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Abstract— Radial Harmonic Fourier Moments (RHFMs) are 

one of the best rotation invariant orthogonal moments which 
are used in many pattern recognition and image processing 
applications. They are preferred over Zernike moments (ZMs) 
because of their computational efficiency. Like ZMs, the 
existing approach for the computation of RHFMs suffers from 
two major errors- the geometric error and the numerical 
integration error. We propose a computational framework 
based on Gaussian numerical integration which reduces both 
errors. The proposed approach is as simple as the existing 
approach in terms of its implementation. The enhanced 
accuracy of RHFMs results in better image reconstruction and 
improvement in rotation and scale invariance. 
 

Index Terms— Radial harmonic Fourier moments; 
Geometric error; Numerical integration error; Rotation 
invariance; Scale invariance. 

I. INTRODUCTION 

nvariance of features in the presence of basic 
transformations is a basic requirement in many image 
processing applications. There are various radial moment 

based methods which can identify a pattern in terms of 
certain features. Some of these moments like the Zernike 
moments (ZMs), Pseudo Zernike moments (PZMs), 
Orthogonal Fourier–Mellin moments (OFMMs) and Radial 
Harmonic Fourier Moments (RHFMs) possess the property 
of being invariant to rotation and can be made invariant to 
translation and scale after geometric transformations [1]. 
RHFMs are better rated in comparison with other moments 
because they are less computational intensive as compared 
to other moments [2]. These moments also satisfy the 
orthogonality condition. Orthogonality of the kernels means 
that an image is projected onto a set of pairwise orthogonal 
axes, hence the overlapping of information is minimal. The 
orthogonality property also enables the separation of 
individual contribution of moment of each order to the 
image reconstruction process. Therefore, the number of 
moments required to reconstruct an image is much less than 
those obtained from non-orthogonal kernels. Due to these 
characteristics, RHFMs are popular with various 
applications like image reconstruction [1], character 
reconstruction [2], image recognition [3], cell image 
recognition [4], tumor cell recognition [5], image 
description [6], etc. 
The conventional direct method which depends on zeroth 
order approximation produces geometric error and 
numerical integration error in RHFMs calculation, which is 
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a common problem with the radial moments. Therefore, 
using the existing computation method, some of the 
moments magnitudes are not truly rotationally invariant. 
Furthermore, the existing errors have such a negative impact 
on the image analysis and reconstruction that when the order 
of moments reaches a high value, the resulting 
reconstruction error becomes intolerable. By inscribing the 
circle inside square image, the information loss occurs due 
to the inexact approximation of the circular boundary of the 
image [2]. To overcome the geometric error, Wee and 
Paramesran [7] proposed an alternative mapping technique 
for ZMs in which the complete image is contained inside the 
unit disk. Therefore, all pixels are involved in the 
computation of radial moments. However, this enhances the 
domain of calculation. The second source of error arises 
from sampling the kernel functions of moments at pixel 
center, which is referred to as the numerical integration 
error. The higher order moments which are mainly affected 
by numerical integration error, are required for better 
representation of an image and for its accurate 
reconstruction. The geometric error and numerical 
integration error are more pronounced in small images. 
Therefore, applications such as optical character recognition 
and template matching in which small images are used, are 
more prone to these errors when RHFMs are used as 
features. Numerical instability is another problem which is 
observed in moment calculation. Numerical instability 
occurs when the images are small and moment orders are 
high. The traditional zeroth order approximation of RHFMs 
calculation makes RHFMs numerically instable for moment 
order 10maxp  for inscribed disk and 20maxp  for outer 

disk for 6464  pixel images. 
In this paper, we propose a novel approach for accurate 
calculation of RHFMs by using numerical integration 
technique, which not only reduces the numerical integration 
error but also reduces geometric error for inscribed circular 
disk. We prefer Gaussian quadrature method over other 
numerical integration techniques as it is one of the best 
numerical integration techniques which provides more 
accurate solution as compared to any other numerical 
integration for the same number of sampling points [8]. 
Recently, we have applied numerical integration techniques 
for the accurate computation of ZMs [9]. The enhanced 
accuracy of ZMs results in its improved invariance and 
image reconstruction. Motivated by the success of accurate 
computation of ZMs, we extend the method to RHFMs. The 
RHFMs possess distinct advantage over ZMs in terms of 
computation efficiency. Therefore, in applications where the 
accuracy and speed are the major considerations the 
accurate computation of RHFMs becomes indispensable in 
many image processing applications. 
The rest of the paper is structured as follows. Section II 
provides an overview of the RHFMs and the existing 
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common approach for its computation. The proposed 
accurate computation of RHFMs is discussed in Section III. 
Detail experimental results showing the improvement in the 
performance of the proposed approach are illustrated in 
Section IV. Conclusion is given in Section V. 

