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Abstract—One primary concern of researchers, particularly 
those dealing with multisensory target tracking and filtering, is 
effectively dealing with out-of-sequence measurements 
(OOSM). Recently, the use of Kalman filters has proven to be 
of great practical value in solving a variety of OOSM problems 
including multi-target tracking prediction. In this paper we 
argue that delayed and existing measurements are typically 
correlated and could be described by a joint distribution. We 
further arugue that the uncertainty of the measurements could 
be modelled using grey relational analysis (GRA). Thus, the 
proposed approach deals with the uncertainty of information 
and combines it with copula in order to model OOSM. 
Benchmarking results on simulated datasets show the use of 
GRA coupled with copulas as more robust to handling OOSM 
as compared to existing methods. 

Keywords - out-of-sequence measurements 

I.  INTRODUCTION 

Within the general framework of multi-sensor 
applications, a difficult step in target tracking and filtering 
is the handling of out-of-sequence measurements (OOSM). 
Most of the work on tracking and filtering has been based 
on the assumption that measurements are immediately 
available to an agent. However, it is not difficult to 
conceive situations in which measurements are subject to 
non-negligible delays such that the lag between 
measurement and receipt is of sufficient magnitude to have 
an impact on estimation or prediction. These measurements 
can be classified as either constant delays or random delays 
with the resulting occurrence of the latter having the 
potential to cause OOSM. Say, for example you have a 
multi target tracking system with two sensors but with 
different pre-processing times and a fusion centre where the 
system state is updated by the newest measurement (as 
depicted in Figure 1). As shown in Figure 1, sensor 2 
overtakes the measurement from sensor 1. Thus, at several 
times, the fusion processor has received measurements from 
sensor 2 before a measurement from sensor 1 (belonging to 
an earlier time), arrives. 

Handling OOSM represents a challenge for engineers or 
researchers using multi-sensor data. One easy and normal 
solution is to simply ignore and discard the OOSM in the 
tracking process. The appropriateness of this approach has a 
natural limitation in that information is lost due to the 
discarded OOSM. To avoid such a drawback, other 
approaches that include data re-processing or roll back and 
data buffering have been developed for dealing with 
OOSM. In the rollback approach, sensor reports are stored 
in memory and the OOSM is used to re-order the sensor 
measurements in a track hypothesis. The data buffering 
approach holds the incoming measurements in a buffer with 
the size buffer greater than the maximum expected delay of 
arriving measurements. Both approaches require significant 
memory and storage measurements. 
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Also, since the tracker processing always lags behind 
the current time, both approaches poses potential problems 
for real-time target applications. 

 

Figure 1. The out-of-sequence (OOSM) problem 

For time delays, one common approach for dealing with 
the OOSM problem is related to solving a partial 
differential equation and boundary condition equations 
which do not have an explicit solution in general 
[1;2;8;9;19;20]. For random delays, the problem has been 
investigated via a standard Kalman filtering and by 
augmenting the system accordingly [3;5]. Matveev and 
Savkin [13] consider an iterative form of state augmentation 
for random delays with a random lag. Mallick et al. [12] 
address the OOSM problem by recalculating the filter 
through the delayed period. In the same context, Larsen et 
al. [9] propose a measurement extrapolation approximation 
using past and present estimates of the Kalman filter (KF) 
and calculating an optimal gain for this extrapolated 
measurement (ME-KF). Thomopoulos and Zhang [16] 
examine the case of random delay under the name of fixed 
sampling and random delay filter (FSRD-KF) that is shown 
to be equivalent to constraining the lag to a value of 1. 
Later, Larsen et al. [9] suggest using delayed measurements 
to calculate a correction term and adding this to the filter 
estimate. Zhang et al. [20] proposed algorithms that try to 
minimise the information storage in an OOSM situation 
(MS-KF) Challa et al. [4] formulated the OOSM problem in 
a Bayesian framework (BF-KF). Twala [18] relates OOSM 
to the incomplete (missing) data problem and uses multiple 
imputation and later copulas [17] to handle OOSM.  

