
 

 
Abstract— The backpropagation neural network algorithm 
(BP) was used largely in image and signal processing. The BP 
requires long time to train the BPNN with small error. 
Therefore, in this research, three Artificial Neural Networks 
models (ANNs) were constructed. Three algorithms: 
FeedForwardNet, CascadeForwardNet and FitNet were 
adopted to train the three constructed ANNs models 
separately.  
Each one of constructed models consists of input layer to input 
the original image, hidden layer to produce the compressed 
image and finally output layer for decompressed image. The 
training and testing performance of the constructed models 
with different architecture were compared to identify the 
model with best compression ratio (CR) and Peak to Signal to 
Noise Ratio (PSNR). From experiments, we noted that the 
better results are obtained when we used the FitNet ANN 
model. According to results, the performance of constructed 
FitNet ANN for image compression can be increased by 
changing the number of hidden layer neurons. 

 
Index Terms— Image Compression, Artificial Neural 

Networks, Backpropagation Neural Network, 
FeedForwardNet, Cascade-ForwardNet,  FitNet 
 
 

I. INTRODUCTION 

Artificial Neural Networks (ANNs) are composed of 

interconnected neurons that operate in parallel and 
connected together via weights [1]. ANNs have been used 
in different applications such as: pattern classification, 
image and signal processing [2]. The backpropagation 
neural network (BPNN) is a multi-layer feed forward 
ANNs. BPNN is useful only when the network architecture 
is chosen correctly. Too small network cannot learn the 
problem well, but too large size will lead to over fitting and 
poor generalization performance [1]. The backpropagation 
algorithm (BP) can be used to train the BPNN image 
compression but its drawback is slow convergence. Many 
approaches have been carried out to improve the speed of 
convergence [3]. Image compression is a representation of 
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an image with fewer bits to reduce the probability of 
transmission errors [4]. Many literatures discussed the use 
of different ANN architectures and training algorithms for 
image compression to improve the speed of convergence 
and provide high compression ratio (CR) and high Peak 
Signal to Noise Ratio (PSNR).  Roy et al. (2005) [5] 
developed an edge preserving image compression technique 
using one hidden layer feed forward BPNN. Edge detection 
and multi-level thresholding operations are applied to 
reduce the image size. The processed image block is fed as 
single input pattern while single output pattern has been 
constructed from the original image. Their experiment 
achieved SNR (0.3013) and CR (30:1) when they applied 
their approach on Lena image. And, Durai and Saro (2006) 
[6] suggested mapping the gray levels of the image pixels 
and their neighbors in such a way that the difference in gray 
levels of neighbors with the pixel is minimized and then the 
CR and network convergence can be improved. They 
achieved that by estimating Cumulative Distribution 
Function (CDF) for image to map the image pixels. Then, 
BPNN yields high CR and converges quickly. Their 
experiments achieved CR (4:1) and PSNR (28.91) when they 
applied this approach on (256×256) Lena image.  And, Rafid 
(2007) [7] proposed a bipolar sigmoidal BP (PPB) to train a 
feed forward auto associative NN. Their method includes 
steps to break down large images into smaller windows for 
compression process. Experiments have been achieved CR 
(8:1) and PSNR (29.0) on applying PPB with number of 
hidden units equal 16 on (256×256) Lena image. 

While, Rajapandian and Gunaseeli (2007) [8] proposed 
modified Backpropagation algorithm (MBP) approach for 
learning process of BPNN with optimum initialization. The 
MBP consists of minimizing the sum of squares of linear 
and non-linear errors for all output units for an efficient 
process in ANN. They used proper method for weight 
initialization for good ANN training.  And, Xianghong and 
Yang (2008) [9] used BPNN for image compression and 
developed algorithm based on BP. The blocks of original 
image are classified into three classes: background blocks, 
object blocks and edge blocks, considering the features of 
intensity change and visual discrimination. Experiments 
have been achieved: CR (3.156:1) and PSNR (41.209) on 
applying this approach with number of hidden units (8) on 
(256×256) Lena image. 

