

Abstract— The backpropagation neural network algorithm
(BP) was used largely in image and signal processing. The BP
requires long time to train the BPNN with small error.
Therefore, in this research, three Artificial Neural Networks
models (ANNs) were constructed. Three algorithms:
FeedForwardNet, CascadeForwardNet and FitNet were
adopted to train the three constructed ANNs models
separately.
Each one of constructed models consists of input layer to input
the original image, hidden layer to produce the compressed
image and finally output layer for decompressed image. The
training and testing performance of the constructed models
with different architecture were compared to identify the
model with best compression ratio (CR) and Peak to Signal to
Noise Ratio (PSNR). From experiments, we noted that the
better results are obtained when we used the FitNet ANN
model. According to results, the performance of constructed
FitNet ANN for image compression can be increased by
changing the number of hidden layer neurons.

Index Terms— Image Compression, Artificial Neural

Networks, Backpropagation Neural Network,
FeedForwardNet, Cascade-ForwardNet, FitNet

I. INTRODUCTION

Artificial Neural Networks (ANNs) are composed of

interconnected neurons that operate in parallel and
connected together via weights [1]. ANNs have been used
in different applications such as: pattern classification,
image and signal processing [2]. The backpropagation
neural network (BPNN) is a multi-layer feed forward
ANNs. BPNN is useful only when the network architecture
is chosen correctly. Too small network cannot learn the
problem well, but too large size will lead to over fitting and
poor generalization performance [1]. The backpropagation
algorithm (BP) can be used to train the BPNN image
compression but its drawback is slow convergence. Many
approaches have been carried out to improve the speed of
convergence [3]. Image compression is a representation of

Omaima N. Ahmad AL-Allaf is currently working in the Department of
Computer Information Systems, Faculty of Sciences and Information
Technology, AL-Zaytoonah University of Jordan, P.O. Box 130, Amman
(11733), Jordan, (Phone: 00962- 4291511 Extension: 347; fax: 00962-
4291432; email: omaimaalallaf@zuj.edu.jo).

an image with fewer bits to reduce the probability of
transmission errors [4]. Many literatures discussed the use
of different ANN architectures and training algorithms for
image compression to improve the speed of convergence
and provide high compression ratio (CR) and high Peak
Signal to Noise Ratio (PSNR). Roy et al. (2005) [5]
developed an edge preserving image compression technique
using one hidden layer feed forward BPNN. Edge detection
and multi-level thresholding operations are applied to
reduce the image size. The processed image block is fed as
single input pattern while single output pattern has been
constructed from the original image. Their experiment
achieved SNR (0.3013) and CR (30:1) when they applied
their approach on Lena image. And, Durai and Saro (2006)
[6] suggested mapping the gray levels of the image pixels
and their neighbors in such a way that the difference in gray
levels of neighbors with the pixel is minimized and then the
CR and network convergence can be improved. They
achieved that by estimating Cumulative Distribution
Function (CDF) for image to map the image pixels. Then,
BPNN yields high CR and converges quickly. Their
experiments achieved CR (4:1) and PSNR (28.91) when they
applied this approach on (256×256) Lena image. And, Rafid
(2007) [7] proposed a bipolar sigmoidal BP (PPB) to train a
feed forward auto associative NN. Their method includes
steps to break down large images into smaller windows for
compression process. Experiments have been achieved CR
(8:1) and PSNR (29.0) on applying PPB with number of
hidden units equal 16 on (256×256) Lena image.

While, Rajapandian and Gunaseeli (2007) [8] proposed
modified Backpropagation algorithm (MBP) approach for
learning process of BPNN with optimum initialization. The
MBP consists of minimizing the sum of squares of linear
and non-linear errors for all output units for an efficient
process in ANN. They used proper method for weight
initialization for good ANN training. And, Xianghong and
Yang (2008) [9] used BPNN for image compression and
developed algorithm based on BP. The blocks of original
image are classified into three classes: background blocks,
object blocks and edge blocks, considering the features of
intensity change and visual discrimination. Experiments
have been achieved: CR (3.156:1) and PSNR (41.209) on
applying this approach with number of hidden units (8) on
(256×256) Lena image.

