
Fast, Parallel Algorithm for Multiplying
Polynomials with Integer Coefficients

Andrzej Chmielowiec

Abstract—This paper aims to develop and analyze an effective
parallel algorithm for multiplying polynomials and power series
with integer coefficients. Such operations are of fundamen-
tal importance when generating parameters for public key
cryptosystems, whereas their effective implementation trans-
lates directly into the speed of such algorithms in practical
applications. The algorithm has been designed specifically to
accelerate the process of generating modular polynomials, but
due to its good numerical properties it may surely be used
to solve other computational problems as well. The basic idea
behind this new method was to adapt it to parallel computing.
Nowadays, it is a very important property, as it allows to fully
exploit the computing power offered by modern processors.
The combination of the Chinese Remainder Theorem and the
Fast Fourier Transform made it possible to develop a highly
effective multiplication method. Under certain conditions, it
is asymptotically faster than the algorithm based on Fast
Fourier Transform when applied to multiply both: numbers and
polynomials. Undoubtedly, this result is the major theoretical
conclusion of this paper.

Index Terms—parallel polynomial multiplication, parallel
power series multiplication, FFT, CRT

I. I NTRODUCTION

In 1971 Schönhage and Strassen [15] proposed a new
algorithm for large integer multiplication. Since that time,
methods based on Fast Fourier Transform (FFT) have been
continuously developed and upgraded. Now we have many of
multiplication algorithms which are based on the FFT. They
are used to multiply integers ([14], [3]) or power series ([16],
[10], [11] [9]). Some of them are architecture independent
and some are dedicated to a specific processor. The algo-
rithms serve as black boxes which guarantee the asymptotic
complexity of the methods using them. However, practical
implementation often works in the case of such numbers
for which it is ineffective to apply a fast multiplication
method. The determination of modular polynomials is a good
illustration of this problem. The latest methods for generating
classic modular polynomials were developed by Charles,
Lauter [1] and Enge [5]. Moreover, Müller [13] proposed
another family of modular polynomials which may also be
used in the process of counting points on an elliptic curve.
The Müller’s polynomials are characterized by a reduced
number of non-zero coefficients and lower absolute values
of coefficients, compared to classic modular polynomials. All
the aforesaid authors give the computational complexity of
algorithms used to determine modular polynomials based on
the assumption that both polynomials and their coefficients
are multiplied with the use of the Fast Fourier Transform.

Manuscript received March 18, 2012. This paper has been supported by
Polish National Science Centre grant N N516478340.

Andrzej Chmielowiec, Institute of Fundamental Technological Research,
Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warszawa, Poland,
e-mail: achmielo@ippt.gov.pl, andrzej.chmielowiec@cmmsigma.eu.

The complexity of such a multiplication algorithm is

O((n log n)(k log k)),

wheren is the degree of the polynomial, andk is the number
of bits of the largest factor. However, the application of an
asymptotically fast algorithm to multiply numbers becomes
effective only when the numbers are of considerable length.
According to Garcias report [6], fast implementation of
multiplication in GMP (GNU Multiple Precision Arithmetic
Library) becomes as effective as classic multiplication
algorithms only for numbers of at least217 = 131072 bits.
That is why it would be worth to develop a multiplication
algorithm, which operates fast for polynomials with
relatively low coefficients. In order to achieve that, we
decided to use the Chinese Remainder Theorem (CRT).
It is commonly used to accelerate the RSA algorithm by
distributing computations. Inspired by this idea we extend
the application of CRT to the case of polynomials with
integer coefficients. In this article we propose a new method
which can be used to implement efficient parallel arithmetic
for the ring of polynomials with integer coefficients. This
idea fits into the scheme proposed in the work [7].

The paper is organized as follows.

In Section II for completeness we briefly recall the general
idea of Fast Fourier Transform. FFT may be implemented in
many forms and a choice of proper implementation depends
on the problem we want to solve and the processor we are
using.

In Section III we show in detail how to use CRT to
distribute polynomial arithmetic between many processors.
Our new method is very simple both in concept and
implementation. It does not need any communication
between processors which is an additional advantage. This
algorithm may use any implementation of FFT. Particularly
it may be used with parallel FFT which reduces the total
time of computation.

