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Abstract— In this paper, we propose an algorithm based on 

the adaptive filtering which we can use for the noise 

cancellation. This algorithm is stable numerically and very 

powerful when the input signal is stationary with additive noise 

on the output signal. It has a high convergence speed 

comparable with that of RLS algorithm and reduced 

computational complexity close to NLMS algorithm. The 

proposed algorithms allow a greater choice of compromise 

between these performances criteria and the computational 

complexity. 

Index Terms— NLMS, Fast RLS, FTF-type algorithm, 

Estimation, Adaptive Filtering, ANC. 

I. INTRODUCTION 

COUSTIC noise cancellation (ANC) techniques are 

usually applied in applications where a reference signal 

that is correlated with the noise at the primary signal is 

easily obtained [1]. In these techniques, the reference signal 

is uncorrelated with the clean speech signal. These 

techniques make use of noise reference input and attempt to 

subtract the noise component from the noisy speech signal. 

The primary microphone picks up the noisy speech signal 

while a set of secondary microphone measure a signal 

consisting mainly of noise. The signal from the reference 

input is fed to an adaptive filter which estimates the noise on 

the primary input and simply subtracts it from the 

transmitted speech [2]. A number of filter structures and 

adaptation algorithms have been evaluated in the literature. 

There are two major classes of adaptive algorithms [3]. One 

is the Normalized Least Mean Square (NLMS) algorithm, 

which has a computational complexity of O(L), L is the finite 

impulse response (FIR) filter length. The other class of 

adaptive algorithm is the Recursive Least Squares (RLS) 

algorithm has an impressive performance. The main 

drawback with the RLS algorithm is its complexity O(L
2
). A 
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large number of fast RLS (FRLS) algorithms have been 

developed over the years [4]-[6], but, unfortunately, it seems 

that the better a FRLS algorithm is in terms of computational 

efficiency, the more severe is its problems related to 

numerical stability. The FRLS algorithm shows a complexity 

of O(L). Several numerical solutions of stabilization, with 

stationary signals, are proposed in the literature [7]. A new 

technique using reduced size predictors of order P, where 

P<<L, was developed in [8], [9]. Fast RLS algorithms that 

use this technique are often called Fast Newton Transversal 

Filter (FNTF) Algorithms. Fast RLS algorithms that use this 

technique are often called Fast Newton Transversal Filter 

(FNTF)   Algorithms. Several fast RLS algorithms including 

[10], [11] use the technique, and they are able to produce 

fast stable RLS algorithms that have a complexity of 

LPL 2)42(  . The computational complexity of these 

algorithms approach that of NLMS, and ought to be a very 

attractive choice for implementation. 

In many applications of noise cancellation, the changes of 

the signal characteristics can be made quickly. This requires 

the use of adaptive algorithms, which converge rapidly. Our 

main objective is to evaluate the adaptive performances of 

the algorithms in real situations with criteria measured by the 

mean square error )(nMSE  and the gain SNRG according to 

InSNR . The proposed algorithms provide better results 

when making the noise less audible at exit of the system of 

noise cancellation. 

II. ACOUSTIC NOISE CANCELLATION 

Conventional ANC employs two input signals to reduce 

the noise at the output of the system as illustrated in Fig 1. 

The primary input is the noise-corrupted signal nd . The 

reference input nx , is measure of background noise alone 

which is in some way correlated with the noise in the 

primary. The output a priori error nL,  of this system at time 

n is:                                                                  

nnnL yd ˆ
,                                                                  (1) 
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Fig 1: Principle of noise cancellation 
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 where nLnLny ,
T

1,
ˆ xw   is the model filter output, 

 T1, ...,,  LnnnL xxx  is a vector containing the last L 

samples of the input signal nx ,  T,,1, ...,, nLnnL www  is 

the coefficient vector of the adaptive filter and L is the filter 

length. The signal nd  is the contaminated signal (Fig 2) 

containing both the clean speech ns  and the noise ny , 

assumed to be uncorrelated with each other. The primary 

input signal from the model is: 

nnn syd                                                                    (2) 

nLnny ,
T
xh                                                                   (3) 

where  T,,1 ...,, nLnn hhh  represents the unknown 

system impulse response vector. The purpose of this system 

is to enable the system to control the filter until nŷ  is as 

close to ny  as possible. 

The error signal nL, can be used to adapt the adaptive 

filter 1, nLw  using some algorithm for filter adaptation. 

