
 

 
Abstract—This paper proposes a new two-scan algorithm for 

labeling connected components in binary images. In the first 
scan of our algorithm, all conventional two-scan labeling 
algorithms process image lines one by one and process pixels 
one by one. In comparison, we process image lines two by two 
and process image pixels two by two. By our algorithm, the 
average times for checking the neighbor pixels for processing a 
foreground pixel will decrease, which leads to an efficient 
labeling processing. Experimental results on various types of 
images demonstrated that our method is more efficient than 
conventional label-equivalence-based labeling algorithms. 

 
Index Terms— connected component, labeling, pattern 

recognition, fast algorithm, computer vision 

I. INTRODUCTION 

BELING of connected components in a binary image is 
one of the most fundamental operations in pattern 

analysis, pattern recognition, computer (robot) vision, and 
machine intelligence [1,2]. Especially in real-time 
applications such as traffic-jam detection, automated 
surveillance, and target tracking, faster labeling algorithms 
are always desirable.  

Many algorithms have been proposed for addressing this 
issue, because the improvement of the efficiency of labeling 
is critical in many applications. For ordinary computer 
architectures and 2D images, there are mainly two types of 
labeling algorithms:  
(1) Raster-scan algorithms. These algorithms process an 

image in the raster-scan way. There are multi-scan 
algorithms [3], [4] the four-scan algorithm [5], 
two-scan algorithms [6-14], and the one-and-a-half 
algorithm [15].  

(2) Label propagation algorithms. These algorithms access 
an image in an irregular way. There are run-based 
algorithms [2], [16] and contour-tracing algorithms 
[17], [18].  

 According to experimental results on various types of 
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images, the algorithm proposed in [13], which is an 
improvement on the two-scan algorithm proposed in [12], is 
the most efficient one, and has been used for various 
applications [19]-[21]. For convenience, we denote this 
algorithm as HCS algorithm.  

The HCS algorithm is a two-scan labeling algorithm. 
Similar to other two-scan labeling algorithms, it completes 
labeling in two scans by three processes: (1) provisional label 
assignment (i.e., assigning a provisional label to each 
foreground pixel) and equivalent-label finding (i.e., finding 
the provisional labels assigned to the same connected 
components); (2) equivalent label record (i.e., using some 
data structures to record equivalent labels) and 
label-equivalence resolving (i.e., finding a representative 
label for all equivalent provisional labels); (3) label  
replacement (i.e.,  replacing  each provisional label by its 
representative label). 

The HCS algorithm uses equivalent label sets and a 
representative label table to record equivalent labels and 
resolve the label equivalences. Usually, the smallest label in 
an equivalent label set is used to the representative label of 
the set and all labels in the set. For convenience, an 
equivalent label set with the representative label u is denoted 
as S(u), and the representative label of a provisional label s is 
t, denoted as T [s] = t.  

In the first scan, this algorithm uses the mask shown in 
Fig. 1 (a), which consists of three scanned neighbor of the 
current foreground pixels, to assign provisional labels to 
foreground pixels, and to record and resolve label 
equivalences. At any moment, all equivalent provisional 
labels are combined in an equivalent label set with the same 
representative label. 

For the case where the current foreground pixel follows a 
background pixel (Fig. 1 (b)), if there is no label (foreground 
pixel) in the mask, it means that the current foreground pixel 
does not connect with any scanned foreground pixel, and the 
current foreground pixel belongs to a new connected 
component in the scanned area. The algorithm assigns a new 
provisional label m to the current foreground pixel, which is 
initialized to 1, and establishes the equivalent label set 
S(m)={m}; it sets the representative label table as T [m] = m, 
and m = m+1 for later processing. Otherwise, i.e., if there are 
foreground pixels in the mask, all of such foreground pixels 
and the current foreground pixel belong to the same 
connected component. Therefore the current foreground 
pixel can be assigned any of the labels in the mask. On the 
other hand, for the case where the current foreground pixel 
follows another foreground pixel (Fig. 1 (c)), the current 
foreground pixel can be assigned the same label of that 
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foreground pixel.  

 
 

Fig. 1. Mask for the eight-connected connectivity. 