In Section IV we present numerical results of our
implementation based on OpenMP parallel programming
standard. We compare proposed method with algorithm
based on FFT over large finite field.

To summarize, to multiply polynomials developer com-
bines two independent techniques to achieve the best perfor-
mance from a machine or processor:

1) distribute computations between smaller domains be-
ing polynomial rings (apply CRT),

2) optimize FFT operations within these smaller domains.

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

The whole idea is illustrated on the following scheme.

Fp1
[X]

FFT
−−→ Fp1

[X]
...

...
...

Z[X]
CRT
−−→ Fpi

[X]
FFT
−−→ Fpi

[X]
CRT−1

−−−−→ Z[X]
...

...
...

Fpk
[X]

FFT
−−→ Fpk

[X]

It means that multiplications inZ[X] can be distributed
between k independent ringsFpi

[X] and each such
multiplication can be done independently in parallel.

II. FAST FOURIER TRANSFORM AND ITS

IMPLEMENTATIONS

A Fast Fourier Transform (FFT) is an efficient algorithm
to compute the Discrete Fourier Transform. The basic idea
of DFT is to represent polynomials as sequences of values
rather than sequences of coefficients. Computing DTF ofn
values using the definition takesO(n2) arithmetic operations,
while FFT can compute the same result in onlyO(n logn)
operations. This is the reason why Fast Fourier Transform
plays a very important role in efficient computations and
it is considered in many publications. Some of them give
a general description of FFT [12], [4], [2], [8] others contain
details about very fast implementations [10], [11], [9], [17].
In our numerical experiments in the last section a classic
algorithm of FFT has been used. However for practical pur-
poses we suggest application of thecache-friendly truncated
FFT recently developed [9]. This new FFT method reduces
the computational cost and is optimized against modern
processor architecture.

III. U SING CHINESE REMAINDER THEOREM TO

DISTRIBUTE COMPUTATIONS BETWEEN MANY

PROCESSORS

In the rest of this paper we will assume that onlyn first
positions of power series are significant andn is a power
of 2. In other words we will work with power series with
precisionn (reduced moduloXn). We will also assume that
the largest absolute value of series coefficients is less than
B. Multiplication of two power series with limited precision
is in fact the same as multiplication of two polynomials.
Next we have to find family of finite fieldsFpi

in which
computations will be done. To do this product

∏k

i=1
pi

should be large enough to eliminate modular reduction
during the multiplication process.

Definition 1: Let f(X) = fn−1X
n−1+ · · ·+ f1X+ f0 ∈

Z[X] andM ∈ Z . We definef(X) mod M as follows

f(X) mod M = (fn−1 mod M)Xn−1+· · ·+(f0 mod M),

where

fi mod M ∈

{⌊

−M + 1

2

⌋

, . . . ,−1, 0, 1, . . . ,

⌊

M − 1

2

⌋}

.

�

Lemma 1:Let f(X) = fn−1X
n−1 + · · · + f1X + f0,

g(X) = gn−1X
n−1 + · · · + g1X + g0 be polynomials with

integer coefficients such that|fi| < B and |gi| < B. If
integerM satisfies the following condition

2nB2 < M

thenf(X)g(X) mod M = f(X)g(X).
Proof: If f(X)g(X) = h(X) = h2n−2X

2n−2 + · · · +
h1X + h0 then

h(X) =

(

n−1
∑

i=0

fiX
i

)

n−1
∑

j=0

gjX
j

=

n−1
∑

i=0

i
∑

j=0

fjgi−jX
i +

n−1
∑

i=1

n−1−i
∑

j=0

fi+jgn−1−jX
n−1+i

=

n−1
∑

i=0

X i

i
∑

j=0

fjgi−j +

n−1
∑

i=1

Xn−1+i

n−1−i
∑

j=0

fi+jgn−1−j

Based on the assumption that|fi| < B and |gi| < B we
have

1) for all i from 0 to n− 1 we have

|hi| =

∣

∣

∣

∣

∣

∣

i
∑

j=0

fjgi−j

∣

∣

∣

∣

∣

∣

≤

i
∑

j=0

|fj ||gi−j |

<

i
∑

j=0

B2 = (i+ 1)B2,

2) for all i from 1 to n− 1 we have

|hn−1+i| =

∣

∣

∣

∣

∣

∣

n−1−i
∑

j=0

fi+jgn−1−j

∣

∣

∣

∣

∣

∣

≤

n−1−i
∑

j=0

|fi+j ||gn−1−j |

<

n−1−i
∑

j=0

B2 = (n− i)B2.