Although the vast majority of the above methods 
understand the solution, most of them fail to recognise the 
theoretical basis of the conditional distribution between the 
delayed measurements and the measurements that are 
already available (which are sometimes referred to as 
history). The major contributions and uniqueness of the 
work presented in this paper are as follows: 
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 We show the robustness of one of the classical five 
techniques for handling OOSM in terms of 
predictive accuracy for multi-target tracking 
applications; 

 We then propose how OOSM can be modelled using 
grey relational analysis coupled with copulas and 
further show how it leads to a significant 
improvement in performance for multi-target 
tracking (for both single delay). 

The context is organized in the following manner: The 
problem statement is described first. Then, the grey relational 
analysis process is presented in detail, followed by a brief 
description of the copulas strategy. Section 4 empirically 
explores the robustness and accuracy of the proposed 
approaches against existing methods for dealing with OOSM 
using simulated data. We close with conclusions and 
directions for future research. 

II. PROBLEM STATEMENT 

The presentation herein is based on the Kalman Filter 
(KF) equations for a discrete linearized time-varying system 
with state vector ݔ , input vector ݑ	, and output vector ݕ.	 
KF is the optimal recursive data processing algorithm for a 
discrete linear system corrupted with noise in the states and 
measurements. 

A. System 

The KF addresses the general problem of trying to estimate 
the state ݔ ∊ Ը  of a discrete-time controlled process that 
is assumed to evolve over time ݐିଵ to ݐ	 and governed by 
the linear stochastic difference equation 

ሺ݇ሻݔ ൌ ,ሺ݇ࡲ ݇ െ 1ሻ࢞ሺ݇ െ 1ሻ  ,ሺ݇ݒ ݇ െ 1ሻ 

where ݔሺ݇ሻ is the state vector at time ݇	, ࡲሺ݇, ݇ െ 1ሻ is the 
state transition matrix to time ݐ from ݐିଵ and ݒሺ݇, ݇ െ 1ሻ 
represents the (cumulative effect of the) process noise for 
this interval. The order of the arguments in both ܨ and ݒ is 
according to the convention for the transition matrices. 
Typically, the process noise has a single argument, but here 
the two arguments will be needed for clarity. The time τ, at 
which the OOSM was made is assumed to be such that 

ିݐ ൏ ߬ ൏  ିାଵݐ

This will require the evaluation effect of the process 
noise over an arbitrary non-integer number of sampling 
intervals. Note that ݈ ൌ 1 corresponds to the case where the 
lag is a fraction of a sampling interval; for simplicity this is 
called the “1-step-lag” problem, even though the lag is 
really a fraction of a time step. 

The measurement z ∊ Ը  and thus measurement or 
observational model is 

ሺ݇ሻݖ ൌ ሺ݇ሻ࢞ሺ݇ሻࡴ   ሺ݇ሻݓ

where z ሺ݇ሻ  is the observation vector, w ሺ݇ሻ  is the 
observation noise vector and ࡴሺ݇ሻ is the observation matrix. 
The noise vector vሺ݇, ݇ െ 1ሻ and wሺ݇ሻ are assumed to be 
independent (of each other), white, and with normal 
probability distributions 

ሻݓሺ ∼ ܰሺ0, ܳሻ 

ሻݒሺ ∼ ܰሺ0, ܴሻ 

The process noise covariance Qሺ݇ሻ and measurement noise 
covariance ܴሺ݇ሻ  are mutually uncorrelated and they are 
given as 

,ሺ݇ݒሾܧ ݆ሻݒሺ݇, ݆ሻᇱሿ ൌ ܳሺ݇, ݆ሻ				ܧሾݓሺ݇ሻݓሺ݇ሻᇱሿ ൌ ܴሺ݇ሻ 

Similarly to ݔሺ݇ሻ ൌ ,ሺ݇ࡲ ݇ െ 1ሻ࢞ሺ݇ െ 1ሻ  ,ሺ݇ݒ ݇ െ 1ሻ, 
one has 

ሺ݇ሻݔ ൌ ,ሺ݇ܨ ሻߢሺݔሻߢ  ,ሺ݇ݒ  ሻߢ

where ߢ is the discrete time notation for τ. The above can 
be written backward as 

ሻߢሺݔ ൌ ,ߢሺܨ ݇ሻሾݔሺ݇ሻ െ ,ሺ݇ݒ  ሻሿߢ

where ܨሺߢ, ݇ሻ ൌ ,ሺ݇ܨ  ሻିଵ is the backward transitionߢ
matrix. 