 
In any cases, if there are provisional labels belonging to 

different equivalent label sets in the mask, all provisional 
labels in those sets are equivalent labels, and they will be 
combined together. Suppose that u and v are equivalent labels 
that belong to S(T[u]) and S(T[v]), respectively. If T[u]=T[v], 
the two equivalent label sets are the same, thus, nothing needs 
to be done. Otherwise, without loss of generality, suppose 
that T[u]<T[v], i.e., T[u] is the smallest label in the two 
equivalent label sets, then the combination of the two  
equivalent label sets can be completed by the following 
operations:  

 
S(T[u])=S(T[u])S(T[v]);  
(sS(T[v]))(T[s]=T[u]).  
 

    In this way, at any processing point in the first scan, all 
equivalent provisional labels found so far are combined in an 
equivalent label set with the same representative label.  

As soon as the first scan is finished, all equivalent labels of 
each connected component will have been combined in an 
equivalent label set with a unique representative label. In the 
second scan, by replacement of each provisional label with its 
representative label, all foreground pixels of each connected 
component will be assigned a unique label. 

All conventional two-scan algorithms process image lines 
one by one. For each foreground pixel, they assign it a 
provisional label and resolve the connectivity of the pixel and 
its processed neighbor foreground pixels. To do that, they 
must check the neighbor pixels of the pixel. It is obvious that 
the smaller the average number of the checking times for 
processing a foreground pixel is, the more efficient an 
algorithm is. However, there are many repeated checking by 
conventional algorithms. For example, to process the 
foreground pixel b(x, y) shown in Fig. 2, the HCS algorithm 

will only resolve the connectivity with its processed 
foreground neighbor pixels b(x-1, y-1) and b(x+1, y-1) in the 
lower line of the scan line in the image. The connectivity with 
its unprocessed foreground neighbor pixels b(x-1, y+1) and 
b(x, y+1) in the upper line of the scan line will be resolved 
when processing the next line, where the pixel b(x, y) will be 
checked again. Such repeatedly checking work can be 
avoided if, when we process a foreground pixel, we also 
resolve the connectivity with its unprocessed foreground 
neighbor pixels.  

This paper proposes a new labeling algorithm by 
processing image lines two by two and processes image 
pixels tow by two. By our algorithm, the repeatedly checking 
work mentioned above can be avoided; thus, the average 
number of checking neighbor pixels for processing a 
foreground pixel by our algorithm is smaller than that by 
conventional two-scan labeling algorithms. Experimental 
results demonstrated that our method is more efficient than 
conventional label-equivalence-based labeling algorithms. 

 
 

 
 

Fig. 2. A simple example for explaining repeatedly checking problem with 
the HCS algorithm.  

 

The rest of this paper is organized as follows:  We 
introduce our algorithm in the next section and show 
experimental results in section 3. We give our concluding 
remarks in section 4.  

II. THE PROPOSED ALGORITHM  

For an N×M binary image, we use b(x, y) to denote the 
pixel at (x, y) in the image, where 1≤x≤ N, 1≤y≤M. We also 
use b(x, y) to denote its value. For convenience, we suppose 
that the value of foreground pixels is 1 and that of 
background pixels is 0. All pixels in the edge of an image are 
considered to be background pixels.  

  Our proposed algorithm processes image lines two by 
two and processes pixels two by two, as shown in Fig. 3. For 
convenience, we call the pixel b(x, y) the current pixel 1, and 
the pixel b(x, y+1) the current pixel 2, respectively.  

Similar to the HCS algorithm, we process pixels 
following a foreground pixel and those following a 
background pixel in different ways. 
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Fig. 3. Processing method in our algorithm.  

 
As shown in Fig. 4, there are four configures for the two 

current pixels.  
 

 
 

Fig. 4. Four configures of the two current pixels.  

 
If both of the current pixels are background pixel (Fig. 4. 

(a)), nothing needs to be done.  
 If the current pixel 1 b(x, y) is foreground pixel (Fig. 4. (c) 

and (d)), we consider the following  two cases: 
 Case 1. b(x, y) is a foreground pixel following a 

background pixel. The mask for processing b(x, y) is shown 
in Fig. 5.  

    

 
 

Fig. 5. Mask for processing the current pixel 1 where b(x-1, y) is a 
background pixel.  

.  

