numerical properties it may surely be used €ffective only when the numbers are of considerable length.
to solve other computational problems as well. The basic idea According to Garcias report [6], fast implementation of
behind this new method was to adapt it to parallel computing. multiplication in GMP (GNU Multiple Precision Arithmetic

Nowadays, it is a very important property, as it allows to fully ) ;h oy hecomes as effective as classic multiplication

exploit the computing power offered by modern processors. . 7 .
The combination of the Chinese Remainder Theorem and the algorithms only for numbers of at least” = 131072 bits.

Fast Fourier Transform made it possible to develop a highly That is why it would be worth to develop a multiplication
effective multiplication method. Under certain conditions, it algorithm, which operates fast for polynomials with

is asymptotically faster than the algorithm based on Fast relatively low coefficients. In order to achieve that, we
Fourier Transform when applied to multiply both: numbers and — gaciged to use the Chinese Remainder Theorem (CRT).
polynorr_nals. Un_doubtedly, this result is the major theoretical It is commonl dt lerate the RSA algorithm b
conclusion of this paper. IS con y used to accelerate the RSA algorithm by
distributing computations. Inspired by this idea we extend
the application of CRT to the case of polynomials with
integer coefficients. In this article we propose a new method
which can be used to implement efficient parallel arithmetic
|. INTRODUCTION for the ring of polynomials with integer coefficients. This

. idea fits into the scheme proposed in the work [7].
In 1971 Schonhage and Strassen [15] proposed a new

algorithm for large integer multiplication. Since that time, 11,4 paper is organized as follows.
methods based on Fast Fourier Transform (FFT) have been
continuously developed and upgraded. Now we have many ofI
multiplication algorithms which are based on the FFT. Th

Index Terms—parallel polynomial multiplication, parallel
power series multiplication, FFT, CRT

n Section Il for completeness we briefly recall the general

d ltioly i 141 13 . 16 Yea of Fast Fourier Transform. FFT may be implemented in
are used to multiply integers ([14], [3]) or power series (| any forms and a choice of proper implementation depends

[10], [11] [3]). Some of them are architecture independe% the problem we want to solve and the processor we are
and some are dedicated to a specific processor. The al o

rithms serve as black boxes which guarantee the asymptotic
complexity of the methods using them. However, practical

implementation often works in the case of such number, In Section Il we show in detail how to use CRT to
plementation . N NUMBEERtribute polynomial arithmetic between many processors.
for which it is ineffective to apply a fast multiplication

o L Our new method is very simple both in concept and
method. Thedetermlnatlonofmodularpolynomlals|sagoqﬂ}plementaﬁon_ It does not need any communication

illustration of this problem. The latest methods forgenerz;\tir][gem/een processors which is an additional advantage. This

classic modular polynomials were developed by Charle . : . .
Lauter [1] and Enge [5]. Moreover, Miller [13] proposedagomhm may use any implementation of FFT. Particularly

. X . it may be used with parallel FFT which reduces the total
another family of modular polynomials which may also b(ta :
. . . Iy ime of computation.
used in the process of counting points on an elliptic curve.
The Miller's polynomials are characterized by a reduced . .
. In Section IV we present numerical results of our
number of non-zero coefficients and lower absolute values

of coefficients, compared to classic modular polynomials. A||r|nplementat|on based on OpenMP parallel programming

the aforesaid authors give the computational complexity §§snedda£)dr; Illl\:/?' (():\(/)errr]Fl):rrgee %rnc:{; 0:2% method with algorithm

algorithms used to determine modular polynomials based on
the assumption that both polynomials and their coefficients

are multiplied with the use of the Fast Fourier Transformb. To summarize, to multiply polynomials developer com-