It means that|hi| < nB2 for all i from 0 to 2n − 2.
If M > 2nB2 then all coefficients (represented like in
Definition 1) of f(X), g(X) and h(X) can be represented
in residue system moduloM without reduction. This leads
to the formulaf(X)g(X) mod M = f(X)g(X) and ends
proof. �

Theorem 1:Let f(X) = fn−1X
n−1 + · · · + f1X + f0,

g(X) = gn−1X
n−1 + · · · + g1X + g0 be polynomials with

integer coefficients such that|fi| < B and|gi| < B. If prime
numberspi satisfy the following conditions:

(1) pi 6= pj ,
(2) M =

∏k

i=1
pi,

(3) 2nB2 <
∏

pi = M,
(4) pi = 2m+1ri + 1 for some2m+1 ≥ 2n andri ∈ Z,

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

then

f(X)g(X) = f(X)g(X) mod M

= (f(X) mod M)(g(X) mod M) mod M

and fieldsFpi
can be used to parallel multiplication of

polynomialsf andg with FFT method.
Proof: Since operationmod M is a natural homomor-

phism ofZ then we have

(f(X) mod M)(g(X) mod M) mod M =

f(X)g(X) mod M

Based on Lemmma 1 we achieve the second equality

f(X)g(X) mod M = f(X)g(X).

It means that multiplication ofg(X), f(X) ∈ Z[X] gives the
same result as multiplication ofg(X) mod M, f(X) mod
M ∈ (Z/MZ)[X] if elements of ringZ/MZ are represented
by {−M−1

2
, . . . ,−1, 0, 1, . . . , M−1

2
}. But M is a product

of different primespi and the Chinese Remainder Theorem
implies the following isomorphism:

Z/MZ ≃ Fp1
× · · · × Fpk

.

It is clear that the above isomorphism can be extended to
isomorphism of polynomial rings, more precisely we have:

(Z/MZ)[X] ≃ Fp1
[X]× · · · × Fpk

[X].

It means that multiplications in(Z/MZ)[X] can be
distributed betweenk independent ringsFpi

[X] and each
such multiplication can be done independently in parallel.
Moreover all prime numberspi = 2m+1ri + 1 were chosen
in the way to be well suited for FFT because each fieldFpi

contains primitive root of unity of degree2m+1. �

Suppose now that we havek prime numberspi that have
the same bit length and satisfy the conditions described in
Theorem 1. We have the following theorem:

Theorem 2:If ⌊log2(pi)⌋ = ⌊log2(pj)⌋ and formal power
series have precisionn, then the multiplication algorithm
described in Theorem 1 consists of

c1k
2n+ kn(2 + 3 log(n)) + c2k

2n

multiplications inFpi
. Wherec1, c2 are some constants.

Proof: Since⌊log2(pi)⌋ = ⌊log2(pj)⌋ for eachi, j, then we
can assume that the cost of multiplication in everyFpi

is
the same. Single FFT multiplication consists of three basic
steps:

1) Reduction modulo every chosen prime requiresc1k
2n

multiplications inFpi
. Each coefficient can be reduced

modulopi using c1k multiplications inFpi
. We have

n coefficients andk small primes. It means that the
total cost of this step is equal toc1k · n · k = c1k

2n.
2) We perform the FFT multiplication for alli ∈

{1, . . . , k}:

a) Fourier transform of two power series withn
coefficients requiring2n log(n) multiplications in
Fpi

,
b) scalar multiplication of two vectors with2n co-

efficients with requires2n multiplications inFpi
,

c) inverse Fourier transform of the vector to the
power series with 2n coefficients requiring
n log(n) multiplicationsFpi

.
3) Application of the Chinese Remainder Theorem to get

back final coefficients which requiresc2k2n multipli-
cations inFpi

. Each solution of the systemx ≡ ai mod
pi can be reconstructed usingc2k2 multiplications in
Fpi

. Since we have to reconstructn coefficients, the
total cost is equal toc2k2 · n = c2k

2n.