II. RADIAL HARMONIC FOURIER MOMENTS 

The RHFMs of order p  and repetition q  with 

00  qandp
 
for a continuous function ),( rf  over a 

unit disk are defined as [2] 
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The radial kernel functions are defined by 
























oddprp
r

evenppr
r

p
r

rRp

,))1(sin(
2

,)cos(
2

0,
1

)(



                      (3) 

The orthogonal property for radial kernel is given as   
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The orthogonality of basis function is given as 




''
*

''

2

0

1

0

2),(),( qqppqppq rdrdrVrV               (5) 

for p=pmax, the total number of RHFMs is 
  qp maxmax 211  . 

In digital image processing, the image function ),( rf  is 
discrete and defined in a rectangular domain with the pixel 
locations identified by the row and column arrangement. Let 

),( ki  be a pixel, the index i denotes the row position and k 

the column, with ,1,...,1,0,  Nki  where the resolution 

of the image is NN   pixels. The top left corner of the 
rectangular domain represents the origin )0,0(  of the 

image. We map the pixel location ),( ki  into the 

coordinates within the unit disk using the following 
transformation 
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The coordinate ),( yx ki  represents the center of the ),( ki  

pixel grid with the two opposite vertices defined by 
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centers of two pixels which are expressed as 
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The RHFMs can now be described in the Cartesian 
coordinates and their discrete formulation can be facilitated 
by converting Eq.(1) into Cartesian system defined by 
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Equation (9) can be derived from Eq.(1) after replacing 

yxr 22  and   by )(tan 1 xy . The discrete 

implementation of Eq.(9) assumes the form 
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It is difficult to derive an analytical solution to the double 
integration on the r.h.s of Eq. (10), therefore, normally a 
zeroth order approximation is considered for its evaluation. 
This leads to 
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When ,ND   then the inscribed disk is used for the 

computation and some of the pixels whose centers fall 
outside the disk are left out in the process of moment 
calculation. This results in what is commonly known as the 
geometric error. The zeroth order approximation of the 
double integration leads to another error called the 
numerical integration error. The geometric error is 
eliminated when the outer disk enclosing the complete 
square image is considered which is represented by taking

,2ND   because for this computational framework the 

condition 122  yx ki  is satisfied for all image pixels. The 

two conditions, i.e., ND  and ,2ND   are elaborated in 
Fig. 1, where Fig.1(a) represents an 88  image grid, 
Fig.1(b) depicts the mapping of image pixels for  ,ND   
and Fig.1(c) represents the case when  2ND  . Clearly, in 
Fig.1(b) some of the image pixels which do not satisfy the 

condition 122  yx ki  are left out in the process of moment 

computation.

 

                          
        (a)                              (b)                              (c)   

Fig.1: (a) An 88   image grid, (b) inscribed circle approximated by square grids, (c) outer circle containing the whole square image. 
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Suppose that moments of all orders maxpp   and repetition 

maxqq   are given, then the image is reconstructed as 

follows 
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The image reconstruction error   is defined by 
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III. ACCURATE COMPUTATION OF RHFMS 

The zeroth order approximation of the double integration 
leads to numerical integration error. The magnitude of the 
numerical integration error is not known. However, it is 
expected to be high for high orders of p and q. We analyze 
this fact by noting that the kernel functions of RHFMs are 
sinusoidal functions which have 2p number of zeros in the 
interval ]1,0[r  for the radial kernels and 2q number of 

zeros for the angular functions for ]2,0[   . When p or q 

is high the rate of change of function in the interval ]1,0[  or 

]2,0[   will be proportionally high. This trend is depicted in 

Fig.2 which demonstrates the variation of )(rRp  w.r.t. r for 

various values of p. Another important characteristics of the 
radial kernel function is their singular behavior at 0r . 
These characteristics lead to the inaccuracy and numerical 
instability in the computation of RHFMs especially for the 
high values of p and q. In order to alleviate these problems 
we resort to the numerical integration of the kernel 
functions. There are several methods for the numerical 
integration but it is reported that the Gaussian quadrature 

method is the best method [8]. Let )(xf  be an 1-D 

function, then its numerical integration in the interval ],[ ba   

is given by 
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where wi  and ti  are the known weights and the location of 
sampling points and n is the order of the numerical 
integration. There are standard procedures to find the values 
of  wi  and ti  for a given n [8]. The values of wi  are fixed 

and 2
1

0
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
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n