Whereas, Fatima (2010) [10] suggested to use multi-layer 
ANN for image compression. This is done by breaking 
down large images into smaller windows and applies 
Discrete Cosine Transform (DCT) to these windows. The 
input pixels will be used as target values so that assigned 
mean square error can be obtained.  
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And, Veisi and Jamzad (2009) [11] presented an adaptive 
BPNN for image compression based on image complexity 
level by dividing image into blocks, computing complexity 
of each block and then selecting one network for each block 
according to its complexity value. They used three 
complexity measure methods: entropy, activity and pattern-
based to determine the level of complexity in image blocks. 
They used best-SNR approach in selecting compressor 
network for image blocks which chooses one of the trained 
networks. Their experiments achieved CR (3.156:1) and 
PSNR (34.92) on applying the approach with number of 
hidden units (8) on (256×256) Lena image.   

The most important problems that must be solved by 
researchers are: determining the ANN network architecture, 
learning parameters and network weights. Therefore, Tai-
Hoon et, al. (1991) [12] adopted learning algorithm based 
on BP algorithm to speed up the learning process by 
employing the steepness of activation function. This 
algorithm can converge faster than the BP on some 
problems but may suffer from increased instability and they 
frequently fail to converge within a finite time. The cause 
for the instability is an inappropriate choice for initial 
weights. To overcome the instability, it is proposed that 
weight re-initialization be used whenever the convergence 
speed becomes very slow. 

O. AlAllaf (2010) [13] suggested many steps to improve 
the convergence time for learning the BPNN image 
compression system. This is done by modifying the BPNN 
architecture, modifying the BP learning parameters such as 
learning rate and momentum variable, adding Bais variable, 
controlling the weights between the layers and so on. 
Results have been achieved: CR (32:1) and PSNR (44.50) 
on applying this approach on (256×256) Lena image with 
8×8 block dimension and number of hidden neurons equal 
2. In another research O. AlAllaf (2011) [14], designed a 
three layered BPNN for building image compression 
system. The Fast backpropagation neural network algorithm 
(FBP) was used for training process to reduce the 
convergence time. Many techniques were used to improve 
the use of FBP by: using different BPNN architecture; using 
different FBP parameters. Finally, FBP results such as CR 
and PSNR are compared with BP results. From the results, 
we noticed that the use of FBP improve the BPNN training 
by reducing the convergence time of learning process. 

According to literature studies, we need image 
compression technique that leads to: less storage 
requirements; less BPNN training time; and best PSNR and 
CR. In this research, three Feed Forward ANN architectures 
were built for image compression system. We adopted three 
algorithms: FeedForwardNet, CascadeForwardNet and 
FiNet to train the three architectures. Finally, comparisons 
between the results of the three algorithms were conducted. 
The research is organized as follows: section II describes 
the feed forward ANN architectures. Section III includes 
details about image compression and decompression system. 
Section IV describes the results in details. Finally, section V 
concludes this work. 

II. FEED FORWARD ANN ARCHITECTURES  

A. FeedForwardNet  

Static feed forward ANN has no feedback elements and 
contains no delays as shown in Fig.1. The output is 

calculated directly from the input through feed forward 
connections like BP and Cascade BPNN. The number of 
connections between each two layers in BPNN is calculated 
by multiplying the total number of neurons of the two 
layers, then adding the number of bias neurons connections 
of the second layer. If there are Ni neurons in input layer, 
Nh neurons in hidden layer and No neurons in output layer, 
the total number of connections is given by equation: 
Network Size(Nw)= [(NiNh)+Nh]+[(NhNo)+No]  ... (1) 

A bias unit is added as a part of every BPNN layer but not 
the output layer. This unit has a constant value of 1 and it is 
connected to all units in next layer. The weights on these 
connections can be trained in the same way as other 
weights. The bias units provide a constant term in the 
weighted sum of units in the next layer to improve the 
convergence time. It contributes a constant term in 
summation of products (NETj) which is the operand in 
sigmoid function as shown in Eq.2: 

N

j i j i  j
i 1

N E T X W  


     …. (2) 

Momentum variable () improves the BP training time and 
enhancing training stability. It involves adding a term to 
weight adjustment that is proportional to amount of previous 
weight change. We used Eq.3 and Eq.4 [3] respectively: 

new old q new
ji ji jiW   W    [ W ]      ...  (3) 

 
q new q q 1 q old
ji i j ji[ W ]      O      [ W ]        …  (4) 

 

