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Abstract— A de novo approach to Discrete Spectral Analysis 

is presented. A pure tone in a Discrete Fourier Transform 
(DFT) is mathematically analyzed. A concise, exact bin value 
equation is developed for so called “leakage”. The necessary 
special treatment this equation requires at integer frequencies 
is provided. The equation is then inverted across three DFT 
bins to form an exact frequency determination equation.  A 
method borrowed from Linear Algebra is then used to 
calculate the magnitude and phase. Finally, an algorithm is 
described which applies the pure tone equations to separate a 
well behaved multiple tone signal into its constituent tones.  
This is a fresh approach on the fundamentals; noise mitigation 
techniques and closely spaced frequencies are not addressed. 
 

Index Terms—Discrete Spectral Analysis, Discrete Fourier 
Transforms, Frequency Estimation, Spectral Leakage 

I. INTRODUCTION 

All points on the unit circle in the complex plane can be 

located with Euler’s magnificent equation.  
 

 sincos  iei                  (1) 
 

Where   is the radian measure along the circumference and 
i is the square root of negative one.  

The projection of any point onto the horizontal axis can 
be accomplished by taking the midpoint of the point and its 
mirror, known as a conjugate, in the negative direction. 
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This is the foundation. Everything rests on this. 

II.  SETTING UP THE PURE TONE SIGNAL 

A pure tone is a single sinusoidal signal. Either the sine or 
cosine function can be used to model one mathematically, 
the cosine being slightly more convenient. Three parameters 

are needed to define a pure tone sequence ( kS ). They are 

the maximum amplitude (M), an angle representing phase 
( ), and a frequency component ( ). 

 

)cos( kMSk    (3) 

 
Manuscript received February 22, 2012; revised April 14, 2012. H. 

Anders Lönnemo is a DSP hobbyist with a B.S. in Mathematics from 
Lyman Briggs College at Michigan State University. (e-mail: 
lonnemo@broadstripe.net). 

A signal frame of N points is considered. The subscript k 
ranges from 0 to N-1. The values of the signal points outside 
the frame are expected to be the values according to (3), not 
from a repeat of the frame.  

If the frequency of the tone is f with units of cycles per 
frame, then  is defined as: 

 2
2


N

f

N
f  (4) 

The units of  are radians per sample. 

III. THE DISCRETE FOURIER TRANSFORM 

The Discrete Fourier Transform (DFT) [1] is a well 
known linear transform which can (unconventionally) be 
defined by: 
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Where: 
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Each nZ , a complex number, is commonly called a bin, a 

frequency bin, or a bin of frequency n. The subscript n, 
called the bin number, also ranges from 0 to N-1. Therefore, 

the nie   expression represents a set of N evenly spaced 
points around the unit circle. These points are also known as 
the Roots of Unity because they satisfy the equation: 
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This is easily proved using (1) by: 
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Each bin value of the DFT can be thought of as the 

weighted average of a set of roots of unity where the 
weighting factor is the signal to be analyzed wrapped 
around the unit circle the number of times of the bin 

subscript.  For instance, 7Z  is the weighted average of the 

signal sequence stretched and wrapped around the unit 

circle seven times with a step size of seven ( 7ie ). Easiest 

to understand is 1Z with a real valued signal where the 

weighted wrapping is equivalent to graphing the signal in 
polar coordinates and the bin value corresponds to the 
centroid. When viewed this way, it makes sense to apply a 
1/N scaling factor and use a positive exponent to wrap in the 
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positive direction. 

IV. APPLYING THE FOURIER TRANSFORM 

Plugging the pure tone sequence (3), also using (2), into 
the Fourier Transform definition (5) is straightforward. 
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This series formula can be split into a sum of two phase 
rotated geometric series: 
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V. ELIMINATING THE SUMMATION 

The big advantage of arranging the formula using 
geometric series is that the summation formula for a finite 
geometric series can be applied. 
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When it is, with (8), the results look like this: 
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There is one big caveat: The frequency f cannot be an 
integer value. This case is handled more carefully later. 

It is well known that the DFT of a non-integer frequency 
pure tone will have nonzero bin values. These bin values are 
traditionally called “leakage” as if they are some kind of 
flaw. Equation (12) describes this leakage exactly in closed 
form without the need of a summation. Eliminating the 
summation saves an incredible number of calculations. 

However, (12) can be put in a much more useful form. 
Adding the two fractions inside the big parentheses 
produces a single fraction having a numerator with eight 
terms and a denominator with four. 

The eight terms in the numerator can be paired up and 
factored using (2) as follows: 
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In a similar manner, the four terms in the denominator 
can be paired up and factored: 
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 (17) 
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Putting it all together, and factoring out nie 2 from the 
numerator and denominator, results in: 
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VI. NAMING EXPRESSIONS 

By giving specific names to certain expressions within 
(19), a much more revealing version can be made: 
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 (23) 
This shows that the bin values of a DFT of a pure tone are 

a fairly simple real valued nonlinear transform of the Roots 
of Unity. 