Whereas, Fatima (2010) [10] suggested to use multi-layer
ANN for image compression. This is done by breaking
down large images into smaller windows and applies
Discrete Cosine Transform (DCT) to these windows. The
input pixels will be used as target values so that assigned
mean square error can be obtained.

Cascade-Forward vs. Function Fitting Neural
Network for Improving Image Quality and

Learning Time in Image Compression System

Omaima N. Ahmad AL-Allaf

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

And, Veisi and Jamzad (2009) [11] presented an adaptive
BPNN for image compression based on image complexity
level by dividing image into blocks, computing complexity
of each block and then selecting one network for each block
according to its complexity value. They used three
complexity measure methods: entropy, activity and pattern-
based to determine the level of complexity in image blocks.
They used best-SNR approach in selecting compressor
network for image blocks which chooses one of the trained
networks. Their experiments achieved CR (3.156:1) and
PSNR (34.92) on applying the approach with number of
hidden units (8) on (256×256) Lena image.

The most important problems that must be solved by
researchers are: determining the ANN network architecture,
learning parameters and network weights. Therefore, Tai-
Hoon et, al. (1991) [12] adopted learning algorithm based
on BP algorithm to speed up the learning process by
employing the steepness of activation function. This
algorithm can converge faster than the BP on some
problems but may suffer from increased instability and they
frequently fail to converge within a finite time. The cause
for the instability is an inappropriate choice for initial
weights. To overcome the instability, it is proposed that
weight re-initialization be used whenever the convergence
speed becomes very slow.

O. AlAllaf (2010) [13] suggested many steps to improve
the convergence time for learning the BPNN image
compression system. This is done by modifying the BPNN
architecture, modifying the BP learning parameters such as
learning rate and momentum variable, adding Bais variable,
controlling the weights between the layers and so on.
Results have been achieved: CR (32:1) and PSNR (44.50)
on applying this approach on (256×256) Lena image with
8×8 block dimension and number of hidden neurons equal
2. In another research O. AlAllaf (2011) [14], designed a
three layered BPNN for building image compression
system. The Fast backpropagation neural network algorithm
(FBP) was used for training process to reduce the
convergence time. Many techniques were used to improve
the use of FBP by: using different BPNN architecture; using
different FBP parameters. Finally, FBP results such as CR
and PSNR are compared with BP results. From the results,
we noticed that the use of FBP improve the BPNN training
by reducing the convergence time of learning process.

According to literature studies, we need image
compression technique that leads to: less storage
requirements; less BPNN training time; and best PSNR and
CR. In this research, three Feed Forward ANN architectures
were built for image compression system. We adopted three
algorithms: FeedForwardNet, CascadeForwardNet and
FiNet to train the three architectures. Finally, comparisons
between the results of the three algorithms were conducted.
The research is organized as follows: section II describes
the feed forward ANN architectures. Section III includes
details about image compression and decompression system.
Section IV describes the results in details. Finally, section V
concludes this work.

II. FEED FORWARD ANN ARCHITECTURES

A. FeedForwardNet

Static feed forward ANN has no feedback elements and
contains no delays as shown in Fig.1. The output is

calculated directly from the input through feed forward
connections like BP and Cascade BPNN. The number of
connections between each two layers in BPNN is calculated
by multiplying the total number of neurons of the two
layers, then adding the number of bias neurons connections
of the second layer. If there are Ni neurons in input layer,
Nh neurons in hidden layer and No neurons in output layer,
the total number of connections is given by equation:
Network Size(Nw)= [(NiNh)+Nh]+[(NhNo)+No] ... (1)

A bias unit is added as a part of every BPNN layer but not
the output layer. This unit has a constant value of 1 and it is
connected to all units in next layer. The weights on these
connections can be trained in the same way as other
weights. The bias units provide a constant term in the
weighted sum of units in the next layer to improve the
convergence time. It contributes a constant term in
summation of products (NETj) which is the operand in
sigmoid function as shown in Eq.2:

N

j i j i j
i 1

N E T X W

 …. (2)