B. Fusion of delayed measurements 

Denoting a cumulative set of measurements ܼ ≜
ሼݖሺ݅ሻሽୀଵ

 , the OOSM problem [up to time instance ݐ ൌ  ,	ݐ
and excluding a measurement 	ݖሺ߬ሻ  with a time stamp 
ఛݐ ൏ 	ݐ  reduces to the problem of computing the 
conditional mean estimate of the target state 

ොሺ݇|݇ሻݔ ≜  ሺ݇ሻ|ܼሿݔሾܧ

and its associated error covariance 

ܲሺ݇|݇ሻ ≜  ሺ݇ሻ|ܼሿݔሾݒܿ

Under the assumption that the initial state ݔ is Gaussian, 
the conditional mean estimate ݔොሺ݇|݇ሻ  of the target state, 
which is optimal in the minimum variance sense, can be 
computed recursively using the KF. Also, it is assumed that 
a measurement ݖ is collected and used to update the track at 
the time interval ݄. The basic KF algorithm can then be 
extended to multi sensor systems where the data is assumed 
to arrive at known times and in correct time sequence. 

Suppose that a given measurement corresponding from time 
τ (denoted with discrete time notation as ߢ), 

ሻߢሺݖ ≜ ሺ߬ሻݖ ൌ ሻߢሺݔሻߢሺܪ   ሻߢሺݓ

arrives with a certain delay after ݔොሺ݇|݇ሻ and ܲሺ݇|݇ሻ have 
been computed. 
One faces the problem of updating the state estimate and its 
covariance with the delayed measurements, i.e., to compute: 

ሻߢ|ොሺ݇ݔ ≜  (ሺ݇ሻ|ܼሿݔሾܧ
and 

ܲሺ݇|ߢሻ ≜  (ሺ݇ሻ|ܼሿݔሾݒܿ

where 
ܼ ≜ ሼܼ,  ሻሽߢሺݖ

ܲሺ݇|ߢሻ ≜ provides a simple, intuitive interpretation of the 
weight in the time delayed KF. The weight assigned to a 
measurement is a function of the degree to which the 
measurement is correlated with the current state of the 
system Therefore, the difficulty in implementing the time 
delayed KF is in calculating ܲሺ݇|ߢሻ. Solutions to the delay 
measurement problem are presented in the next section. 
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1. Consider a sequence of measurements up to k instances 
X1, X2,…, Xk (where k is the delay point) with 
distribution function H(x1,x2,…,Xk-1) = P (X1≤x1, 
X2≤x2,… Xk≤xk) and univariate marginal distributions 
F1(x1), F2(x2),…,Fk(xk) 

2. A copulas C represents the joint cumulative distribution 
function in terms of the margins such that H (x1, x2,…, 
Xk-1)= C(F1(x1),…, Fk(xk)) for all values x1, x2 ,…, xk(or 
(X1, X2,…, Xk∊Ը

k). 

 If F1, F2,…,Fk are continuous, C is unique for every 
fixed F and equals C(u1,…,uk) = F(F1

-1(u1),…, Fk
-

1(uk)), where F1
-1,…, Fk

-1 are the quantiles functions 
given marginals and are uniform [0, 1] variables; 

3. Find the conditional distribution F(xk|H) for delayed 
measurements conditioned to the history of 
measurements available as a predictive distribution; 

4. Predict the delayed measurement from the conditional 
distribution (copula could be used to find both the joint 
and conditional distributions even if the joint distribution 

III. GREY RELATIONAL STRATEGY 

The grey relational analysis technique, proposed by 
Deng [5;6;7], is a method that can measure the correlation 
between series and belongs to the category of the data 
analytic method or geometric method. The measured series 
can be either time series or index series etc. Usually, 
researchers will set the target series based on the objective 
of the studied problem as the reference series. Hence, the 
purpose of GRA technique is to measure the relation 
between the reference series and comparison series. Grey 
prediction power comes from its ability to predict the 
future value with only a few data. 