i
iw . The values of ti  can be expressed in terms of 

the limits of the integration a and b. For a quick reference 
we provide these values in Table 1 for 1n  through 10. It 
may be noted that for 1n , the zeroth order approximation 
of the integration is obtained. The 2-D formulation of the 
numerical integration of ),( yxf  is expressed as 
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We can now accurately compute RHFMs by resorting to 
Gaussian numerical integration of the double integration in 
Eq.(10) 
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The constraint given in Eq.(16) is an improvement over the 
constraint 122  ki yx  used in the zeroth order 

approximation for inscribe circular disk. This constraint also 
allows those grids to take part in computation whose center 
fall outside the circle but the sampling point fall within the 
unit disk. It is also interesting to observe that the 
implementation of Eq.(16) is as simple as Eq.(11) except for 
the two extra summation operations which account for the 
new sampling locations. 
 

 
Fig. 2: )(rR p of RHFMs for various orders p. 

Table 1 Weights and location of sampling points for nn  point Gaussian 
integration.  
n     wi      ti  n     wi      ti 
1 2.0 0.0    8 0.10122853 

0.22238103 
0.31370665 
0.36268378 

±0.96028987 
±0.79666648 
±0.52553241 
±0.18343464 

2 1.0 ±0.57735027  
3 0.55555556 

0.88888889 
±0.77459667 
   0.0 

 

4 0.34785485 
0.65214515 

±0.86113631 
±0.33998104 

 9 0.08127439 
0.18064816 
0.26061070 
0.31234708 
0.33023935 

±0.96816024 
±0.83603111 
±0.61337143 
±0.32425342 
  0.0 

5 0.23692688 
0.47862867 
0.56888889 

±0.90617985 
±0.53846931 
   0.0 

 

6 0.17132449 
0.36076157 
0.46791393 

±0.93246951 
±0.66120939 
±0.23861919 

 10 0.06667134 
0.14945135 
0.21908636 
0.26926672 
0.29552422 

±0.97390653 
±0.86506337 
±0.67940957 
±0.43339539 
±0.14887434 
 

7 0.12948497 
0.27970539 
0.38183005 
0.41795918 

±0.94910791 
±0.74153119 
±0.40584515 
  0.0 

 

 

IV. EXPERIMENTAL ANALYSIS 

The computational framework presented in this paper is 
implemented in Visual C++6.0 under Windows environment 
on a PC with 3.0 GHz CPU and 3GB RAM. We take twelve 
standard gray scale images which are normally used for 
various image processing analysis [7]. The images which are 

256256  pixels, are resized to 6464  pixels in order to 
highlight the effect of geometric and numerical integration 
error in smaller images. The accuracy of RHFMs is 
measured in terms of image reconstruction capability, 
reconstruction error, rotation and scale invariance 

A. Image Reconstruction and Reconstruction Error 

Image reconstruction capability is one of the major 
characteristics of orthogonal moments. The improvements in 
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the accuracy of RHFMs can be observed through the quality 
of reconstructed images. For this purpose computation of 
RHFMs are performed for 11  (zeroth order), 

44,33,22   and 55  order of integration. The 

reconstruction error,  , as a function of p and q are shown 
in Fig.3 and 4, for ND   (inscribed circle) and 2ND   
(outer circle), respectively. It is shown in the figures that the 
accuracy in RHFMs increases with the order of integration. 
The zeroth order integration becomes numerically instable 
for 10max p  for the inscribed circle and 20max p  for the 

outer circle. There is a decreasing trend of   w.r.t. pmax  

and this decrease is more prominent as n increases. The 
reconstructed images are shown in Fig.6 and 7 for 3,1n  

and 5 only due to space constraints. The experiments are 
conducted on 6464  Pirate image which has high contrast 
of gray values. Figure 5 displays the original Pirate image. 
The quality of reconstructed images is far better for the 
proposed method than the existing method. It can also be 
observed that the image quality deteriorates in the vicinity of 

0r  which is a reflection of the singularity aspect of the 
kernel function. The instability in RHFMs calculation which 
is most prominent in the vicinity of 0r  is attributed to the 

fact that as  )(,0 rRr p . Thus the magnitude of 

)(rRp  fluctuates more prominently in the vicinity of 0r  

for high values of p. It is seen in Fig.2 that the value of 
)(rRp  changes rapidly in the vicinity of 0r . The center 

of the image and its neighborhood are much sensitive to the 
numerical integration error. Thus, it is observed that the 
numerical integration error is a prominent source of error in 
orthogonal RHFMs computation and it increases as the 
orders of moments increase, which results in the degradation 
of the reconstructed images. It is also worth mentioning here 
that while the reconstruction error   reflects the gross 
behavior of the error, the visual aspect of reconstructed 
images represents the local trend in the accuracy of RHFMs. 
 