Momentum variable () improves the BP training time and
enhancing training stability. It involves adding a term to
weight adjustment that is proportional to amount of previous
weight change. We used Eq.3 and Eq.4 [3] respectively:

new old q new
ji ji jiW W [W] ... (3)

q new q q 1 q old
ji i j ji[W] O [W] … (4)

Where, is the momentum variable in the range 0.0-1.0, but
it is set to around 0.9. By using momentum, the network
tends to follow the bottom of narrow gullies in error surface
rather than crossing rapidly from side to side. If is 0.0,
then the smoothing is minimum; the entire weight
adjustment comes from the newly calculated change. If is
1.0, the new adjustment is ignored and previous one is
repeated. Between 0 and 1 is a region where weight
adjustments are smoothed by amount proportional to [3].
The variable Beta () can be used in sigmoidal function BP
to determine the steepness of sigmoid function shape and it
lies in range [0.1-1]. When =0.1, learning is slowly
converge, but when =1, instability may occur. We used
Eq.5 and Eq.6 respectively:
OUT = F(NETj) = 1 / (1 + e-NETj) …….. (5)

F' (NETj) = ×(OUT (1 - OUT)) ………. (6)

B. CascadeForwardNet

These are similar to feed forward networks such as BPNN
with the exception that they have a weight connection from
the input and every previous layer to the following layers.
Fig.2 shows a three-layer network has connections from
layer 1 to layer 2, layer 2 to layer 3, and layer 1 to layer 3.
The three-layer network also has connections from the input
to all three layers [15],[16].

C. FitNet

The function fitting neural networks are also a type of feed
forward networks, which are used to fit an input output

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

relationship. A feed forward network with one hidden layer
and enough neurons in the hidden layers can fit any finite
input-output mapping problem [15][16].

III. IMAGE COMPRESSION/DECOMPRESSION SYSTEM

The design of feed forward ANN for image compression
system involves determining the number of network’s
layers. In this research, we used ANN architecture with
three layers. Three feed forward ANN models
(FeedForwardNet, CascadeForwardNet and FitNet) were
constructed for image compression to obtain good results
for CR and PSNR and reducing the training time. Fig.1
shows the FeedForwardNet and FitNet image
compression/decompression system whereas Fig.2 shows
the CascadeForwardNet image compression/decompression
system. The Feed forward ANN learning process on image
compression requires input, hidden and output layers of
ANN. The learning process is adopted using three ANN
algorithms (FeedForwardNet, Cascade-Forward and FitNet)
using a set of images as training patterns. After finishing the
learning process, the Feed forward ANN image compression
process requires the input and hidden layers. But the image
decompression process requires the hidden and output
layers.

The next step in designing the BPNN involves
determining the number of neurons in each layer. This ANN
is fed by a colored 256×256 image as an input and produces
a compressed code at the hidden layer units. In the
reconstruction process, this ANN model produces a colored
256×256 image by output layer units. The number of
neurons in input layer (Ni) is equal to the number of neurons
in output layer (No). The Ni depends on the dimension of
image sub block (PP).

The input and output layers have Ni units each, and an
intermediate layer with Nh units where Nh is less than Ni.
The number of hidden layer units (Nh) is less than the
number of input layer units. The number of hidden layer
units effects on compression performance of BPNN.

Fig. 1. FeedForwardNet Image Compression [13]

In this research, we suggested to use the same processes
which adopted in our previous research [13] such as: image
normalization and segmentation; initialization BPNN
learning parameters, weight connections); and preparation
of training and testing set.

A. FeedForwardNet Simulation Program

The simulation program of each one of conducted training
algorithm (FeedForwardNet, CascadeForwardNet and
FitNet) includes the following steps:

1) Initialization of network weights, learning rate () and
Threshold error. Set iterations to zero.

2) Open the file which contains the image training set.
3) Total_error = zero; iterations iterations+1
4) Get one vector from file and feed it to input layer units.
5) Initialize the target output of that vector.
6) Calculate the outputs of hidden layer units.
7) Calculate the outputs of output layer units.
8) Calculate the error = desired output – actual output
 Total_error Total_error + error
9) Calculate delta sigma of output neurons. Then adjust

weights between output and hidden layer units.
10) Calculate delta sigma of hidden layer units. Then

adjust weights between hidden and input layer units.
11) While there are more vectors in the file, go to step 4.
12) if Threshold error >= Total_error then stop, otherwise

go to step 3.