The Grey relational classifier (GRC) which is based on 
the grey model (GM) has three basic operations: 
accumulated generating operation (AGO), inverse 
accumulated generating operation (IAGO) and grey 
modelling. AGO is the most important characteristic for 
the grey system theory and its purpose is to reduce the 
randomness of data. The GM (1, 1) is the most commonly 
used model. The first 1 in GM (1, 1) means that there is 
only one variable, and the next 1 means that the first order 
grey differential equation is used to construct the model as 
described below: 

Denote the original data sequence by: 

ݑ ൌ ,ሺሻሺ1ሻݑൣ ,ሺሻሺ2ሻݑ ,ሺሻሺ3ሻݑ … ,  ሺሻሺ݊ሻ൧ݑ

where n is the number of years observed. 

Then the GM(1,1) is: 

ሺ݇ሻݑ  ܼܽሺଵሻሺ݇ሻ ൌ ܾ,										݇ ൌ 1, 2, 3, … , ݊ 

where a is the development parameter and b is the grey 
input. Now we go through the following procedures: 

1. The AGO formation of ݑ is defined as: 

ሺଵሻሺ݇ሻݑ ൌ ܱܩܣ ቀݑሺሻሺ݇ሻቁ ൌݑሺ݇ሻ


ୀଵ

 

where 
 
ሺଵሻሺ1ሻݑ ൌ  ሺሻሺ1ሻ andݑ

 (8) 

ሺଵሻሺ݇ሻݑ ൌ  ,ሺሻሺ݉ሻݑ ݇ ൌ 2,3,4, … , ݊



ୀଵ

. 

2. Find ܼሺଵሻሺ݇ሻ where  
 

ܼሺଵሻሺ݇ሻ ൌ ሺଵሻሺ݇ሻݑ0.5ൣ  ሺଵሻሺ݇ݑ െ 1ሻ൧ 
 (9) 

3. Using Least Squares Method, find matrix B and vector. 

ܤ ൌ

ۏ
ێ
ێ
ێ
ێ
ݖെۍ

ሺଵሻሺ݇ሻ		1
െݖሺଵሻሺ݇ሻ		1

…
…
…

െݖሺଵሻሺ݇ሻ		1ے
ۑ
ۑ
ۑ
ۑ
ې

 

 (10) 
and 	

ݕ ൌ ,ሺሻሺ2ሻݑൣ ,ሺሻሺ3ሻݑ ,ሺሻሺ4ሻݑ … ,  ሺሻሺ݊ሻ൧ݑ
 

4. Estimate the parameters a and b by following a set of 
equations: 

ሾܽ, ܾሿ் ൌ ሺܤ்ܤሻିଵݕ்ܤ 
 
5. Find the response equation: 

ሺଵሻሺ݇ݑ  1ሻ ൌ ݑሺሻሺ݇ሻ െ
ܾ
ܽ
൨ ݁ି 

ܾ
ܽ

 

 
6. The predicted value of ݑොሺሻሺ݇  1ሻ is 

ොሺሻሺ݇ݑ  1ሻ ൌ ሺ1  ݁ሻ ݑሺሻሺ1ሻ െ
ܾ
ܽ
൨ ݁ି 

On receipt of OSSM, there is always a need to update the 
parameters of the chain (refer to Section II for details). A 
naive implementation of an OSSM processing algorithm 
necessitates re-processing of the data from the time of the 
OOSM to the last time. This is where GRA is incorporated 
in our proposed strategy (i.e., an attempt to use GRA to 
process OOSM efficiently). 