Where,  is the momentum variable in the range 0.0-1.0, but 
it is set to around 0.9. By using momentum, the network 
tends to follow the bottom of narrow gullies in error surface 
rather than crossing rapidly from side to side. If  is 0.0, 
then the smoothing is minimum; the entire weight 
adjustment comes from the newly calculated change. If  is 
1.0, the new adjustment is ignored and previous one is 
repeated. Between 0 and 1 is a region where weight 
adjustments are smoothed by amount proportional to  [3]. 
The variable Beta () can be used in sigmoidal function BP 
to determine the steepness of sigmoid function shape and it 
lies in range [0.1-1]. When =0.1, learning is slowly 
converge, but when =1, instability may occur. We used 
Eq.5 and Eq.6 respectively:  
OUT = F(NETj) = 1 / (1 + e-NETj)                    …….. (5) 
 

F' (NETj) = ×(OUT (1 - OUT))                     ………. (6) 
     

B. CascadeForwardNet 

These are similar to feed forward networks such as BPNN 
with the exception that they have a weight connection from 
the input and every previous layer to the following layers.  
Fig.2 shows a three-layer network has connections from 
layer 1 to layer 2, layer 2 to layer 3, and layer 1 to layer 3. 
The three-layer network also has connections from the input 
to all three layers [15],[16]. 
 
C. FitNet 

The function fitting neural networks are also a type of feed 
forward networks, which are used to fit an input output 
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relationship. A feed forward network with one hidden layer 
and enough neurons in the hidden layers can fit any finite 
input-output mapping problem [15][16]. 

III. IMAGE COMPRESSION/DECOMPRESSION SYSTEM  

The design of feed forward ANN for image compression 
system involves determining the number of network’s 
layers. In this research, we used ANN architecture with 
three layers. Three feed forward ANN models 
(FeedForwardNet, CascadeForwardNet and FitNet) were 
constructed for image compression to obtain good results 
for CR and PSNR and reducing the training time. Fig.1 
shows the FeedForwardNet and FitNet image 
compression/decompression system whereas Fig.2 shows 
the CascadeForwardNet image compression/decompression 
system. The Feed forward ANN learning process on image 
compression requires input, hidden and output layers of 
ANN. The learning process is adopted using three ANN 
algorithms (FeedForwardNet,  Cascade-Forward and FitNet) 
using a set of images as training patterns. After finishing the 
learning process, the Feed forward ANN image compression 
process requires the input and hidden layers. But the image 
decompression process requires the hidden and output 
layers. 

The next step in designing the BPNN involves 
determining the number of neurons in each layer. This ANN 
is fed by a colored 256×256 image as an input and produces 
a compressed code at the hidden layer units. In the 
reconstruction process, this ANN model produces a colored 
256×256 image by output layer units. The number of 
neurons in input layer (Ni) is equal to the number of neurons 
in output layer (No). The Ni depends on the dimension of 
image sub block (PP).  

The input and output layers have Ni units each, and an 
intermediate layer with Nh units where Nh is less than Ni. 
The number of hidden layer units (Nh) is less than the 
number of input layer units. The number of hidden layer 
units effects on compression performance of BPNN. 

  

Fig. 1. FeedForwardNet Image Compression [13] 

 

In this research, we suggested to use the same processes 
which adopted in our previous research [13] such as: image 
normalization and segmentation; initialization BPNN 
learning parameters, weight connections); and preparation 
of training and testing set. 
 
A. FeedForwardNet Simulation Program 

The simulation program of each one of conducted training 
algorithm (FeedForwardNet, CascadeForwardNet and 
FitNet) includes the following steps: 

1)  Initialization of network weights, learning rate () and 
Threshold error. Set iterations to zero. 

2) Open the file which contains the image training set. 
3) Total_error = zero; iterations  iterations+1 
4) Get one vector from file and feed it to input layer units. 
5) Initialize the target output of that vector. 
6) Calculate the outputs of hidden layer units. 
7) Calculate the outputs of output layer units. 
8) Calculate the error = desired output – actual output  
      Total_error  Total_error + error 
9) Calculate delta sigma of output neurons. Then adjust 

weights between output and hidden layer units. 
10) Calculate delta sigma of hidden layer units. Then 

adjust weights between hidden and input layer units. 
11) While there are more vectors in the file, go to step 4. 
12) if Threshold error >= Total_error then stop, otherwise 

go to step 3. 
 