B. FeedForwardNet Compression Process

The compression process includes the following steps:
Step 1: Read image pixels from file.
Step 2: Divide the image into non-overlapping blocks.
Step 3: Apply the image block into input layer units.
Step 5: Compute the outputs of hidden layer units by

multiplying the input vector by weight matrix (V).
Step 6: Store hidden layer outputs in a compressed file.
Step 7: While there are more image vectors go to step4.

Fig. 2. Cascade-forward ANN

C. FeedForwardNet Decompression Process

The decompression process includes the following steps:
Step 1: Open the compressed file.
Step 2: Take one vector from the file.

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

Step 3: Compute outputs of output neurons by multiplying
outputs of hidden layer units by weight matrix (W).

Step 5: Take the outputs of output layer units (sub image of
size PP) and put it in its proper location in the
reconstructed file.

Step 8: While there are more vectors in compressed file go
to step2.

IV. EXPERIMENTAL RESULTS

In this research, three simulation programs to implement
FeedForwardNet, CascadeForwardNet and FitNet
algorithms were written using MathLab software. These
programs include the implementation of steps of ANN
compression and decompression system. In this research, we
used 15 colored (256×256=65536) images as shown in
Fig.3 as training set for learning process. We used block
dimension equal (8×8=64) to segment each image into many
blocks. By dividing image size (65536) on the block
dimension (64), we got number of blocks 1024 for each
image. As a result the total number of training blocks of all
images is equal to 15360 (1024×15) to train 15 images.

To check the compression performance, the compression
ratio (CR) and bit per pixel rate (bpp) are calculated. The
CR is the degree of data reduction obtained as a result of
compression process, whereas bpp is the number of bits
required to represent each pixel value of compressed image.

In ANN image compression system, the CR is defined by
the ratio of data fed to the input layer Neurons (Ni) to the
data out from the hidden layer neurons (Nh). The CR can be
expressed as Eq.7

CR = Ni (pixel size in bits) ….….. (7)
 Nh (pixel size in bits)

Also the CR can be computed by the Eq.8:
 CR = (1- (Nh/Ni)) 100% ……….. (8)

After completing the decoding process SNR, PSNR and
Normalized Mean Squared Error (NMSE) must be
calculated between the reconstructed image and original
image to verify the quality of decoded image. The better
compression performance is with the highest CR, the least
bpp rate and highest PSNR [4]. Simulations were conducted
to evaluate the compression and generalization
performances of the conducted ANN image compression
system. The efficiency of this system was tested by several
experiments using real world images.

A. The Effect of Hidden Layer Neurons

The ANN was trained using FeedForwardNet on 15
images (D01, D02,… and D15) with dimension (256×256)
with different numbers of hidden units: 10, 15, 24, 34, 44,
54 and 64 respectively.

Table I shows the impact of number of hidden layer units

on number of training iterations, CR and Bpp. The best
value of CR is obtained when ANN is trained and tested
with 10 hidden numbers of units.

TABLE I

 THE EFFECT OF HIDDEN LAYER NEURONS ON CR
no. of hidden units no. of iterations CR BPP

10 1320 84.37 0.1563
15 1231 76.56 0.2344
24 976 62.5 0.3750
34 931 46.87 0.5313
44 885 31.25 0.6875
54 893 15.62 0.8438
64 854 0 1

At the same time, Table II shows the impact of number of
hidden layer units on RMSE, SNR and PSNR when ANN
was trained using FeedForwaredNet.