Several different algorithms for filter adaptation have been 

proposed. The filter is updated at each instant by feedback 

of the estimation error proportional to the adaptation gain, 

denoted as nL,g , and according to  

nLnLnLnL ,,1,, gww                                                  (4) 

The different algorithms are distinguished by the 

adaptation gain calculation.                                         

III. PROPOSED SYSTEM 

A. Adaptive NLMS and FRLS Algorithms 

The LMS Algorithms derived from the gradient [3], for 

which the optimization criterion corresponds to a 

minimization of the mean-square error. For the normalized 

LMS (NLMS) algorithm, the adaptation gain is given by: 

nL

nx

nL
cL

,

0,

, xg






                                                  (5)              

where   is referred to as the adaptation step and 0c  is a 

small positive constant used to avoid division by zero in 

absence of the input signal. The stability condition of this 

algorithm is 0<  <2 and the fastest convergence is obtained 

for  = 1 [12]. The power of input signal is estimated 

by 2
1,, )1( nnxnx x   , where   is a forgetting factor 

( L/1 ). The computational complexity of the NLMS 

algorithm is 2L multiplications per sample. 

The RLS algorithm [3], for which minimizes a 

deterministic sum of squared errors. Fast versions of these 

algorithms are derived from the RLS by the introduction of 

forward and backward predictors. The FRLS algorithm 

shows a complexity of O(L). The adaptation gain is given 

by: 


FRLS

,,

RLS

,
1
,,

~
nLnLnLnLnL kxRg  

                                            (6) 

T
,,1,

1

T
,,, nLnLnL

n

i

iLiL
in

nL xxRxxR  



                  (7) 

where nL,R is an estimate of the correlation matrix of the 

input signal vector and  denotes the exponential forgetting 

factor (0 1). The variables nL,  and nL,

~
k  respectively 

indicate the likelihood variable and normalized Kalman gain 

vector. Several numerical solutions of stabilization, with 

stationary signals, are proposed in the literature [7]. The 

computational complexity of the stabilized FRLS (NS-

FRLS) algorithm is 8L per sample, and is stable, with the 

assumption of a white Gaussian input signal, under the 

following condition [7]: 

L2/11                                                                   (8) 

B. Proposed Adaptive Algorithms 

   The numerical stabilization of the FRLS algorithm limits 

the range of the forgetting factor (8) and consequently their 

convergence speed and tracking ability. And the resulting of 

that algorithm has an 8L complexity. 

In [11], they propose more complexity reduction. The 

modified and simplified FTF-type (M-SMFTF) algorithm 

[11], derived from the SMFTF algorithm [10], where the 

adaptation gain is obtained only from the forward prediction 

variables and using a recursive method to compute the 

likelihood variable. The computational complexity is 6L and 

its algorithm is stable, with assumption of a white Gaussian 

input signal, under the following condition [11]: 

L/11                                                                     (9)  

By a method of extrapolation [9], the autocorrelation 

matrix of order L is built starting from an estimate of the 

autocorrelation matrix of order P (P<<L). In this case, it is 

not anymore necessary to propagate prediction vectors of 

order L in the prediction part of the FRLS algorithm. If we 

denote P the order of the predictor and L the size of adaptive 

filter, the M-SMFTF algorithm can be easily used with 

reduced size prediction part. The computational complexity 

of the reduced size predictor M-SMFTF (RM-SMFTF) 

algorithm is LPL 2)42(   and it is stable, with the 

assumption of a white Gaussian input signal, under the 

following condition [11]: 

P/11                                                                   (10)  
Fig 1: Principle of noise cancellation 
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IV. SIMULATIONS 

The noise reference input pass through the adaptive filter 

and output nŷ  is produced as close a replica as possible of 

ny . The filter readjusts itself continuously to minimize the 

error between ny  and nŷ  during this process. The system 

output is: 

nnnnL yys ˆ
,                                                        (11) 

We can get the following equation of expectations:  

   22
, )ˆ(E)(E nnnnL yys                                    (12) 

Assuming that nx  and ns  are not correlated and have zero 

means, we can write:  

     222
, )ˆ(E)(E)(E nnnnL yys                               (13) 

After convergence of the adaptive filter, explicitly, 

 nL,w nh  nŷ ny  nnL s,                     (14) 

A. Tracking Ability and Convergence 

In the absence of the speech signal ( ns =0). The 

expression (13) becomes:  

   22
, )ˆ(E)(E nnnL yy                                               (15) 

The input signal nx  used in our simulation is a white 

Gaussian noise, with mean zero and variance equal to 0.32. 