 
In this case, there are 16 configures in the mask, as shown 

in Fig. 6. Notice that in this case, whether the current pixel 2 

b(x, y+1) is a foreground pixel or not does not connect 
separate block of foreground pixels in the mask, we do not 
need to consider the connectivity when processing the pixel. 
Thus, if it is a foreground pixel, we can only assign it the 
same label of that assigned to the current pixel 1 without 
checking any other pixels.  

 

 
 

Fig. 6. 16 configures in the mask.  

 
If there is no foreground pixel in the mask (Fig. 6 (1)), we 

assign a new provisional label to the current pixel 1 b(x, y). 
Otherwise, i.e., there are foreground pixels in the mask, we 
can assign the current pixel 1 b(x, y) any label assigned to the 
foreground pixels1.  

On the other hand, if there is only one block of foregrounds 
pixel in the mask (Fig. 6 (2), (3), (5), (7), (9), (13) and (15)), 
no label equivalence needs to be considered. We just need to 
assign one label among the block to b(x, y). Otherwise, i.e., if 
there are several separate blocks of foreground pixels in the 
mask (Fig. 6 (4), (6), (8), (11), (12), (14) and (16)), they are 
connected by the current pixel 1, and therefore all labels 
assigned to the pixels of these blocks are equivalent labels. 
Thus, we need to resolve the label equivalences among the 
labels if they belong to different equivalent label sets.    

Case 2. b(x, y) is a foreground pixel following another 
foreground pixel, i.e., the pixel b(x-1, y) is a foreground pixel. 
We assign the b(x, y)’s label to b(x, y). Because all of b(x, y)’s 
processed neighbor pixels except the pixel b(x+1, y-1) are 
also b(x-1, y)’s neighbor pixels, the label equivalences 
among them have been resolved already before processing 
b(x, y), we do not need to check any of them. The mask for 
processing the current pixel 1 in this case consists of only one 

 
1 Because the current pixel 1 b(x, y) is a foreground pixel, all foreground 

pixels in the mask are connected; thus, all labels assigned to the pixels are 
equivalent labels. After processing the current pixel 1, all of such labels will 
be combined in the same equivalent label set.  
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pixel, as shown in Fig. 7.  Only when the pixel b(x+1, y-1) is 
a foreground pixel, we need consider to resolve the label 
equivalence of the label assigned to b(x-1, y) and that 
assigned to b(x+1, y-1).  

 

  
 

Fig. 7. Mask for processing the current pixel 1 in the case where b(x-1, y) is 
a foreground pixel.  

 
 Moreover, with the same reason described in Case 1, if the 

current pixel 2 is a foreground pixel, we only need to assign it 
the same label of the current pixel 1 without checking any of 
its neighbor pixels.  

If the current pixel 1 b(x, y) is background pixel and the 
current pixel 2 b(x, y+1) is a foreground pixel (Fig. 4. (b)),  
the mask for processing b(x, y+1) is shown in Fig. 8.  

 

 
 

Fig. 8. Mask for processing the current pixel 2 in the case where b(x, y) is a 
background pixel.  

 
There are four configures of pixels in the mask, shown as 

in Fig. 9.  
In any configure, it is obviously that no separate block of 

foreground pixel in the mask will be connected by the current 
pixel 2, therefore, no label equivalence need to be 
considered.  

If there is no foreground pixel in the mask (Fig. 9 (a)), we 
assign a new provisional label to the current pixel 2 b(x, y+1). 
Otherwise, if one or both of b(x-1, y) and b(x-1, y+1) are 
foreground pixels (Fig. 9 (b), (c) and (d)), we assign any label 
in the mask to the current pixel 2 b(x, y+1).  

As soon as the first scan is finished, all provisional labels 
assigned to each connected component have been combined 
in an equivalent label set with a unique representative label. 
During the second scan, similar to all conventional two-scan 
labeling algorithms, by replacing each provisional label with 
its representative label, we can complete labeling.  

III.  COMPARATIVE EVALUATION   

We implemented the HCS algorithm and our algorithm 
with the C language on a PC-based workstation (Intel 
Pentium D 3.0 GHz + 3.0 GHz CPUs, 2 GB Memory, 
Mandriva Linux OS). Because our method is an 
improvement on the first scan (as we described above, the 
second scan of our method is exactly the same with the HCS 
method), we will only compare the performances of the two 
methods on the first scan. All data in this section were 
obtained by averaging of the execution time for 10,000 runs 
with a single core.      
 