TABLE II

 IMPACT OF HIDDEN LAYER NEURONS ON PSNR
No. of hidden

units
RMSE SNR PSNR

10 4.3216 36.234 42.3521
15 3.7652 31.3256 37.5089
24 5.4165 29.4321 36.4322
34 4.3065 28.1879 33.08245
44 4.5643 29.4567 35.4356
54 3.5431 31.3451 35.16616
64 3.7652 32.6834 39.4482

B. Comparisons between Cascaded and FitNet

The feed forward ANN model is trained using
(FeedForwardNet, Cascade-Forward and FitNet) algorithms
separately many times with different number of hidden layer
neurons (Nh) such as 10, 15, 24, 34, 44, 54 and 64
respectively. The trained ANN is tested with one of the
trained images (D01), untrained images (D11) and (D16)
shown in Fig.4. Table III shows the results of three
algorithms according to number of iterations, SNR and
PSNR and RMSE. Because we use the same Ni=64 and
Nh=8, the CR is same for the three algorithms and it is equal
0.1563. Also Bpp is same and equal 84.3750. We note from
Table III that FitNet algorithm has the best results for
PSNR. Fig.5 shows the original trained image (D01) and
reconstructed images after decompressing them with
different Nh when ANN is trained using FitNet algorithm.

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

Fig. 3. The 15 images (256x256) which used for Feed Forward ANN training

Fig. 4. Untrained Images (D11) and (D16) used in ANN Testing

Table IV shows the results of three algorithms
according to number of iterations, SNR and PSNR and
RMSE. Because Ni=64 and Nh=15, the CR is same for
the three algorithms and it is equal 0.2344. Also the Bpp
is same and it is equal 76.5625.

TABLE III

 DIFFERENCES BETWEEN THREE MODELS (NH=8)
Model img Iterations SNR PSNR RMSE

feedforward
net

D01 1320 20.43 24.282 19.60
D11 Test 21.28 25.137 10.72
D16 Test 21.23 21.035 17.11

Cascade-
Forward

D01 1202 22.65 27.542 15.97
D11 Test 25.66 27.637 9.723
D16 Test 22.87 23.874 15.97

FitNet D01 1103 25.76 28.876 11.76
D11 Test 26.22 28.866 9.000
D16 Test 23.98 24.873 14.87

TABLE IV

 DIFFERENCES BETWEEN THREE ANN MODELS (NH=15)
Model img Iterations SNR PSNR RMSE

feedforward
net

D01 1231 23.65 28.883 14.53
D11 Test 24.22 27.228 9.232
D16 Test 24.43 24.463 14.06

Cascade-
Forward

D01 1112 27.54 30.54 12.76
D11 Test 25.00 28.541 8.171
D16 Test 24.99 25.824 13.98

FitNet D01 998 29.98 31.651 10.76
D11 Test 26.11 29.783 7.998
D16 Test 25.76 27.858 11.83

We note from Table IV that the FitNet algorithm has
the best results for PSNR. Table V shows the results of
three algorithms according to number of iterations, SNR
and PSNR and RMSE. Because (Ni=64 and Nh=24), the
CR is same for the three algorithms and it is equal
0.3750. Also the Bpp is same and it is equal 62.5.

TABLE V

 DIFFERENCES BETWEEN THREE ANN MODELS (NH=24)

Model
img Iterati

ons
SNR PSNR RMSE

feedforward
net

D01 976 24.00 31.2558 11.05
D11 Test 27.29 30.8732 7.228
D16 Test 25.00 26.1139 12.61

Cascade-
Forward

D01 892 32.87 34.7724 8.762
D11 Test 29.22 31.2764 7,005
D16 Test 25.83 28.8373 10.27

FitNet D01 789 31.87 36.8273 7.882
D11 Test 30.20 32.2732 6.743
D16 Test 26.29 30.3737 10.00

We note from Table V that the FitNet algorithm has the

best results for PSNR and it needs less time for training
process. Table VI shows results of the three algorithms
according to number of iterations, SNR and PSNR and
RMSE. Because (Ni=64 and Nh=34), the CR is same for
the three algorithms and it is equal 0.5313. Also the Bpp
is same and it is equal 46.8750. We note from Table VI
that the FitNet algorithm has the best results for PSNR.