VII. BIN ORIENTED FRAME OF REFERENCE 

In cases when f is very close to an integer value F, and 

n=F, the calculation of nZ in (23) becomes numerically 

unstable. This is because the expressions from (20)-(22) are 
then each the difference of two very close values. In finite 
numeric representations this limits the precision. By 
defining a frame of reference relative to the bin number the 
frequency is near, a much more stable equation can be 
developed. 
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Substituting F  for  in (20)-(22) and recognizing 

that FNF  2 is an integer multiple of 2 , yields: 
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  FFfD  cos)cos(2   (27)
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Each of these equations is the difference of two cosines. 

Therefore, using the following Trigonometric identity, 
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they can be factored like this: 
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 Also, for clarity: 
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Recombining these expressions into (23) gives the more 
complicated, but more computationally accurate version: 
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VIII. SOLVING THE INDETERMINATE FORM 

 
When the frequency f becomes an integer F, the same as 

 becoming 0, all the equations for nZ  beyond (10) 

become indeterminate at n=F requiring a limit argument to 
solve.  The last bin value equation (33) has the 
indeterminate portion factored out.  
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Once the indeterminate portion is dealt with, taking the limit 
of (33) as a whole becomes trivial: 
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This complex value can then be split into its real and 

imaginary parts. 
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These equations are then simplified further.
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Using (1), recombining them into a complex form is also 
easy. 
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This result can be confirmed by inspection using (12) and 

(10). If f is an integer value F, both numerators in (12) are 
always zero because the exponents are integer multiples of 
2i . The denominator on the left is always nonzero 

(assuming  0 ), and the denominator on the right is 

nonzero for all values of n except F. Thus the nZ  values are 

all zero except for when n=F where the left summation is 
zero and the right one is an indeterminate form. For this 
case, glance at (10), the left summation equals zero and the 
right one is just the sum of ones equaling N. The Ns cancel 
and the result is (40).  

IX. AN ALTERNATE FORM OF THE PURE TONE BIN VALUE 

EQUATION 

There is yet another form the bin value equation for a 
pure tone can be put into that gives a different perspective 
on the behavior of a DFT. 

Substituting (24) into (33) brings back  as the reference 
variable for the frequency. Also, breaking the bracketed 
section out as a named variable will be helpful. Note that 

there is a subtle pair of factors of n)1(  in the numerators 

that cancel each other out when this operation is undertaken. 
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The source of the imaginary part of nY  (and nZ ) can be 

changed from being the roots of unity ( nie 
) to being a bin 

invariant characteristic complex value ( ie ) with the 
application of (1) and some algebra. 
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The trigonometric identity for the difference of two sines 

is: 
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Applying (47) to the latter part of (46) puts it into a more 
reducible form. 
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Now, putting nY  from (48) back into (41), applying an 

angle addition formula, and simplifying leads to the 
following succinct alternative form of (23), the equation for 
pure tone leakage for non-integer frequencies. 
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This form of the equation gives some more insights into 

the nature of the DFT on a pure tone. The first thing to 

notice is that the  2/sin N  term applies to all the bins 

equally. Also notice that it approaches zero as the frequency 
approaches an integer value and has its extreme values 
halfway between integer frequencies. Conversely, the 

nH value gets extremely big when the frequency is near n. 

This explains why peaks are narrow when frequencies are 
near integer values and broader in between. 

It is in between integer frequencies and at bins that are 

away from the frequency where nH


 has more of a 

significant effect. When n is near 0, or when n is near N/2, 
the same as the frequency being near being a DC component 

or at the Nyquist frequency, nH


 will dominate over nH .  

When n=0 or n=N/2, nH  will equal zero. This shows 

that the imaginary parts at those DFT bins are always zero. 

X. INVERTING THE BIN VALUE FUNCTION TO DETERMINE 

FREQUENCY 

In order to be able to decompose a signal consisting of 
multiple tones, one first has to be able to handle a signal 
consisting of a single tone. Given a DFT of a single tone, 
how do you figure out the frequency, magnitude, and phase? 
The answer (40) is simple and well known when the 
frequency is an integer value, but not so easy otherwise. 

In non-integer frequency situations, the first step is to 
determine the frequency. It is possible to do this by 
considering three consecutive bin values and the 
corresponding bin value equations as a set of three 
equations with three unknowns and solving for it. 

Introducing a temporary variable will make the process a 
little clearer. 
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Applying (22), (23), and (52) on three consecutive bins 
and cross multiplying gives these three equations: 
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Subtracting (53) from (54) and (55) from (54), 

respectively, gives these two equations: 
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Dividing (57) by (56) gives: 
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The )cos(  term appears only twice and can be readily 

isolated.  
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This formula has no problem with integer frequencies as 
long as the three bin set covers the nonzero bin. In fact, it 
can be seen to be true by inspection.  If only one of the Z’s 
is nonzero, the right side of the equation reduces to the 
corresponding cosine implying the frequency is that bin 
number. 