B. FeedForwardNet Compression Process 

The compression process includes the following steps: 
Step 1: Read image pixels from file. 
Step 2: Divide the image into non-overlapping blocks. 
Step 3: Apply the image block into input layer units. 
Step 5: Compute the outputs of hidden layer units by 

multiplying the input vector by weight matrix (V). 
Step 6: Store hidden layer outputs in a compressed file.  
Step 7: While there are more image vectors go to step4. 

 
Fig. 2. Cascade-forward ANN 

 

C. FeedForwardNet Decompression Process 

The decompression process includes the following steps: 
Step 1: Open the compressed file. 
Step 2: Take one vector from the file. 

Proceedings of the World Congress on Engineering 2012 Vol II 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



 

Step 3:  Compute outputs of output neurons by multiplying 
outputs of hidden layer units by weight matrix (W). 

Step 5: Take the outputs of output layer units (sub image of 
size PP) and put it in its proper location in the 
reconstructed file. 

Step 8: While there are more vectors in compressed file go 
to step2. 

 

IV. EXPERIMENTAL RESULTS 

In this research, three simulation programs to implement 
FeedForwardNet, CascadeForwardNet and FitNet 
algorithms were written using MathLab software. These 
programs include the implementation of steps of ANN 
compression and decompression system. In this research, we 
used 15 colored (256×256=65536) images as shown in 
Fig.3 as training set for learning process. We used block 
dimension equal (8×8=64) to segment each image into many 
blocks. By dividing image size (65536) on the block 
dimension (64), we got number of blocks 1024 for each 
image. As a result the total number of training blocks of all 
images is equal to 15360 (1024×15) to train 15 images.  

To check the compression performance, the compression 
ratio (CR) and bit per pixel rate (bpp) are calculated. The 
CR is the degree of data reduction obtained as a result of 
compression process, whereas bpp is the number of bits 
required to represent each pixel value of compressed image.   

In ANN image compression system, the CR is defined by 
the ratio of data fed to the input layer Neurons (Ni) to the 
data out from the hidden layer neurons (Nh). The CR can be 
expressed as Eq.7 

 
CR =   Ni  (pixel size in bits)    ….…..     (7) 
            Nh  (pixel size in bits)  

 
 

Also the CR can be computed by the Eq.8: 
               CR = (1- (Nh/Ni))  100%        ………..  (8) 
 

After completing the decoding process SNR, PSNR and 
Normalized Mean Squared Error (NMSE) must be 
calculated between the reconstructed image and original 
image to verify the quality of decoded image. The better 
compression performance is with the highest CR, the least 
bpp rate and highest PSNR [4]. Simulations were conducted 
to evaluate the compression and generalization 
performances of the conducted ANN image compression 
system. The efficiency of this system was tested by several 
experiments using real world images. 

A. The Effect of Hidden Layer Neurons  

The ANN was trained using FeedForwardNet on 15 
images (D01, D02,… and D15) with dimension (256×256)  
with different numbers of hidden units: 10, 15, 24, 34, 44, 
54 and 64 respectively.  

 
Table I shows the impact of number of hidden layer units 

on number of training iterations, CR and Bpp. The best 
value of CR is obtained when ANN is trained and tested 
with 10 hidden numbers of units.  

 
TABLE I 

 THE EFFECT OF HIDDEN LAYER NEURONS ON CR 
no. of hidden units no. of iterations CR BPP 

10 1320 84.37 0.1563 
15 1231 76.56 0.2344 
24 976 62.5 0.3750 
34 931 46.87 0.5313 
44 885 31.25 0.6875 
54 893 15.62 0.8438 
64 854 0 1 

 

At the same time, Table II shows the impact of number of 
hidden layer units on RMSE, SNR and PSNR when ANN 
was trained using FeedForwaredNet.   