TABLE VI
DIFFERENCES BETWEEN THREE ANN MODELS (NH=34)

Model
img Iterati

ons
SNR PSNR RMSE

feedforward
net

D01 931 29.12 32.5190 9.562
D11 Test 29.27 31.1311 6.343
D16 Test 27.09 28.5164 10.73

Cascade-
Forward

D01 821 32.98 35.8755 8.005
D11 Test 30.39 33.0232 6.000
D16 Test 28.75 30.8458 9.757

FitNet D01 716 34.98 36.9998 7.988
D11 Test 32.29 35.2829 5.933
D16 Test 29.93 34.3555 8.845

Table VII shows the differences between the three

algorithms according to number of iterations, SNR and
PSNR and RMSE. Because Ni=64 and Nh=44), CR equal
0.6875 and Bpp is equal 31.2500. We note from Table
VII that the FitNet algorithm has the best results for
PSNR and needs less time for training process.

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

D1(original image)

Nh =10, CR=84.37

Nh =15, CR=76.56

Nh =24, CR=62.5

Nh =34, CR=46.87

Nh =44, CR=31.25

Nh =54, CR=15.62

Nh =64, CR=0

Fig. 5. Testing the ANN using image (D01) when it is trained using FitNet

TABLE VII
 DIFFERENCES BETWEEN THREE ANN MODELS (NH=44)

Model
img Iterati

ons
SNR PSNR RMSE

feedforward
net

D01 885 29.99 33.0388 9.007
D11 Test 30.77 32.6262 6.000
D16 Test 26.10 27.9818 9.172

Cascade-
Forward

D01 789 32.87 36.9809 7.987
D11 Test 32.79 35.6388 5.282
D16 Test 26.00 32.8723 8.096

FitNet D01 694 32.00 37.0087 6.987
D11 Test 33.87 37.3855 5.002
D16 Test 27.93 33.2302 7.000

Finally, Table VIII shows the results between the three
algorithms according to number of iterations, SNR and
PSNR and RMSE. Because Ni=64 and Nh=54, the CR is
same for is equal 0.8438. Also the Bpp is same and it is
equal 15.6250. We note from Table VIII that the FitNet
algorithm has the best results for PSNR.

TABLE VIII

 DIFFERENCES BETWEEN THREE ANN MODELS (NH=54)

Model
img Iteratio

ns
SNR PSNR RMSE

feedforward
net

D01 893 31.45 37.9342 8.125
D11 Test 31.37 33.2332 5.139
D16 Test 27.12 28.9970 8.050

Cascade-
Forward

D01 791 32.98 37.9987 7.876
D11 Test 33.37 37.4342 5.006
D16 Test 28.76 31.7651 7.987

FitNet D01 699 33.00 38.0098 6.097
D11 Test 34.82 39.2882 5.000
D16 Test 28.83 32.8842 7.000

From Tables (III, IV, V, VI, VII and VIII) we can note
that the training time of FitNet is less than the training
time of FeedForwardNet and cascade-forward.

V. CONCLUSION

In this research, three feed forward ANN models were
constructed for image compression system. The ANN
architecture for the three models was consisted of input,
hidden and output layers. The FeedForwardNet,
CascadeForward and FitNet algorithms were adopted
separately to train the constructed ANN models. Different
ANN architectures were used for the three ANN models.
This is done by changing the number of hidden layer
neurons to increase compression performance (Bpp and
CR). We used 15 colored (256×256) images for the
training process. Experiments were conducted to check
the performance of each algorithm. The experiments were
based on both trained and untrained images to check the
generalization of feed forward ANN.

The PSNR results obtained by testing the feed
forward ANN which was trained using Fitnet are better
than the PSNR results obtained from ANN which was
trained using FeedForwardNet and cascadForward. At
the same time, the ANN architecture required less
training time for image compression\decompression
system when we used FitNet training algorithm than
when we used FeedForwardNet and Cascade-Forward.
From results, we note that the FitNet algorithm can be
successfully reduced the learning time (convergence
time) in comparison with the FeedForwardNet and
Cascade-Forward. At the same time with maintaining the
reconstructed image performance (CR and PSNR). For
future work, we suggest using other ANN architecture
then we will make comparison with FitNet.

ACKNOWLEDGEMENT

The author would like to thank AL-Zaytoonah
University of Jordan for supporting this research.

