


Abstract—This paper proposes a new two-scan algorithm for

labeling connected components in binary images. In the first
scan of our algorithm, all conventional two-scan labeling
algorithms process image lines one by one and process pixels
one by one. In comparison, we process image lines two by two
and process image pixels two by two. By our algorithm, the
average times for checking the neighbor pixels for processing a
foreground pixel will decrease, which leads to an efficient
labeling processing. Experimental results on various types of
images demonstrated that our method is more efficient than
conventional label-equivalence-based labeling algorithms.

Index Terms— connected component, labeling, pattern

recognition, fast algorithm, computer vision

I. INTRODUCTION

BELING of connected components in a binary image is
one of the most fundamental operations in pattern

analysis, pattern recognition, computer (robot) vision, and
machine intelligence [1,2]. Especially in real-time
applications such as traffic-jam detection, automated
surveillance, and target tracking, faster labeling algorithms
are always desirable.

Many algorithms have been proposed for addressing this
issue, because the improvement of the efficiency of labeling
is critical in many applications. For ordinary computer
architectures and 2D images, there are mainly two types of
labeling algorithms:
(1) Raster-scan algorithms. These algorithms process an

image in the raster-scan way. There are multi-scan
algorithms [3], [4] the four-scan algorithm [5],
two-scan algorithms [6-14], and the one-and-a-half
algorithm [15].

(2) Label propagation algorithms. These algorithms access
an image in an irregular way. There are run-based
algorithms [2], [16] and contour-tracing algorithms
[17], [18].

 According to experimental results on various types of

Manuscript received Feb. 28, 2012. This work was supported in part by

the Ministry of Education, Science, Sports and Culture, Japan, Grant-in-Aid
for Scientific Research (C), 23500222, 2011.

L. He is with the Shanxi University of Science and Technology, and also
with the Graduate School of Information Science and Technology, Aichi
Prefectural University, Nagakute, Aichi 480-1198, Japan (The
corresponding author, Tel: +81-561-1111; Fax: +81-561-1108; e-mail:
helifeng@ist.aichi-pu.ac.jp).

Y. Chao is with Graduate School of Environment Management, Nagoya
Sangyo University, Aichi 488-8711, Japan.

K. Suzuki is with the Department of Radiology, Division of the Biological
Sciences, The University of Chicago, Chicago, IL 60637, USA (e-mail:
Suzuki@uchicago.edu).

images, the algorithm proposed in [13], which is an
improvement on the two-scan algorithm proposed in [12], is
the most efficient one, and has been used for various
applications [19]-[21]. For convenience, we denote this
algorithm as HCS algorithm.

The HCS algorithm is a two-scan labeling algorithm.
Similar to other two-scan labeling algorithms, it completes
labeling in two scans by three processes: (1) provisional label
assignment (i.e., assigning a provisional label to each
foreground pixel) and equivalent-label finding (i.e., finding
the provisional labels assigned to the same connected
components); (2) equivalent label record (i.e., using some
data structures to record equivalent labels) and
label-equivalence resolving (i.e., finding a representative
label for all equivalent provisional labels); (3) label
replacement (i.e., replacing each provisional label by its
representative label).

The HCS algorithm uses equivalent label sets and a
representative label table to record equivalent labels and
resolve the label equivalences. Usually, the smallest label in
an equivalent label set is used to the representative label of
the set and all labels in the set. For convenience, an
equivalent label set with the representative label u is denoted
as S(u), and the representative label of a provisional label s is
t, denoted as T [s] = t.

In the first scan, this algorithm uses the mask shown in
Fig. 1 (a), which consists of three scanned neighbor of the
current foreground pixels, to assign provisional labels to
foreground pixels, and to record and resolve label
equivalences. At any moment, all equivalent provisional
labels are combined in an equivalent label set with the same
representative label.

For the case where the current foreground pixel follows a
background pixel (Fig. 1 (b)), if there is no label (foreground
pixel) in the mask, it means that the current foreground pixel
does not connect with any scanned foreground pixel, and the
current foreground pixel belongs to a new connected
component in the scanned area. The algorithm assigns a new
provisional label m to the current foreground pixel, which is
initialized to 1, and establishes the equivalent label set
S(m)={m}; it sets the representative label table as T [m] = m,
and m = m+1 for later processing. Otherwise, i.e., if there are
foreground pixels in the mask, all of such foreground pixels
and the current foreground pixel belong to the same
connected component. Therefore the current foreground
pixel can be assigned any of the labels in the mask. On the
other hand, for the case where the current foreground pixel
follows another foreground pixel (Fig. 1 (c)), the current
foreground pixel can be assigned the same label of that

A New Two-Scan Algorithm for Labeling
Connected Components in Binary Images

 Lifeng He, Yuyan Chao, Kenji Suzuki

L

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

foreground pixel.