ines two independent techniques to achieve the best perfor-
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The whole idea is illustrated on the following scheme. Lemma l:Let f(X) = fo 1 X" 1+ + f1X + fo,
9(X) =g 1 X" 1+ 4+ g1X + go be polynomials with
FET integer coefficients such thaf;| < B and|g;| < B. If
Fp [X] = Fp[X] integer M satisfies the following condition
CRT. FIiT CRT ! mB* <M
7 X F, [ X F, | X 7 X
: : : Pr00filff( Jg(X ):h( ) X 4t
F,, [X] FFT, F,, [X] h1X + ho then
It means that multiplications ifZZ[X] can be distributed hX) = (Z fiXi> > gx
between k£ independent ringsF,,[X] and each such = /
multiplication can be done independently in parallel. n-1 i _
= D D figiX'+
i=0 j=0
Il. FAST FOURIER TRANSFORM AND ITS n-ln—1-i )
IMPLEMENTATIONS Z Z fiviGn-1—; X"t
A Fast Fourier Transform (FFT) is an efficient algorithm =t Foi
to compute the Discrete Fourier Transform. The basic idea _ ZXi Zf' o
of DFT is to represent polynomials as sequences of values & - 39i-j
rather than sequences of coefficients. Computing DTk of 1 1
values using the definition takéxn?) arithmetic operations, ZXH_Hi Z Firig ‘
while FFT can compute the same result in oalyn logn) Pt HIn—1=y

operations. This is the reason why Fast Fourier Transform
plays a very important role in efficient computations angased on the assumption thigh| < B and |¢g;| < B we
it is considered in many publications. Some of them givave
a general description of FFT [12], [4], [2], [8] others contain 1) for all i from 0 to n — 1 we have
details about very fast implementations [10], [11], [9], [17].
In our numerical experiments in the last section a classic _
algorithm of FFT has been used. However for practical pur- [hil - = ijgi_j = z_: |fillgi—s]
poses we suggest application of tteche-friendly truncated
FFT recently developed [9]. This new FFT method reduces 9
the computational cost and is optimized against modern < ZB (i+1)B
processor architecture.
2) for alli from 1 ton — 1 we have

IIl. USING CHINESE REMAINDER THEOREM TO

n—1—1¢
DISTRIBUTE COMPUTATIONS BETWEEN MANY [ Z FiriGnoii
n— 3 - K3 n—I1i—
PROCESSORS — ’
In the rest of this paper we will assume that omlyfirst n—1—i
positions of power series are signifi.cant ands a power < Z |fitillgn—1—;
of 2. In other words we will work with power series with =0
precisionn (reduced moduloX ™). We will also assume that n—1—i
the largest absolute value of series coefficients is less than < B* = (n—i)B*.
B. Multiplication of two power series with limited precision §=0

is in fact the same as multiplication of two polynomials
Next we have to find family of finite field&,, in Wh|ch It M > 2nB? then all coefficients (represented like in

computations will be done. To do this produﬁ —1Pi  Defi 1) of
should be large enough to eliminate modular reducti He inition 1) of f(:X), g(:X) and h(X) can be represented

q h ltinlicati 9 residue system modul®/ without reduction. This leads
uring the multiplication process. to the formulaf(X)g(X) mod M = f(X)g(X) and ends
[ |

proof.

It means that/h;| < nB? for all i from 0 to 2n — 2.

Definition 1: Let f(X) = f,1 X" 1+ + fiX + fo €
Z|X] and M € Z . We definef(X) mod M as follows Theorem LiLet f(X) = fu 1 X"\ 4 o+ f1X + fo,
f(X)mod M = (f,—1 mod M)X" ' +...4+(fo mod M), ¢(X)=gn1 X" ' +---+ g X + go be polynomials with
h integer coefficients such that;| < B and|g;| < B. If prime
where numbersp; satisfy the following conditions:

—MA+1 M -1
fimodMgH 2+ J101{ 5 J , (1)pi7epj,k
(2) M = Hi:1pi,
(I (3) 2nB2<Hpi:M’
(4) p; = 2™+ + 1 for some2™t! > 2n andr; € Z,
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then c) inverse Fourier transform of the vector to the
power series with 2n coefficients requiring

F(X)g(X) = f(X)g(X) mod M nlog(n) multiplicationsF,,,.