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

REFERENCES
[1] R. P. Lippmann. "An Introduction to Computing with Neural

Nets," IEEE ASSP Magazine, vol.4, no.2, April 1987, pp.4-22.
[2] N. K. Ibrahim, R.S.A. Raja Abdullah and M.I. Saripan. "Artificial

Neural Network Approach in Radar Target Classification,"
Journal of Computer Science, vol. 5, no.1, 2009, pp.23-32, ISSN:
1549-3636, Science Publications.

[3] P. D. Wasserman. Neural Computing: Theory and Practice, Van
Nostrand Reinhold Co. New York, NY, USA, 1989, ISBN: 0-442-
20743-3.

[4] R. C. Gonzales and P. Wintz. Digital Image Processing, second
edition, Addison-Wesley Longman Publishing Co., Inc. Boston,
MA, USA, 1987, ISBN: 0-201-11026-1.

[5] Senjuti B.Roy, K. Kausik and S. Jaya, 2005. Edge Preserving
Image Compression Technique Using Adaptive Feed Forward
Neural Network, Proc. of the 9th IASTED International
conference on internet and multimedia systems and applications,
Grindelwald, Switzerland, Feb 2005, pp. 467-471.

[6] Durai S. A. and E .A. Saro, 2006. Image Compression with Back-
propagation Neural Network Using Cumulative Distribution
Function, World Academy of Science, Engineering and
Technology, vol.17, pp. 60-64.

[7] Rafid A. K., 2007. Digital Image Compression Enhancement
Using Bipolar Backpropagation Neural Networks, Al-Rafidain
Engineering, 15(4):40-52.

[8] V.V. Joseph Rajapandian

and N. Gunaseeli. "Modified Standard
Backpropagation Algorithm with Optimum Initialization for
Feedforward Neural Networks," International Journal of Imaging
Science and Engineering (IJISE), vol.1, no.3, July 2007, GA,
USA, ISSN: 1934-9955.

[9] T. Xianghong and L. Yang. "An Image Compressing Algorithm
Based on Classified Blocks with BP Neural Networks," Proc. of
the international conference on computer science and software
engineering, IEEE Computer Society, Wuhan, Hubei, vol. 4, Dec
2008, pp.819-822, DOI: 10.1109/CSSE.2008.1357.

[10] Fatima B. Ibrahim. "Image Compression using Multilayer Feed
Forward Artificial Neural Network and DCT," Journal of Applied
Sciences Research, vol.6, no.10, 2010, pp. 1554-1560.

[11] Veisi H. and M. Jamzad, 2009. A Complexity-Based Approach in
Image Compression Using Neural Networks, International
Journal of Signal Processing, 5(2): 82-92, ISSN: 2070-397X,

[12] C. Tai-Hoon, R. W. Conners and P. A. Araman. "Fast Back-
Propagation Learning Using Steep Activation Functions and
Automatic Weight Reinitialization," Conference Proceedings,
1991 IEEE International Conference on Systems, Man, and
Cybernetics “Decision Aiding for Complex Systems”, Omni
Charlottesville Hotel and University of Virginia, Charlottesville,
Virginia, Vol. 3, 13-16October1991, pp.1587-1592.

[13] Omaima N. A. AL-Allaf. "Improving the Performance of
Backpropagation Neural Network Algorithm for Image
Compression/Decompression System," Journal of Computer
Science, DOI: 10.3844/jcssp.2010.1347.1354, vol.6, Issue.11,
2010, pp. 1347-1354.

[14] Omaima N. A. AL-Allaf, Fast BackPropagation Neural Network
Algorithm for Reducing Convergence Time of BPNN Image
Compression, The 5th International conference on Information
Technology and Multimedia (ICIMµ2011), November 14-16,
2011, Kuala Lumpur, Malaysia.

[15] O. De Jesus and M. T. Hagan, "Backpropagation Algorithms for a
Broad Class of Dynamic Networks," IEEE Transactions on Neural
Networks, vol.18, no.1, pp.14 -27, Jan.2007.

[16] MathWorks, Neural Network Toolbox 7.0, MathWorks
Announces Release 2010a of the MATLAB and Simulink Product
Families, 2010, MathWorks, Inc.
www.mathworks.com/trademarks.

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