 
TABLE II 

 IMPACT OF HIDDEN LAYER NEURONS ON PSNR 
No. of hidden 

units 
RMSE SNR PSNR 

10 4.3216 36.234 42.3521 
15 3.7652 31.3256 37.5089 
24 5.4165 29.4321 36.4322 
34 4.3065 28.1879 33.08245 
44 4.5643 29.4567 35.4356 
54 3.5431 31.3451 35.16616 
64 3.7652 32.6834 39.4482 

 

B. Comparisons between Cascaded and FitNet  

The feed forward ANN model is trained using 
(FeedForwardNet, Cascade-Forward and FitNet) algorithms 
separately many times with different number of hidden layer 
neurons (Nh) such as 10, 15, 24, 34, 44, 54 and 64 
respectively.  The trained ANN is tested with one of the 
trained images (D01), untrained images (D11) and (D16) 
shown in Fig.4. Table III shows the results of three 
algorithms according to number of iterations, SNR and 
PSNR and RMSE. Because we use the same Ni=64 and 
Nh=8, the CR is same for the three algorithms and it is equal 
0.1563. Also Bpp is same and equal 84.3750. We note from 
Table III that FitNet algorithm has the best results for 
PSNR.  Fig.5 shows the original trained image (D01) and 
reconstructed images after decompressing them with 
different Nh when ANN is trained using FitNet algorithm. 
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Fig. 3. The 15 images (256x256) which used for Feed Forward ANN training 

 
Fig. 4. Untrained Images (D11) and (D16) used in ANN Testing 

 

Table IV shows the results of three algorithms 
according to number of iterations, SNR and PSNR and 
RMSE. Because Ni=64 and Nh=15, the CR is same for 
the three algorithms and it is equal 0.2344. Also the Bpp 
is same and it is equal 76.5625.   

 
TABLE III 

 DIFFERENCES BETWEEN THREE MODELS (NH=8) 
Model img Iterations SNR PSNR RMSE 

feedforward 
net 

D01 1320 20.43 24.282 19.60 
D11 Test 21.28 25.137 10.72 
D16 Test 21.23 21.035 17.11 

Cascade-
Forward 

D01 1202 22.65 27.542 15.97 
D11 Test 25.66 27.637 9.723 
D16 Test 22.87 23.874 15.97 

FitNet D01 1103 25.76 28.876 11.76 
D11 Test 26.22 28.866 9.000 
D16 Test 23.98 24.873 14.87 

 
TABLE IV 

 DIFFERENCES BETWEEN THREE ANN MODELS (NH=15) 
Model img Iterations SNR PSNR RMSE 

feedforward 
net 

D01 1231 23.65 28.883 14.53 
D11 Test 24.22 27.228 9.232 
D16 Test 24.43 24.463 14.06 

Cascade-
Forward 

D01 1112 27.54 30.54 12.76 
D11 Test 25.00 28.541 8.171 
D16 Test 24.99 25.824 13.98 

FitNet D01 998 29.98 31.651 10.76 
D11 Test 26.11 29.783 7.998 
D16 Test 25.76 27.858 11.83 

We note from Table IV that the FitNet algorithm has 
the best results for PSNR. Table V shows the results of 
three algorithms according to number of iterations, SNR 
and PSNR and RMSE.  Because (Ni=64 and Nh=24), the 
CR is same for the three algorithms and it is equal 
0.3750. Also the Bpp is same and it is equal 62.5.   

 
TABLE V 

 DIFFERENCES BETWEEN THREE ANN MODELS (NH=24) 

Model 
img Iterati

ons 
SNR PSNR RMSE 

feedforward 
net 

D01 976 24.00 31.2558 11.05 
D11 Test 27.29 30.8732 7.228 
D16 Test 25.00 26.1139 12.61 

Cascade-
Forward 

D01 892 32.87 34.7724 8.762 
D11 Test 29.22 31.2764 7,005 
D16 Test 25.83 28.8373 10.27 

FitNet D01 789 31.87 36.8273 7.882 
D11 Test 30.20 32.2732 6.743 
D16 Test 26.29 30.3737 10.00 

 
We note from Table V that the FitNet algorithm has the 

best results for PSNR and it needs less time for training 
process. Table VI shows results of the three algorithms 
according to number of iterations, SNR and PSNR and 
RMSE. Because (Ni=64 and Nh=34), the CR is same for 
the three algorithms and it is equal 0.5313. Also the Bpp 
is same and it is equal 46.8750.  We note from Table VI 
that the FitNet algorithm has the best results for PSNR.  