(f(X) mod M)(g(X) mod M) mod M 3) Application of the Chinese Remainder Theorem to get
and fieldsF,, can be used to parallel multiplication of back final coefficients which requires/?*n multipli-
polynomials andg with FFT method. cations inF,,, . Each solution of the system= a; mod

Proof: Since operationnod M is a natural homomor- pi can be reconstructed usingk? multiplications in
phism of Z then we have F,,. Since we have to reconstrugt coefficients, the
total cost is equal t@yk? - n = cok?n.
(f(X) mod M)(g(X) mod M) mod M = Thus the multiplication algorithm described in Theorem 1
F(X)g(X) mod M consists of
Based on Lemmma 1 we achieve the second equality crk?n + kn(2 + 3log(n)) + c2k*n
F(X)g(X) mod M = f(X)g(X). multiplications inlF,, . |

It means that multiplication of(X), f(X) € Z[X] givesthe  Finally, lets see how the new algorithm compares with
same result as multiplication of(X) mod M, f(X) mod the method using the Fast Fourier Transform for multi-
M € (Z/MZ)[X] if elements of ringZ/MZ are represented plying both: polynomials and coefficients. If we assume
by {—%,...,—1,0,1,...,%}. But M is a product that numbers; are comprised within a single register of
of different primesp; and the Chinese Remainder Theorernthe processor, then the complexity of the algorithm which
implies the following isomorphism: multiplies the polynomial and its coefficients using FFT is

ZIMZ ~TFp, x --- xTFp,. O((nlogn)(klogk)).

It is clear that the above isomorphism can be extended The complexity of our algorithm is equal to
isomorphism of polynomial rings, more precisely we have:
P POy g P y O(knlogn + k*n).

(Z/MZ)[X] = Fpy [X] ¢ - B [X]. If we assume that = O(n), it is clear that the algorithm
It means that multiplications in(Z/MZ)[X] can be based totally on FFT is much faster. Its complexity is
distributed betweerk independent ring&,,[X] and each equal toO(n?log® n), whereas our algorithm works in time
such multiplication can be done independently in parallel(n?). But what happens when the polynomial coefficients
Moreover all prime numberg; = 2" *1r, + 1 were chosen are reduced? Lets assume that= O(logn). Under this
in the way to be well suited for FFT because each figljd assumption, the complexity of the algorithm based totally
contains primitive root of unity of degrez™*!. B on FFT is O(nlog?nloglogn), whereas the asymptotic
complexity of our method isO(nlog”n). Although the
Suppose now that we haveprime numberg; that have difference is not significant, we definitely managed to
the same bit length and satisfy the conditions describedashieve our goal which was to develop an effective
Theorem 1. We have the following theorem: algorithm for multiplying polynomials with coefficients of
an order much lower than the degree.
Theorem 2:1f |log,(p:)] = [log,(p;)| and formal power
series have precision, then the multiplication algorithm  Corollary 1: If & = O(logn), the complexity of the
described in Theorem 1 consists of proposed algorithm is lower than the complexity of the
multiplication algorithm based on FFT only, and equals to

c1k®n + kn(2 + 3log(n)) + cak®n
O(nlog®n),

multiplications inF,,. Wherec;, c; are some constants.
Proof: Since[log,(p;)| = |log,(p,)] for eachi, j, then we Wwhereas the complexity of the FFT-based algorithm is
can assume that the cost of multiplication in evéty is
the same. Single FFT multiplication consists of three basic
steps: |
1) Reduction modulo every chosen prime requirgs’n However, in practice we managed to achieve much more
multiplications inF,,. Each coefficient can be reducedhan this. The numerical experiments showed that the new
modulop; using c; k multiplications inFF,,. We have algorithm brings obvious benefits already in the case of
n coefficients ands small primes. It means that thePolynomial coefficients consisting of several hundred bits.
total cost of this step is equal 9k - n - k = c;k2n. It means that its application is effective already for small
2) We perform the FFT multiplication for ali < Values ofk andn.
{1,..., k}:
a) Fourier transform of two power series with
coefficients requiringn log(n) multiplications in 32-BIT PROCESSORS
Fp,, The implementation of the fast algorithm for multiplying
b) scalar multiplication of two vectors withn co- polynomials has been prepared for 32-bit architecture with
efficients with require@n multiplications inF,,, the use of OpenMP interface. The obtained time results

O(nlog® nloglogn).