Fig. 1. Mask for the eight-connected connectivity.

In any cases, if there are provisional labels belonging to

different equivalent label sets in the mask, all provisional
labels in those sets are equivalent labels, and they will be
combined together. Suppose that u and v are equivalent labels
that belong to S(T[u]) and S(T[v]), respectively. If T[u]=T[v],
the two equivalent label sets are the same, thus, nothing needs
to be done. Otherwise, without loss of generality, suppose
that T[u]<T[v], i.e., T[u] is the smallest label in the two
equivalent label sets, then the combination of the two
equivalent label sets can be completed by the following
operations:

S(T[u])=S(T[u])S(T[v]);
(sS(T[v]))(T[s]=T[u]).

 In this way, at any processing point in the first scan, all
equivalent provisional labels found so far are combined in an
equivalent label set with the same representative label.

As soon as the first scan is finished, all equivalent labels of
each connected component will have been combined in an
equivalent label set with a unique representative label. In the
second scan, by replacement of each provisional label with its
representative label, all foreground pixels of each connected
component will be assigned a unique label.

All conventional two-scan algorithms process image lines
one by one. For each foreground pixel, they assign it a
provisional label and resolve the connectivity of the pixel and
its processed neighbor foreground pixels. To do that, they
must check the neighbor pixels of the pixel. It is obvious that
the smaller the average number of the checking times for
processing a foreground pixel is, the more efficient an
algorithm is. However, there are many repeated checking by
conventional algorithms. For example, to process the
foreground pixel b(x, y) shown in Fig. 2, the HCS algorithm

will only resolve the connectivity with its processed
foreground neighbor pixels b(x-1, y-1) and b(x+1, y-1) in the
lower line of the scan line in the image. The connectivity with
its unprocessed foreground neighbor pixels b(x-1, y+1) and
b(x, y+1) in the upper line of the scan line will be resolved
when processing the next line, where the pixel b(x, y) will be
checked again. Such repeatedly checking work can be
avoided if, when we process a foreground pixel, we also
resolve the connectivity with its unprocessed foreground
neighbor pixels.

This paper proposes a new labeling algorithm by
processing image lines two by two and processes image
pixels tow by two. By our algorithm, the repeatedly checking
work mentioned above can be avoided; thus, the average
number of checking neighbor pixels for processing a
foreground pixel by our algorithm is smaller than that by
conventional two-scan labeling algorithms. Experimental
results demonstrated that our method is more efficient than
conventional label-equivalence-based labeling algorithms.

Fig. 2. A simple example for explaining repeatedly checking problem with
the HCS algorithm.

The rest of this paper is organized as follows: We
introduce our algorithm in the next section and show
experimental results in section 3. We give our concluding
remarks in section 4.

II. THE PROPOSED ALGORITHM

For an N×M binary image, we use b(x, y) to denote the
pixel at (x, y) in the image, where 1≤x≤ N, 1≤y≤M. We also
use b(x, y) to denote its value. For convenience, we suppose
that the value of foreground pixels is 1 and that of
background pixels is 0. All pixels in the edge of an image are
considered to be background pixels.

 Our proposed algorithm processes image lines two by
two and processes pixels two by two, as shown in Fig. 3. For
convenience, we call the pixel b(x, y) the current pixel 1, and
the pixel b(x, y+1) the current pixel 2, respectively.

Similar to the HCS algorithm, we process pixels
following a foreground pixel and those following a
background pixel in different ways.

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

Fig. 3. Processing method in our algorithm.

As shown in Fig. 4, there are four configures for the two

current pixels.

Fig. 4. Four configures of the two current pixels.

If both of the current pixels are background pixel (Fig. 4.

(a)), nothing needs to be done.
 If the current pixel 1 b(x, y) is foreground pixel (Fig. 4. (c)

and (d)), we consider the following two cases:
 Case 1. b(x, y) is a foreground pixel following a

background pixel. The mask for processing b(x, y) is shown
in Fig. 5.

Fig. 5. Mask for processing the current pixel 1 where b(x-1, y) is a
background pixel.