The impulse response of the system represents a real impulse 

response measured in a car and truncated to 256 samples. 

We compare the convergence speed and tracking capacity of 

the (NLMS, NS-FRLS, M-SMFTF and RM-SMFTF) 

algorithms. The filter length is L=256, the NLMS (  =1) 

and NS-FRLS ( L3/11 ) algorithms are tuned to obtain 

fastest convergence. The forgetting factor   are 

respectively chosen for M-SMFTF and RM-SMFTF 

algorithms to L/11  and P/11 . The 

nonstationarity of the system to be modelled is simulated by 

introducing a linear gain variation on the primary input 

signal. In Fig 3, we give the evolution, in decibels, of the 

mean square error )(nMSE (15). It shows that better 

performances in convergence speed are obtained for the 

proposed algorithm. It is observed that the proposed 

algorithm converges much faster and tracks better the 

variation of the system than both NS-FRLS and NLMS 

algorithms. 

B. Noise Reduction 

We define the input signal to noise ratio segmental [13], 

which is calculated on screens of a few milliseconds: 


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where N  is the size of the screen and  M  the number of 

screens. Same manner, we define the output signal to noise 

ratio segmental:  
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One of the qualifying criteria of the noise reduction 

algorithms is the increase measurement in signal to noise 

ratio. This criterion, noted  SNRG   and expressed in dB, is 

defined as the difference between outSNR   and  InSNR   for 

each screen, averaged on the whole of the screens: 

InoutSNR SNRSNRG                                                 (18) 

We generate noisy speech signals with different  InSNR   

starting from files from clean speech signal alone and noise 

alone. We synthesize the noisy speech signals by adding the 

noise to the clean speech signal so as to reach the desired 

levels of InSNR . In our simulations, we took in the case of 

the NS-FRLS algorithm, L10/11   to ensure numerical 

stability. 

The noisy speech signal with InSNR = 30dB represents a 

case which we can say without noise (Fig 4). We observe 

(Fig 5a), that the output error of the system, which 

represents the estimated speech signal ( nnL ŝ,  ), is almost 

confused with the original speech signal except for the zones 

of silence (very weak power). We can say in these zones of 

silence, in absence of noise the NS-FRLS algorithm adapts 

less than the other algorithms. The curves (b) and (c) of 

Fig.5, which represent the temporal evolutions outSNR  and 

SNRG  with InSNR = 30dB, confirm well that the NS-FRLS 

algorithm adapts less than the other algorithms. In Fig 6, 

with InSNR = - 5dB, we notice that the speech signal is 

relatively drowned in the noise. Fig 7 gives the temporal 

evolutions outSNR and SNRG . We can say that the NS-FRLS 

algorithm is slightly above the proposed algorithms.  

 
Fig 3: Comparative performance of the algorithms, 

L=256.  M-SMFTF:  =0.9961, =0.985, ac =0.5, E0=1; 

RM-SMFTF: P=32,  =0.9688,  =0.9985, ac =0.5, E0=0.2; 

NS-FRLS:  =0.9987, E0=1; NLMS:  =1 

 

Proceedings of the World Congress on Engineering 2012 Vol II 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



 

Fig 8 represents the gain SNRG   as a function of InSNR . 

The original speech signal is combined with   noise for 

InSNR  between - 10dB and 20dB by steps of 5dB. We 

observe that, the gain SNRG  decrease with InSNR , the 

system has an overall tendency to not to remove the noise 

when InSNR  is strong and especially for the NS-FRLS 

algorithm. It is not necessarily a handicap; values beyond 

15dB correspond relatively to slightly disturbed conditions, 

and attenuate the noise does not systematically improve 

comfort of listening. We notice that the NS-FRLS algorithm 

is placed slightly above the proposed algorithms. 

V. CONCLUSION 

From these performances criteria, measured by the mean 

square error )(nMSE  and the gain SNRG , we have noticed 

that the proposed algorithms provide better results when 

making the noise less audible at exit of the system of noise 

cancellation. The simulations have shown that, the estimate 

of the noise have sensibly improved the adaptive 

performances in terms of noise reduction without distorting 

the speech signal. The NLMS algorithm is definitely less 

powerful than the other algorithms, and that the proposed 

algorithms allow a greater choice of compromise between 

these performances criteria and the computational 

complexity.  
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NS-FRLS:  =0.9996, E0=0.5; NLMS:  =1. 
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