Thus the multiplication algorithm described in Theorem 1
consists of

c1k
2n+ kn(2 + 3 log(n)) + c2k

2n

multiplications inFpi
. �

Finally, lets see how the new algorithm compares with
the method using the Fast Fourier Transform for multi-
plying both: polynomials and coefficients. If we assume
that numberspi are comprised within a single register of
the processor, then the complexity of the algorithm which
multiplies the polynomial and its coefficients using FFT is

O((n log n)(k log k)).

The complexity of our algorithm is equal to

O(kn log n+ k2n).

If we assume thatk = O(n), it is clear that the algorithm
based totally on FFT is much faster. Its complexity is
equal toO(n2 log2 n), whereas our algorithm works in time
O(n3). But what happens when the polynomial coefficients
are reduced? Lets assume thatk = O(log n). Under this
assumption, the complexity of the algorithm based totally
on FFT is O(n log2 n log logn), whereas the asymptotic
complexity of our method isO(n log2 n). Although the
difference is not significant, we definitely managed to
achieve our goal which was to develop an effective
algorithm for multiplying polynomials with coefficients of
an order much lower than the degree.

Corollary 1: If k = O(log n), the complexity of the
proposed algorithm is lower than the complexity of the
multiplication algorithm based on FFT only, and equals to

O(n log2 n),

whereas the complexity of the FFT-based algorithm is

O(n log2 n log logn).

�

However, in practice we managed to achieve much more
than this. The numerical experiments showed that the new
algorithm brings obvious benefits already in the case of
polynomial coefficients consisting of several hundred bits.
It means that its application is effective already for small
values ofk andn.

IV. RESULTS OF PRACTICAL IMPLEMENTATION FOR

32-BIT PROCESSORS

The implementation of the fast algorithm for multiplying
polynomials has been prepared for 32-bit architecture with
the use of OpenMP interface. The obtained time results

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

turned out exceptionally good. They confirmed that in
practice, the combination of the Fast Fourier Transform with
the Chinese Remainder Theorem considerably accelerates
computations. Tables I and II present the performance times
of the algorithm for multiplying polynomials of the same
degree with coefficients ranging from[0, 2256) and[0, 2512).

Our implementation is dedicated for x86 processors and
use 32-bit integer arithmetic. The numerical experiments
were done on Intel Core 2 processor (2.4 GHz) and confirmed
that the simultaneous application of CRT and FFT is very
efficient. To the end of this section we will assume that:
p544 = 2544 − 232 + 1, p1088 = 21088 − 2416 + 2256 + 1
and 231 < pi < 232. We compare our FFT-CRT based
implementation with multiplication algorithm based on FFT
over fieldsFp544

andFp1088
. For the sake of completeness

of the presented measurements, the performance time of
the classic algorithm for multiplying polynomials was
also given. The comparison of the performance time of
the classic algorithm with the multicore implementation
based on the Fourier Transform and the Chinese Remainder
Theorem is presented in tables III and IV.

We use OpenMP standard to implement parallel version
of proposed algorithm. In Tables I and II fractionT2/T3

gives us information about how many of our 4 cores are
on average used by single multiplication. We can see that
algorithm based on FFT and CRT uses between 80% to 90%
computational power. It is very good result for arithmetic
algorithm.

TABLE I
MULTIPLICATION OF TWO POLYNOMIALS OF DEGREEn/2− 1 WITH

COEFFICIENTS LESS THAN2256

Poly. FFT FFT-CRT FFT-CRT
degree Fp544

⊗
18

i=1
Fpi

⊗
18

i=1
Fpi

(1 core) (1 core) (4 cores)
n/2− 1 T1 T2 T3 T1/T2 T2/T3

511 0.0423 s 0.0183 s 0.0052 s 2.3 3.5
1023 0.0930 s 0.0383 s 0.0111 s 2.4 3.4
2047 0.2020 s 0.0803 s 0.0259 s 2.5 3.1
4095 0.4360 s 0.1705 s 0.0481 s 2.6 3.5
8191 0.9370 s 0.3575 s 0.1012 s 2.6 3.5
16383 2.0100 s 0.7444 s 0.2161 s 2.7 3.4
32767 4.2700 s 1.5491 s 0.4283 s 2.8 3.6
65535 9.0700 s 3.2168 s 0.9339 s 2.8 3.4
131071 19.1700 s 6.6716 s 1.8919 s 2.9 3.5