 

 
 

 Fig. 9. Four configures of the pixels in the mask for processing the current 
pixel 2.  

 
Images used for testing included of four types: noise 

images, natural images, texture images, and medical images.  
Noise images consist of forty one 512×512-sized noise 

images were generated by thresholding of the images 
containing uniform random noise with 41 different threshold 
values from 0 to 1000 in steps of 25.  

On the other hand, 50 natural images, including landscape, 
aerial, fingerprint, portrait, still-life, snapshot, and text 
images, obtained from the Standard Image Database 
(SIDBA) developed by the University of Tokyo2and the 
image database of the University of Southern California3, 
were used for realistic testing of labeling algorithms. In 
addition, seven texture images, which were downloaded from 
the Columbia-Utrecht Reflectance and Texture Database4, 
and 25 medical images obtained from a medical image 
database of The University of Chicago were used for testing. 
All of these images were 512×512 pixels in size, and they 
were transformed into binary images by means of  Otsu's 
threshold selection method [22].  

A. Experimental Results on Noise Images 

Because connected components in such noise images have 
complicated geometric shapes and complex connectivity, as 
shown in Fig. 10, severe evaluations of labeling algorithms 

 
2 http://sampl.ece.ohio-state.edu/data/stills/sidba/index.htm 
3 http://sipi.usc.edu/database/ 
4 http://www1.cs.columbia.edu/CAVE/software/curet/index.php 
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can be performed with these images.  
 The speed-up of our algorithm on the HCS algorithm, 

which is defined as (t1-t2)/t1, where t1 is the execution time of 
the HCS algorithm and t2 is the execution time of our 
algorithm, versus the density of an image is shown in Fig. 11. 
We can find that our algorithm is faster than the HCS 
algorithm for all noise images, and the largest speed-up is 
approximate to 16%.  

  

 
Fig. 10. Samples of noise images with different densities.  

 

 
Fig. 11. The speed up of our algorithm on the HCS algorithm versus the 

density of an image.  

 
 
The average numbers of times for checking neighbor 

pixels for processing a foreground pixel in an image of the 
HCS algorithm and our algorithm are shown in Fig. 12. We 
can find that for all images, the average numbers of checking 
times of our algorithm is about 0.5 times smaller than that of 
the HCS algorithm.  

B. Experimental Results on Natural Images, Medical 
Images and Textural Images 

The experimental results on the natural images, the 
medical images, and the textural images are shown in Table I. 
The execution times of two algorithms on some real images 
are shown in Fig. 13. We can find that for all items the 
execution time of our algorithm is smaller than that of the 
HCS algorithm.  

 
Fig. 12. The average number of times for checking neighbor pixels for 

processing a foreground pixel in an image.  

 
TABLE I. 

COMPARISON OF VARIOUS EXECUTION TIMES [MSEC] FOR NATURAL 

IMAGES, MEDICAL IMAGES, AND TEXTURAL IMAGES. 
 

Image type 
The HCS 
algorithm 

Our 
proposed 
algorithm 

 
natural 

Max. 1.83 1.63 

Mean 0.96 0.87 

Min. 0.44 0.44 

 
medical 

Max. 0.98 0.93 

Mean 0.73 0.68 

Min. 0.59 0.54 

 
textural 

Max. 1.48 1.41 

Mean 1.09 0.98 

Min. 0.79 0.52 

IV. CONCLUSION 

In this paper, we presented a new first scan method for 
two-scan labeling algorithms. Our algorithm scans image 
lines two by two and processes pixels two by two. By our 
method, the average number of times for checking neighbor 
pixels for processing foreground pixels will decrease, which 
leads efficiently labeling. The experimental results 
demonstrated that our method was more efficient than 
conventional scan labeling algorithms’ first scan.  

There are many works remained for us to do in the future. 
For example, extending our method for labeling 3D binary 
images [14], [23], developing, an algorithm for parallel 
architectures [24], and implementing our algorithm by 
hardware [25]. 
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HCS: 1.10  Ours: 1.08               HCS: 0.85    Ours  0.73 
 

              
 
                        HCS: 0.85  Ours: 0.80                 HCS: 0.68     Ours: 0.61 
 

     
 

                     HCS: 0.91  Ours: 0.83                 HCS: 0.46     Ours: 0.43 
 

   Fig. 13. Execution time (msec) on  some real images.  
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