.

In this case, there are 16 configures in the mask, as shown

in Fig. 6. Notice that in this case, whether the current pixel 2

b(x, y+1) is a foreground pixel or not does not connect
separate block of foreground pixels in the mask, we do not
need to consider the connectivity when processing the pixel.
Thus, if it is a foreground pixel, we can only assign it the
same label of that assigned to the current pixel 1 without
checking any other pixels.

Fig. 6. 16 configures in the mask.

If there is no foreground pixel in the mask (Fig. 6 (1)), we

assign a new provisional label to the current pixel 1 b(x, y).
Otherwise, i.e., there are foreground pixels in the mask, we
can assign the current pixel 1 b(x, y) any label assigned to the
foreground pixels1.

On the other hand, if there is only one block of foregrounds
pixel in the mask (Fig. 6 (2), (3), (5), (7), (9), (13) and (15)),
no label equivalence needs to be considered. We just need to
assign one label among the block to b(x, y). Otherwise, i.e., if
there are several separate blocks of foreground pixels in the
mask (Fig. 6 (4), (6), (8), (11), (12), (14) and (16)), they are
connected by the current pixel 1, and therefore all labels
assigned to the pixels of these blocks are equivalent labels.
Thus, we need to resolve the label equivalences among the
labels if they belong to different equivalent label sets.

Case 2. b(x, y) is a foreground pixel following another
foreground pixel, i.e., the pixel b(x-1, y) is a foreground pixel.
We assign the b(x, y)’s label to b(x, y). Because all of b(x, y)’s
processed neighbor pixels except the pixel b(x+1, y-1) are
also b(x-1, y)’s neighbor pixels, the label equivalences
among them have been resolved already before processing
b(x, y), we do not need to check any of them. The mask for
processing the current pixel 1 in this case consists of only one

1 Because the current pixel 1 b(x, y) is a foreground pixel, all foreground

pixels in the mask are connected; thus, all labels assigned to the pixels are
equivalent labels. After processing the current pixel 1, all of such labels will
be combined in the same equivalent label set.

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

pixel, as shown in Fig. 7. Only when the pixel b(x+1, y-1) is
a foreground pixel, we need consider to resolve the label
equivalence of the label assigned to b(x-1, y) and that
assigned to b(x+1, y-1).

Fig. 7. Mask for processing the current pixel 1 in the case where b(x-1, y) is
a foreground pixel.

 Moreover, with the same reason described in Case 1, if the

current pixel 2 is a foreground pixel, we only need to assign it
the same label of the current pixel 1 without checking any of
its neighbor pixels.

If the current pixel 1 b(x, y) is background pixel and the
current pixel 2 b(x, y+1) is a foreground pixel (Fig. 4. (b)),
the mask for processing b(x, y+1) is shown in Fig. 8.

Fig. 8. Mask for processing the current pixel 2 in the case where b(x, y) is a
background pixel.

There are four configures of pixels in the mask, shown as

in Fig. 9.
In any configure, it is obviously that no separate block of

foreground pixel in the mask will be connected by the current
pixel 2, therefore, no label equivalence need to be
considered.

If there is no foreground pixel in the mask (Fig. 9 (a)), we
assign a new provisional label to the current pixel 2 b(x, y+1).
Otherwise, if one or both of b(x-1, y) and b(x-1, y+1) are
foreground pixels (Fig. 9 (b), (c) and (d)), we assign any label
in the mask to the current pixel 2 b(x, y+1).

As soon as the first scan is finished, all provisional labels
assigned to each connected component have been combined
in an equivalent label set with a unique representative label.
During the second scan, similar to all conventional two-scan
labeling algorithms, by replacing each provisional label with
its representative label, we can complete labeling.

III. COMPARATIVE EVALUATION

We implemented the HCS algorithm and our algorithm
with the C language on a PC-based workstation (Intel
Pentium D 3.0 GHz + 3.0 GHz CPUs, 2 GB Memory,
Mandriva Linux OS). Because our method is an
improvement on the first scan (as we described above, the
second scan of our method is exactly the same with the HCS
method), we will only compare the performances of the two
methods on the first scan. All data in this section were
obtained by averaging of the execution time for 10,000 runs
with a single core.

 Fig. 9. Four configures of the pixels in the mask for processing the current
pixel 2.