IV. RESULTS OF PRACTICAL IMPLEMENTATION FOR
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TABLE Il

turned out exceptionally good. They confirmed that in yy ripLication oF Two POLYNOMIALS OF DEGREER/2 — 1 WITH
practice, the combination of the Fast Fourier Transform with

the Chinese Remainder Theorem considerably accelerates
computations. Tables | and Il present the performance times

COEFFICIENTS LESS THAN2512

of the algorithm for multiplying polynomials of the same 2’0'3’- ]FFFT (g;l'C]FRT é@g'C;T

; F ; 256 512 egree 2 i=1"P; i=1"p;

degree with coefficients ranging frof@, 2°°°) and|[0, 2°2). (I core) | (1core) | (4cores)
nj2 — 1 T T Ts T /T2 | 12/T5
Our implementation is dedicated for x86 processors an@i1 0.1598s | 00511s | 0.0136s 3.1 37
use 32-bit integer arithmetic. The numerical experimentd023 0.3500s | 0.1055s | 0.0280s | 33 338
were done on Intel Core 2 processor (2.4 GHz) and confirmegl2/ 0.7600s | 02203s | 0.0608s | 3.4 3.6
. e . 4095 16420s | 04562s | 0.1210s | 3.6 338
tha_lt_the simultaneous appl_|cat|0n_ of CRT :?md FFT is vefygior 35310s | 09430s | 02507 s | 37 37
efficient. To the end of this section we will assume thaf:16383 75500 s | 1.9412s | 0.5254s 39 37
prag = 21 9 4L e = 20 0y 0y | LSS ARGOO S S | 100 | a0 | s

31 . 32 a . S . S ) S . .
and 2°° < p; < 2°°. We compare our FFT-CRT baseq—=15-r—7>5100 5| 160245 s | 458055 | 43 37
implementation with multiplication algorithm based on FF

over fieldsF,,,, andF,, .. For the sake of completeness

TABLE IlI

of the pre_sented _measurement_s, t_he performar)ce time Of -6pARISON OF CLASSIC POLYNOMIAL MULTIPLICATION WITH
the classic algorithm for multiplying polynomials was proPOSED ALGORITHM FOR TWO POLYNOMIALS OF DEGREE/2 — 1

also given. The comparison of the performance time of

AND COEFFICIENTS LESS THAN2256

the classic algorithm with the multicore implementation

based on the Fourier Transform and the Chinese Remainder | Poly. Classic polynomial FFlg-CRT
Theorem is presented in tables Il and IV. degree multiplication | &;=, Fp,
(1 core) (4 cores)
) ) nj2 —1 T1 T T/ Tz
We use OpenMP standard to implement parqllel version 511 02018 s 000525 | 39
of proposed algorithm. In Tables | and Il fractidf /75 1023 0.8074 s 0.0111 s 73
gives us information about how many of our 4 cores are igg; fézozggzs 8-852? s ;?g
. . . . S . S
on average used by single multiplication. We can see that 8191 553449 S 01012 s | 517
algorithm based on FFT and CRT uses between 80% to 90% 16383 506.6953 S 02161 s 956
computational power. It is very good result for arithmetic 32767 826.7812 s 0.4283s | 1930
algorithm 65535 3350.0744 s 0.9339s | 3587
' 131071 13400.2979 s 1.8019s | 7083
TABLE |

MULTIPLICATION OF TWO POLYNOMIALS OF DEGREEn/2 — 1WITH

COEFFICIENTS LESS THAN2256

Poly. FFT FFT-CRT | FFT-CRT
degree Fpsaa ®zlil Fp, ®zlil Fp,

(1 core) (1 core) (4 cores)
n/2—1 Ty Ty T3 T /To | To/T3
511 0.0423 s | 0.0183 s 0.0052 s 2.3 35
1023 0.0930 s | 0.0383 s 0.0111 s 2.4 3.4
2047 0.2020 s 0.0803 s 0.0259 s 2.5 3.1
4095 0.4360 s 0.1705 s 0.0481 s 2.6 3.5
8191 0.9370 s 0.3575 s 0.1012 s 2.6 3.5
16383 2.0100 s 0.7444 s 0.2161 s 2.7 3.4
32767 4.2700 s 1.5491 s 0.4283 s 2.8 3.6
65535 9.0700 s 3.2168 s 0.9339 s 2.8 3.4
131071 19.1700 s| 6.6716 s 1.8919 s 2.9 3.5

approach there is no need to synchronize the computations
and to ensure communication between individual threads,

V. SUMMARY

We present analysis of a new algorithm for multiplyind®wing to the two essential components of the asymptotic
polynomials and power series. It has been designéighction, it is impossible to determine explicitly whether
so as to exploit fully the computing power offered byhe new solution is better or worse than the method based
modern multicore processors. Thanks to using the Chinexg FFT only. It is due to the fact that if we use the Fast
Remainder Theorem, it is possible to easily allocate taskgurier Transform to multiply both the polynomial and its
between the available threads. Moreover, under the adop@egfficients, the complexity is equal to

I and Il shows how many processors out of the four
ones available were used on average during a single
multiplication. The measurements show that the algorithm
uses from 80% to 90% of the available computing power.
In the case of an arithmetic algorithm, this should be
considered a very good result. Therefore, we may conclude
that the goal which consisted in designing a parallel
algorithm for multiplying polynomials has been achieved.