 

 
Fig.3: Average mean square reconstruction error   as a function of order 

of moments for twelve standard images of 6464  pixels (inscribed 

circle). 

 
Fig.4: Average mean square reconstruction error   as a function of order 

of moments for twelve standard images of 6464  pixels (outer circle). 
 

 
Fig.5: Pirate 6464  image (one of the standard images of size 256256  

pixels which is resized to 6464
 
pixels). 

 
Fig.6:

 
Reconstructed image of Pirate

 
6464

  
using RHFMs, with 

different orders, 6010maxmax toqp 
 
for inscribed circle. 
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Fig.7:

 
Reconstructed image of Pirate

 
6464

  
using RHFMs, with 

different orders, 6010maxmax toqp 
 
for outer circle. 

 
 

B. Rotation and Scale Invariance 

Rotation and scale invariance are the most useful 
characteristics of RHFMs. These properties are, however, 
affected by various errors and the discrete nature of the 

image function. The magnitudes of RHFMs M pq  remain 

invariant to rotation, and hence can be used as rotation-
invariant features for image representation. In order to 
analyze the effects of errors on rotation invariance, all 
twelve standard images are resized to 6464  pixels and 

rotated by angles ranging from 0o  to 90 o  with an interval 

of 10o . In order to evaluate quantitatively the effect of 
rotation, we define the average mean square error, MSE, of 
RHFMs magnitudes as 

   
 

p

p

q

q
pqpq MM

L
MSE

max max

0 0

21 

           

(17)

 where 90,...,20,10,0 oooo  are the angles of rotation set in 

our experiments, M pq  and M pq


 
are the RHFMs of the non-

rotated and rotated images, respectively, and L is the total 
number of moments for a given maximum order pmax

and 

repetition qmax
.
 
We take 33  and 55  sampling points in 

proposed method for invariance analysis. The average MSE 
is plotted for various angles of rotation for the twelve 
standard images for zeroth order approximation and 
proposed method by taking 20maxmax  qp  and the results 

are shown in Fig.8 and Fig.9 corresponding to inscribed 
circle and outer circle, respectively. We observe that the 
proposed method provides small values of average MSE as 
compared to zeroth order approximation. This shows that 
the rotation invariance property is severely affected by the 
presence of these errors. 
Similarly, in order to evaluate quantitatively the effect of 
scale, we define the average mean square error, MSE, of 
RHFMs magnitudes as 

   
 

p

p

q

q
pq

s
pq MM

L
MSE

max max

0 0

21
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where M pq  represents RHFMs for the image of the size 

6464  pixels and M s
pq  represents the RHFMs of an image 

scaled by a factor s. For this purpose, we resize all 12 
images to 6464   pixels and consider them to be the 
reference images. The values of MSE are computed for all 
twelve images and their average value is plotted in Figs.10 
and 11 for 20maxmax  qp . Again, the accurate method for 

RHFMs calculation provides much better results than the 
zeroth order approximation. 
 

 
Fig.8: Effect of rotation on average mean square error (MSE) of RHFMs 

magnitude for 20maxmax  qp
 
on 12 standard images (inscribed circle). 

 

 
Fig.9: Effect of rotation on average mean square error (MSE) of RHFMs 

magnitude for 20maxmax  qp
 
on 12 standard images (outer circle). 
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Fig.10: Effect of scale on average mean square error (MSE) of RHFMs 

magnitude for 20maxmax  qp
 
on 12 standard images (inscribed circle). 

 

 
 
Fig.11: Effect of scale on average mean square error (MSE) of RHFMs 

magnitude for 20maxmax  qp
 
on 12 standard images (outer circle). 

 

V. CONCLUSIONS 

The existing method of the computation of RHFMs based on 
the zeroth order approximation of double integration of the 
kernel function suffers from geometric error and numerical 
integration error. The proposed method for the accurate 
computation of RHFMs reduces both errors with is reflected 
in the reduction in the image reconstruction error and the 
quality of the reconstructed images increases significantly. 
The accuracy in RHFMs also improves the rotation and 
scale invariance of these moments. The proposed method is 
particularly useful for pattern matching problems where 
small images and high computation requirements are 
involved particularly in the template matching and optical 
character recognition applications. Thus the advantage of 
time efficiency which RHFMs provide over their 
counterparts such as the Zernike moments can be fully 
utilized in light of the proposed accurate calculation of 
RHFMs. 
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