Images used for testing included of four types: noise

images, natural images, texture images, and medical images.
Noise images consist of forty one 512×512-sized noise

images were generated by thresholding of the images
containing uniform random noise with 41 different threshold
values from 0 to 1000 in steps of 25.

On the other hand, 50 natural images, including landscape,
aerial, fingerprint, portrait, still-life, snapshot, and text
images, obtained from the Standard Image Database
(SIDBA) developed by the University of Tokyo2and the
image database of the University of Southern California3,
were used for realistic testing of labeling algorithms. In
addition, seven texture images, which were downloaded from
the Columbia-Utrecht Reflectance and Texture Database4,
and 25 medical images obtained from a medical image
database of The University of Chicago were used for testing.
All of these images were 512×512 pixels in size, and they
were transformed into binary images by means of Otsu's
threshold selection method [22].

A. Experimental Results on Noise Images

Because connected components in such noise images have
complicated geometric shapes and complex connectivity, as
shown in Fig. 10, severe evaluations of labeling algorithms

2 http://sampl.ece.ohio-state.edu/data/stills/sidba/index.htm
3 http://sipi.usc.edu/database/
4 http://www1.cs.columbia.edu/CAVE/software/curet/index.php

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

can be performed with these images.
 The speed-up of our algorithm on the HCS algorithm,

which is defined as (t1-t2)/t1, where t1 is the execution time of
the HCS algorithm and t2 is the execution time of our
algorithm, versus the density of an image is shown in Fig. 11.
We can find that our algorithm is faster than the HCS
algorithm for all noise images, and the largest speed-up is
approximate to 16%.

Fig. 10. Samples of noise images with different densities.

Fig. 11. The speed up of our algorithm on the HCS algorithm versus the

density of an image.

The average numbers of times for checking neighbor

pixels for processing a foreground pixel in an image of the
HCS algorithm and our algorithm are shown in Fig. 12. We
can find that for all images, the average numbers of checking
times of our algorithm is about 0.5 times smaller than that of
the HCS algorithm.

B. Experimental Results on Natural Images, Medical
Images and Textural Images

The experimental results on the natural images, the
medical images, and the textural images are shown in Table I.
The execution times of two algorithms on some real images
are shown in Fig. 13. We can find that for all items the
execution time of our algorithm is smaller than that of the
HCS algorithm.

Fig. 12. The average number of times for checking neighbor pixels for

processing a foreground pixel in an image.

TABLE I.

COMPARISON OF VARIOUS EXECUTION TIMES [MSEC] FOR NATURAL

IMAGES, MEDICAL IMAGES, AND TEXTURAL IMAGES.

Image type
The HCS
algorithm

Our
proposed
algorithm

natural

Max. 1.83 1.63

Mean 0.96 0.87

Min. 0.44 0.44

medical

Max. 0.98 0.93

Mean 0.73 0.68

Min. 0.59 0.54

textural

Max. 1.48 1.41

Mean 1.09 0.98

Min. 0.79 0.52

IV. CONCLUSION

In this paper, we presented a new first scan method for
two-scan labeling algorithms. Our algorithm scans image
lines two by two and processes pixels two by two. By our
method, the average number of times for checking neighbor
pixels for processing foreground pixels will decrease, which
leads efficiently labeling. The experimental results
demonstrated that our method was more efficient than
conventional scan labeling algorithms’ first scan.

There are many works remained for us to do in the future.
For example, extending our method for labeling 3D binary
images [14], [23], developing, an algorithm for parallel
architectures [24], and implementing our algorithm by
hardware [25].

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

HCS: 1.10 Ours: 1.08 HCS: 0.85 Ours 0.73

 HCS: 0.85 Ours: 0.80 HCS: 0.68 Ours: 0.61

 HCS: 0.91 Ours: 0.83 HCS: 0.46 Ours: 0.43

 Fig. 13. Execution time (msec) on some real images.

REFERENCES
[1] D.H. Ballard. Computer Vision. Englewood, New Jesey: Prentice-Hall,

1982.
[2] R.C. Gonzalez and R.E. Woods. Digital Image Processing. Addison

Wesley, 1992.
[3] R.M. Haralick. Some neighborhood operations. In Real Time/Parallel

Computing Image Analysis, 11-35, New York, 1981. Plenum Press.
[4] A. Hashizume, R. Suzuki, H. Yokouchi, et al. An algorithm of

automated {RBC} classification and its evaluation. Bio Medical
Engineering, 28(1):25-32, 1990.