IV. THE COPULAS STRATEGY 

A motivation for copulas is that it exists as a multivariate 
distribution function and allows a consistent and flexible 
modelling of the dependence structure of dealing with 
OOSM. It offers a convenient representation of arbitrary 
joint distribution functions, with the key property being that 
the specification of the marginal distributions and the 
dependence structure is separated. This is the most 
important result in the copula framework and is due to [15]. 
In recent years, copulas modelling has found many 
successful applications in actuarial science, survival 
analysis, hydrology, and with great intensity in finance [14]. 
The generalized copulas algorithm for handling OOSM is 
summarised in Figure 2. 

Figure 2. The copulas algorithm for dealing with OOSM 

V. EXPERIMENTS 

A. Experimental set-up 

In order to empirically evaluate the performance of the 
proposed approaches (which we shall now call 
GREYCOOSM and COOSM) against existing approaches 
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for dealing with OOSM (FSRD-KF, ME-KF, SARD-KF, 
MS-KF and BF-KF), experiments are used on simulated 
datasets in terms of root square mean error (RMSE). 
GREYCOOSM is the algorithm of GRA coupled with 
copula while COOSM is the algorithm using copulas on its 
own. RMSE is a measure of the differences between values 
predicted by a model (or an estimator) and the values 
actually observed. The experiment is carried out in order to 
rank individual OOSM methods and also assess the impact 
of delayed measurements (at various time and distance 
intervals) on a single delay against GCOOM and COOSM 
in terms of position error. Like [4], we assume that the 
OOSM can only have a maximum of one lag delay and the 
data delay is uniformly distributed within the whole 
simulation period with probability Pr that the current 
measurement is delayed. 

The CPU times of all algorithm for 1000 Monte Carlo 
runs are also looked at. Although the measured CPU times 
represent only imprecise approximations of the 
computational complexity of the algorithms, they are used in 
this paper for comparison purposes only. 

All statistical tests were conducted using the MINITAB 
statistical software program. Analyses of variance, using the 
general linear model (GLM) procedure were used to 
examine the main effects and their respective interactions. 
This was done using a three-way repeated measures design 
(where the effects were tested against its interaction with 
datasets). The main effects are: OOSM methods; the 
probability of measurement; and the manoeuvring index. 

B. Experimental results 

All the main effects were found to be significant at the 
5% level of significance (F=18.9, df=5 for methods; F=29.4, 
df=1 for probability of measurement and F=31.2, df=1 for 
manoeuvring index; p-value <0.05 for each effect).  

As shown in Figure 3a, GREYCOOSM is the best 
method for handling OOSM (for single delays) with an error 
rate of 6.9%, closely followed by BF-KF, COOSM, SARD-
KF, FSRD-KF, MR-KF with excess error rates of 9.2%, 
11.1%, 12.8%, 14.2% and 16.9%, respectively. The worst 
method is ME-KF, which exhibits an error rate of 20.1%. 
Tukey’s multiple comparison tests further showed 
significant differences between all the methods at the 5% 
level of significance. 

 
Figure 3a. Overall means for existing OOSM, COOSM and 

GREYCOOSM methods (single delay) 

For multiple delays, GREYCOOSM (once again) 
achieves the highest accuracy rates with an error rate of 
10.5%, closely followed by COOSM (13.8%), BF-KF 
15.2%, FSRD-KF (17.3%), SARD-KF (20.3%) and ME-KF 
(21.9%). The worst performance is by MR-KF with an error 
rate of 23.6% (Figure 3b). 

 

Figure 3b. Overall means for OOSM, COOSM and GREYCOOSM 
methods (multiple delays) 

We shall now present results for the performances of the six 
methods for single delay over 1000 runs for one 
manoeuvring index 0.3. 

 
Figure 4a. RMS performance in the case of highly manoeuvring 

target with single delay OOSM (Pr = 0.5; manoeuvring 
=0.3) 

 
Figure 4b. RMS performance in the case of highly manoeuvring 

target with single delay OOSM (Pr = 0.25; manoeuvring = 
0.3) 

From Figure 4, the following results are observed. 

 For manoeuvring target tracking, GREYCOOSM 
improves estimation accuracy compared to the other 
methods. This is the case for both probabilities of 
measurement. However, its performance with BF-
KF is comparably when the probability of 
measurement is 0.25. 