V. SUMMARY

We present analysis of a new algorithm for multiplying
polynomials and power series. It has been designed
so as to exploit fully the computing power offered by
modern multicore processors. Thanks to using the Chinese
Remainder Theorem, it is possible to easily allocate tasks
between the available threads. Moreover, under the adopted
approach there is no need to synchronize the computations
and to ensure communication between individual threads,
which is an additional asset. For that reason the algorithm
can be easily implemented with the use of a parallel
programming standard OpenMP. The ratioT2/T3 in tables

TABLE II
MULTIPLICATION OF TWO POLYNOMIALS OF DEGREEn/2− 1 WITH

COEFFICIENTS LESS THAN2512

Poly. FFT FFT-CRT FFT-CRT
degree Fp1088

⊗
36

i=1
Fpi

⊗
36

i=1
Fpi

(1 core) (1 core) (4 cores)
n/2− 1 T1 T2 T3 T1/T2 T2/T3

511 0.1598 s 0.0511 s 0.0136 s 3.1 3.7
1023 0.3500 s 0.1055 s 0.0280 s 3.3 3.8
2047 0.7600 s 0.2203 s 0.0608 s 3.4 3.6
4095 1.6420 s 0.4562 s 0.1210 s 3.6 3.8
8191 3.5310 s 0.9430 s 0.2527 s 3.7 3.7
16383 7.5500 s 1.9412 s 0.5254 s 3.9 3.7
32767 16.0900 s 3.9944 s 1.0960 s 4.0 3.6
65535 34.1300 s 8.2184 s 2.1926 s 4.1 3.7
131071 72.2100 s 16.9245 s 4.5895 s 4.3 3.7

TABLE III
COMPARISON OF CLASSIC POLYNOMIAL MULTIPLICATION WITH

PROPOSED ALGORITHM FOR TWO POLYNOMIALS OF DEGREEn/2− 1

AND COEFFICIENTS LESS THAN2256

Poly. Classic polynomial FFT-CRT
degree multiplication

⊗
18

i=1
Fpi

(1 core) (4 cores)
n/2− 1 T1 T2 T1/T2

511 0.2018 s 0.0052 s 39
1023 0.8074 s 0.0111 s 73
2047 3.2296 s 0.0259 s 125
4095 13.0862 s 0.0481 s 272
8191 52.3449 s 0.1012 s 517
16383 206.6953 s 0.2161 s 956
32767 826.7812 s 0.4283 s 1930
65535 3350.0744 s 0.9339 s 3587
131071 13400.2979 s 1.8919 s 7083

I and II shows how many processors out of the four
ones available were used on average during a single
multiplication. The measurements show that the algorithm
uses from 80% to 90% of the available computing power.
In the case of an arithmetic algorithm, this should be
considered a very good result. Therefore, we may conclude
that the goal which consisted in designing a parallel
algorithm for multiplying polynomials has been achieved.

As far as the theoretical results of the paper are concerned,
the analysis conducted in Section III and the Corollary 1
being its essence, are of key importance. If we assume
that the degree of the polynomial isn and the accuracy of
its coefficients isk, then the asymptotic complexity of the
proposed algorithm is

O(kn log n+ k2n).

Owing to the two essential components of the asymptotic
function, it is impossible to determine explicitly whether
the new solution is better or worse than the method based
on FFT only. It is due to the fact that if we use the Fast
Fourier Transform to multiply both the polynomial and its
coefficients, the complexity is equal to

O((n log n)(k log k)).

Therefore, one can see that ifk = O(n), the proposed
algorithm performs worse than the method based on FFT
only. However, ifk = O(log n), the complexity of the new