 
 

TABLE VI  
DIFFERENCES BETWEEN THREE ANN MODELS (NH=34) 

Model 
img Iterati

ons 
SNR PSNR RMSE 

feedforward 
net 

D01 931 29.12 32.5190 9.562 
D11 Test 29.27 31.1311 6.343 
D16 Test 27.09 28.5164 10.73 

Cascade-
Forward 

D01 821 32.98 35.8755 8.005 
D11 Test 30.39 33.0232 6.000 
D16 Test 28.75 30.8458 9.757 

FitNet D01 716 34.98 36.9998 7.988 
D11 Test 32.29 35.2829 5.933 
D16 Test 29.93 34.3555 8.845 

 

 
Table VII shows the differences between the three 

algorithms according to number of iterations, SNR and 
PSNR and RMSE. Because Ni=64 and Nh=44), CR equal 
0.6875 and Bpp is equal 31.2500.   We note from Table 
VII that the FitNet algorithm has the best results for 
PSNR and needs less time for training process.   
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D1(original image) 

 
Nh =10, CR=84.37 

 
Nh =15, CR=76.56 

 
Nh =24, CR=62.5 

 
Nh =34, CR=46.87 

 
Nh =44, CR=31.25 

 
Nh =54, CR=15.62 

 
Nh =64, CR=0 

Fig. 5. Testing the ANN using image (D01) when it is trained using FitNet 

TABLE VII 
 DIFFERENCES BETWEEN THREE ANN MODELS (NH=44) 

Model 
img Iterati

ons 
SNR PSNR RMSE 

feedforward 
net 

D01 885 29.99 33.0388 9.007 
D11 Test 30.77 32.6262 6.000 
D16 Test 26.10 27.9818 9.172 

Cascade-
Forward 

D01 789 32.87 36.9809 7.987 
D11 Test 32.79 35.6388 5.282 
D16 Test 26.00 32.8723 8.096 

FitNet D01 694 32.00 37.0087 6.987 
D11 Test 33.87 37.3855 5.002 
D16 Test 27.93 33.2302 7.000 

 

Finally, Table VIII shows the results between the three 
algorithms according to number of iterations, SNR and 
PSNR and RMSE. Because Ni=64 and Nh=54, the CR is 
same for is equal 0.8438. Also the Bpp is same and it is 
equal 15.6250.  We note from Table VIII that the FitNet 
algorithm has the best results for PSNR.  

 
TABLE VIII 

 DIFFERENCES BETWEEN THREE ANN MODELS (NH=54) 

Model 
img Iteratio

ns 
SNR PSNR RMSE 

feedforward 
net 

D01 893 31.45 37.9342 8.125 
D11 Test 31.37 33.2332 5.139 
D16 Test 27.12 28.9970 8.050 

Cascade-
Forward 

D01 791 32.98 37.9987 7.876 
D11 Test 33.37 37.4342 5.006 
D16 Test 28.76 31.7651 7.987 

FitNet D01 699 33.00 38.0098 6.097 
D11 Test 34.82 39.2882 5.000 
D16 Test 28.83 32.8842 7.000 

 

From Tables (III, IV, V, VI, VII and VIII) we can note 
that the training time of FitNet is less than the training 
time of FeedForwardNet and cascade-forward. 
 

V. CONCLUSION 

In this research, three feed forward ANN models were 
constructed for image compression system. The ANN 
architecture for the three models was consisted of input, 
hidden and output layers. The FeedForwardNet, 
CascadeForward and FitNet algorithms were adopted 
separately to train the constructed ANN models. Different 
ANN architectures were used for the three ANN models. 
This is done by changing the number of hidden layer 
neurons to increase compression performance (Bpp and 
CR). We used 15 colored (256×256) images for the 
training process. Experiments were conducted to check 
the performance of each algorithm. The experiments were 
based on both trained and untrained images to check the 
generalization of feed forward ANN. 

The PSNR results obtained by testing the feed 
forward ANN which was trained using Fitnet are better 
than the PSNR results obtained from ANN which was 
trained using FeedForwardNet and cascadForward.  At 
the same time, the ANN architecture required less 
training time for image compression\decompression 
system when we used FitNet training algorithm than 
when we used FeedForwardNet and Cascade-Forward. 
From results, we note that the FitNet algorithm can be 
successfully reduced the learning time (convergence 
time) in comparison with the FeedForwardNet and 
Cascade-Forward. At the same time with maintaining the 
reconstructed image performance (CR and PSNR). For 
future work, we suggest using other ANN architecture 
then we will make comparison with FitNet. 
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