[5] K. Suzuki, I. Horiba, and N. Sugie. Linear-time connected-component
labeling based on sequential local operations. Computer Vision and
Image Understanding, 89:1-23, 2003.

[6] A. Rosenfeld and J.L. Pfalts. Sequential operations in digital picture
processing. Journal of ACM, 13(4):471-494, 1966.

[7] R. Lumia, L. Shapiro, and O. Zungia. A new connected components
algorithm for virtual memory computers. Computer Vision, Graphics,
and Image Processing, 22(2):287-300, 1983.

[8] R.M. Haralick and L.G. Shapiro. Computer and Robot Vision I, 28-48.
Addison-Wesley, Reading, MA, 1992.

[9] S. Naoi. High-speed labeling method using adaptive variable window
size for character shape feature. In IEEE Asian Conf. Computer Vision,
volume 1, 408-411, 1995.

[10] L. He, Y. Chao, and K. Suzuki. A Linear-Time Two-Scan Labeling
Algorithm. 2007 IEEE International Conference on Image Processing
(ICIP), pp.V-241-V-244, 2007, San Antonio, Texas, USA.

[11] L. He, Y. Chao, and K. Suzuki. A Run-based Two-Scan Labeling
Algorithm. IEEE Transactions on Image Processing, 17(5):749-756,
2008.

[12] L. He, Y. Chao, and K. Suzuki, K. Wu. Fast Connected-Component
Labeling. Pattern Recognition, 42:1977-1987, 2009.

[13] L. He, Y. Chao, and K. Suzuki. An Efficient First-Scan Method for

Label-Equivalence-Based Labeling Algorithms. Pattern Recognition
Letters, 31:28-35, 2010.

[14] L. He, Y. Chao, and K. Suzuki. Two Efficient
Label-Equivalence-Based Connected-Component Labeling
Algorithms for Three-Dimensional Binary Images. IEEE Transactions
on Image Processing, . vol.20, no.8, pp.2122-2134, 2011.

[15] L. He, Y. Chao, and K. Suzuki. A Run-Based One-and-a-Half-Scan
Connected-Component Labeling Algorithm. International Journal of
Pattern Recognition and Artificial Intelligence, Vol. 24, No. 4,
pp.557-579, 2011.

[16] Y. Shima, T. Murakami, M. Koga, H. Yashiro, and H. Fujisawa. A
high-speed algorithm for propagation-type labeling based on block
sorting of runs in binary images. Proc. 10th Int. Conf. Pattern
Recognition, pages 655-658, 1990.

[17] F. Chang, C.J. Chen, and C.J. Lu. A linear-time component-labeling
algorithm using contour tracing technique. Computer Vision and Image
Understanding, 93:206--220, 2004.

[18] Q. Hu, G. Qian and W.L. Nowinski. Fast connected-component
labeling in three-dimensional binary images based on iterative
recursion. Computer Vision and Image Understanding, 99:414-434,
2005.

[19] A. Alexey, K. Tomas, W. Florentin, and D. Babette. Real-Time Image
Segmentation on a GPU. Facing the Multicore-Challenge, Lecture
Notes in Computer Science, 6310:131-142, 2011.

[20] Christopher Wolfe, T. C. Nicholas Graham, and Joseph A. Pape. Seeing
through the fog: an algorithm for fast and accurate touch detection in
optical tabletop surfaces. In ACM International Conference on
Interactive Tabletops and Surfaces (ITS '10)}. ACM, 73-82, 2010, New
York, NY, USA.

[21] B. Dellen, E.A. Erdal, and F. Wrgtter. Segment Tracking via a
Spatiotemporal Linking Process including Feedback Stabilization in an
n-D Lattice Model. Sensors, 9(11):9355-9379, 2009.

[22] N. Otsu. A threshold selection method from gray-level histograms.
IEEE Trans. Systems Man and Cybernetics, 9:62-66, 1979.

[23] J.K. Udupa and V.G. Ajjanagadde. Boundary and object labeling in
three-dimensional images. Computer Vision, Graphics, and Image
Processing, 51(3): 355-369, 1990.

[24] K.B. Wang, T.L. Chia, Z. Chen, Parallel execution of a connected
component labeling operation on a linear array architecture, J. Inf. Sci.
Eng. 19, 353–370, 2003.

[25] X. D. Yang. Design of fast connected components hardware, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Ann Arbor MI, June 1988, pp. 937–944.

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