 The differences in performance among all the 
methods are mostly prominent at higher 
probabilities of measurement. Inconsistent 
performances are observed for SARD-KF (for Pr = 
0.5) and FSRD-KF (for Pr = 0.25, especially at 
higher times). 

 Increases in probability measurement delay are also 
associated with increases in performance differences 
between methods. In fact, the performance of all the 
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methods degrades with increases in probability of 
measurement. 

From Figure 5, the performances of the six methods for 
single delay over 1000 runs for a manoeuvring index of 1 are 
observed. 

 For manoeuvring target tracking, GREYCOOSM 
outperforms all the other methods when the 
probability of measurement is 0.5. However, its 
performance with BF-KF is comparably when the 
probability of measurement is 0.25. 

 The differences in performance among all the 
methods are mostly prominent at higher 
probabilities of measurement. Poor performances 
are observed for SARD-KF (for Pr = 0.5) and FSRD-
KF (for Pr = 0.25, especially at higher times). 

 Increases in probability measurement delay are also 
associated with increases in performance differences 
between methods. In fact, the performance of all the 
methods degrades with increases in probability of 
measurement. 

 The accuracy of GREYCOOSM is achieved at a 
higher computational cost in terms of minutes 
(Table I). Otherwise, the measured CPU times of the 
algorithms (with the exception of COOSM and BF-
KF) are comparable among each other. All the top 
three methods take about twice (in some situations 
thrice) to compute compared to the others. 

 
Figure 5a. RMS performance in the case of highly manoeuvring 

target with single delay OOSM (Pr = 0.25; manoeuvring = 
1) 

 
Figure 5b. RMS performance in the case of highly manoeuvring 

target with single delay OOSM (Pr = 0.5; manoeuvring = 
1) 

 

 

 

TABLE I 
COMPUTATIONAL COMPARISON OF GREYCOOSM, COOSM AND EXISTING 

METHODS (SINGLE DELAY) IN MINUTES 

 
Pr 

Methods 
FSRD-
KF 

ME-
KF 

SARD-
KF 

MR-
KF 

BF-
KF 

CO-
OSM 

GREY-
COOSM 

0 2.67 2.78 3.71 2.01 5.13 7.00 9.21 

0.25 3.15 3.40 4.43 2.57 5.45 6.78 10.01 

0.5 3.74 3.97 4.78 2.64 6.10 7.09 10.01 

VI. REMARKS AND CONCLUSIONS 

Accurate prediction of target tracking given delayed 
measurements can be very valuable to engineers, especially 
those dealing with sensoring applications. This is important 
for minimising cost and improving effectiveness of the 
software testing process. 

The major contribution of the paper has been the 
application of GRA and copulas to predict multi-target 
tracking given that some measurements in a multi tracking 
system application are out of sequence. This was for both 
single and multiple delays. Simulated datasets were utilised 
for this task. 

Individually, COOSM is the most effective method for 
handling OOSM (for both single and multiple delays) with 
BF-KF and COOSM not far behind. Hence, the proposed 
method can be a valuable choice for multi target tracking 
applications. The worst performances were observed for 
SARD-KF.  

Our results further show the probability of measurement 
delays as having an impact on the performance of methods 
with BF-KF more effective for the smaller probability. 
Bigger positional error rates were achieved by methods for 
high probability delays with bigger performance differences 
among methods. Also, given that the performance of each 
method varies by probability of measurement delay, it 
appears that the treatment of delayed measurements not only 
heavily depends on the probability of measurement delay but 
on the range of manoeuvring target tracking. 

Despite promising preliminary results, the use of GRA 
coupled with copulas also deserves further investigation on a 
number of fronts, for example, in terms of the training 
parameters and the combination rules that can be employed. 
Also, empirical studies of the application of the copula to 
real-world dataset should be undertaken to assess its 
performance across a more general field. Higher central 
processing unit times were also observed for multiple delays 
compared to single delays, especially for the proposed 
strategies. The next step will be to develop an effective 
strategy that would reduce the CPU for the copula-grey 
relational-based methods. 

We leave the above issues to be investigated in the future. 
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