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

TABLE IV
COMPARISON OF CLASSIC POLYNOMIAL MULTIPLICATION WITH

PROPOSED ALGORITHM FOR TWO POLYNOMIALS OF DEGREEn/2− 1

AND COEFFICIENTS LESS THAN2512

Poly. Classic polynomial FFT-CRT
degree multiplication

⊗
36

i=1
Fpi

(1 core) (4 cores)
n/2− 1 T1 T2 T1/T2

511 0.7759 s 0.0136 s 57
1023 3.1247 s 0.0280 s 112
2047 12.3731 s 0.0608 s 203
4095 50.1638 s 0.1210 s 415
8191 197.9711 s 0.2527 s 783
16383 799.9376 s 0.5254 s 1522
32767 3167.5383 s 1.0960 s 2890
65535 12670.1535 s 2.1926 s 5778
131071 50508.8154 s 4.5895 s 11013

algorithm is lower. The computational complexity ratio is
O(log logn) to the advantage of the method presented in
the paper. This reasoning allows us to conclude that the
algorithm based on CRT and FFT should be used when the
number of coefficients of a polynomial exceeds greatly their
accuracy. This is often the case when computations use long
polynomials or power series with a modular reduction of
coefficients.

The results of numerical tests presented in Section IV
show that the proposed method has numerous practical
applications. In this section the algorithm has been inten-
tionally compared with the implementation using the classic
algorithm for multiplying coefficients in large bodiesFp. It
results from the fact that in the case of numbersp consisting
of 500 or 1000 bits, multiplication based on the Fourier
Transform is completely ineffective. The measurement re-
sults came as a great surprise, as it turned out (Tables I
and II) that the proposed algorithm is several times faster
even when its application is not parallel. Furthermore, the
new algorithm compares favorably with the classic algorithm
for multiplying polynomials with complexity equal toO(n2)
(Tables III and IV). Therefore, there is no doubt that the pre-
sented algorithm performs exceptionally well when applied
in practice.

REFERENCES

[1] D. Charles, K. Lauter, ”Computing modular polynomials”,Journal of
Computational Mathematics, pp. 195–204, 2005.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, ”Introduction
to Algorithms”, MIT Press, 2003.

[3] R. Crandall, B. Fagin, ”Discrete weighted transforms and large integer
arithmetic”, Mathematics of Computation, vol. 62, pp. 305–324, 1994.

[4] R. Crandall, C. Pomerance, ”Prime Numbers – a computational
perspective”, Springer-Verlag, 2001.

[5] A. Enge, ”Computing modular polynomials in quasi-linear time”,
Math. Comp., vol. 78, pp. 1809–1824, 2009.

[6] L. Garcia, ”Can Schönhage multiplication speed up the RSA encryp-
tion or decryption?”,University of Technology, Darmstadt, 2005.

[7] S. Gorlatch, ”Programming with divide-and-conquer skeletons: A case
study of FFT”,Journal of Supercomputing, vol. 12, pp. 85–97, 1998.

[8] A. Grama, A. Gupta, G. Karypis, V. Kumar, ”Introduction to Parallel
Computing”, Addison Wesley, 2003.

[9] D. Harvey, ”A cache-friendly truncated FFT”,Theoretical Computer
Science, vol. 410, pp. 2649–2658, 2009.

[10] J. van der Hoeven, ”The truncated Fourier transform and applications”,
in: ISSAC 2004, ACM, pp. 290–296, 2004.

[11] J. van der Hoeven, ”Notes on the truncated Fourier transform”, unpub-
lished, retrieved from http://www.math.u-psud.fr/˜vdhoeven/, 2005.

[12] D. E. Knuth, ”Art of Computer Programming”, Addison-Wesley
Professiona, 1998.

[13] V. Müller, ”Ein Algorithmus zur Bestimmung der Punktzahlen elliptis-
cher Kurven über endlichen Körpern der Charakteristik grösser drei”,
Ph.D. Thesis, Universität des Saarlandes, 1995.

[14] H. J. Nussbaumer, ”Fast polynomial transform algorithms for digital
convolution”, IEEE Trans. Acoust. Speech Signal Process., vol. 28 (2)
pp. 205–215, 1980.

[15] A. Schönhage, V. Strassen, ”Schnelle Multiplikation grosser Zahlen”,
Computing, vol. 7, pp. 281–292, 1971.

[16] A. Schönchage, ”Asymptotically fast algorithms for the numerical
multiplication and division of polynomials with complex coefficients”,
Lecture Notes in Computer Science, vol. 144, pp. 3–15, 1982.

[17] D. Takahashi, Y. Kanada, ”High-performance radix-2, 3 and 5 parallel
1-D complex FFT algorithms for distributed-memory parallel comput-
ers”, Journal of Supercomputing, vol. 15, pp. 207–228, 2000.

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