As far as the theoretical results of the paper are concerned,
the analysis conducted in Section Ill and the Corollary 1
being its essence, are of key importance. If we assume
that the degree of the polynomial is and the accuracy of
its coefficients isk, then the asymptotic complexity of the
proposed algorithm is

O(knlogn + k*n).

O((nlogn)(klogk)).

which is an additional asset. For that reason the algorithifimnerefore, one can see that if = O(n), the proposed
can be easily implemented with the use of a parallalgorithm performs worse than the method based on FFT
programming standard OpenMP. The rafig/T5 in tables only. However, ifk = O(logn), the complexity of the new
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TABLE IV
COMPARISON OF CLASSIC POLYNOMIAL MULTIPLICATION WITH [12] D. E. Knuth, "Art of Computer Programming”, Addison-Wesley
PROPOSED ALGORITHM FOR TWO POLYNOMIALS OF DEGREE/2 — 1 Professiona, 1998. _ o
AND COEEFICIENTS LESS THAN2512 [13] V. Mdller, "Ein Algorithmus zur Bestimmung der Punktzahlen elliptis-
cher Kurven Uber endlichen Korpern der Charakteristik grosser drei”,
Ph.D. Thesis, Universitat des Saarland&995.
Poly. Classic polynomial| FFT-CRT [14] H. J. Nussbaumer, "Fast polynomial transform algorithms for digital
degree multiplication ®?21 Fp, convolution”, IEEE Trans. Acoust. Speech Signal Procegsl. 28 (2)
(1 core) (4 cores) pp. 205-215, 1980.
n/2 —1 Ty T T /T2 [15] A. Schonhage, V. Strassen, "Schnelle Multiplikation grosser Zahlen”,
Computing vol. 7, pp. 281-292, 1971.
i(lés ggigz 88;282 15172 [16] A. S_chbn(_:hage, "Asymptotically fast_ algo_rithms for the n_umerical
5047 12' 3731 5 0-0608 S 503 multiplication and division of polynomials with complex coefficients”,
- : Lecture Notes in Computer Sciena®l. 144, pp. 3-15, 1982.
4095 50.1638 s 0.1210 s 415 [17] D. Takahashi, Y. Kanada, "High-performance radix-2, 3 and 5 parallel
8191 197.9711 s 0.2527 s 783 1-D complex FFT algorithms for distributed-memory parallel comput-
16383 799.9376 s 05254 s | 1522 ers”, Journal of Supercomputing/ol. 15, pp. 207—228, 2000.
32767 3167.5383 s 1.0960 s 2890
65535 12670.1535 s 2.1926 s 5778
131071 50508.8154 s 4.5895 s 11013

algorithm is lower. The computational complexity ratio is
O(loglogn) to the advantage of the method presented in
the paper. This reasoning allows us to conclude that the
algorithm based on CRT and FFT should be used when the
number of coefficients of a polynomial exceeds greatly their
accuracy. This is often the case when computations use long
polynomials or power series with a modular reduction of
coefficients.

The results of numerical tests presented in Section IV
show that the proposed method has numerous practical
applications. In this section the algorithm has been inten-
tionally compared with the implementation using the classic
algorithm for multiplying coefficients in large bodiég,. It
results from the fact that in the case of numheronsisting
of 500 or 1000 bits, multiplication based on the Fourier
Transform is completely ineffective. The measurement re-
sults came as a great surprise, as it turned out (Tables |
and 1) that the proposed algorithm is several times faster
even when its application is not parallel. Furthermore, the
new algorithm compares favorably with the classic algorithm
for multiplying polynomials with complexity equal O (n?)
(Tables Ill and 1V). Therefore, there is no doubt that the pre-
sented algorithm performs exceptionally well when applied
in practice.
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