In non-integer pure tone cases, any three bin set will do, 
even the ones at the Nyquist frequency or the DC 
component if the DFT is wrapped.  

The cos  term is, of course, a stand in for the 
frequency. The actual value of f can be recovered using (4) 
and the inverse cosine function. 
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The inverse cosine function can return multiple values. 

Almost always, it is the principal value that is important. 
The other values, when interpreted as frequencies, are 
known as aliases. 

XI. THE DISCRETE VONHANN LIKE WEIGHTING 

What is really neat is that (58) can be put in a bilinear 
matrix product form. 
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 Where the complex vector V


acts as a weighting vector. 
Since the vector is linear in the numerator and the 
denominator it can be rescaled arbitrarily. The formula for 

V


, rescaled for exponential symmetry, is: 
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TTV

11 



 (62) 

This vector approaches the continuous VonHann [2] 
weighting as the number of samples increases. 
 

121lim  VN


 (63) 

 
The VonHann weighting (rescaled) is an approximation 

for the denominator in (60) which gets better as the number 
of samples increases. The exact corresponding window 
function [3] to (61) is unimportant because the actual DFT 
values are needed in the numerator. This means the complex 
weighted average has to be calculated. Fortunately, common 
intermediary values in the numerator and denominator allow 

them to be calculated together efficiently.  
The limit vector also happens to be an alternating row 

from Pascal’s triangle. [4] 
 In a similar manner to the previous section, a four bin 

patch can be used for the simultaneous equations.  The four 
bin case allows a one degree of freedom choice in 
weighting.  A linearly parameterized centered rescaled 
weighting is 

 

TT
TTW

1
2

1
2 


 (64) 

This vector also approaches a row from Pascal’s triangle. 

 
1331lim  WN


 (65) 

 
This pattern can be extended to longer vectors, but that 

makes little practical sense.  The whole point of a DFT is 
that it concentrates the information about a tone into a 
narrow set of bins.  When a tone is near an integer 
frequency value, the corresponding bin will be larger than 
both its neighbors and the three bin equation should be used.  
When a tone is in between integer frequencies, there will be 
two bins with significant magnitude, and the four bin 
equation should be used with the two larger bins in the 
center. 

XII. ESTIMATING THE PHASE VALUE 

The significance of the VonHann weighting being an 
alternating row of Pascal’s triangle is that it completely 
zeroes out any linear sequence. 

0121 





dm

m

dm

 (66) 

Recognizing that the sequence of 11 ,,  nnn HHH


is 

nearly linear, applying the VonHann weighted sum to a set 
of DFT bins using (49) results in the following 
approximation: 
 

i
n

n

n

n

eK

Z

Z

Z








1

1

121  (67) 

Where: 

)2(
2

sin 11  





 nnnn HHH

N

N

M
K


 (68) 

 
  If cos  is zero the approximation becomes an exact 

equation. The approximation will also be more accurate 

when n is near N/4 where nH  has the most significance. 

The value of nK could be used to estimate the value of 

M, but there is a better way detailed in the next section. 
The usefulness of (67) is that the angle of the VonHann 

weighted sum can be used to get a very good estimate of  . 
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This estimate, along with the calculated frequency, can be 

used to obtain an estimate of  . 

 

 2mod
2






 

N
estest  (69) 

XIII. CALCULATING MAGNITUDE AND PHASE 

It is possible to solve for the phase and magnitude using 
the equations in the previous section. However, they are 
actually approximations. In order to get exact results, a 
different approach needs to be taken. Thanks to the ability 
to synthesize a DFT of a pure tone using (23), (33), or (40), 
Linear Algebra techniques can be employed. The whole key 
to this approach is considering a three bin set of the DFT as 
a complex vector in a vector space. A four bin set can be 
used just as well.  

In the integer frequency case, a shift )(
 
in the phase 

represents a rotation in the DFT bin value. This is because 
 

 iii eee   )(  (70) 
 

In the non-integer case this is approximately true at the 
bins nearest the frequency.  This can be seen from (49).  

The idea is to use sequences of parameters to generate a 
sequence of single basis vectors that converge to the DFT 
bin values. Although building a full basis is possible for an 
exact value, within the context of the algorithm this iterative 
approach will require fewer calculations overall for just as 
good numerical values. 

The frequency is calculated and remains fixed. The initial 
value for the magnitude is set at one. The initial phase value 
can be estimated or set arbitrarily to any value. Then the 
iterations begin. A guess basis vector G for the three bins is 
generated using (23), (33), or (40). 

The next task is to find the complex coefficient c for the 
best fit of vector G to the subset of DFT bins, represented 
by vector Z.  The best bin to do this at is the one nearest the 
frequency. It will have the largest magnitude and is known 
as a peak bin. Let P be that bin number. 

 

cG

Z

Z

Z

Z

P

P

P







1

1

 (71) 

 
To find the best fit coefficient, dot both sides by the 

complex conjugate of G, called G , and then solve for c. 
 

iec
GG

ZG
c 




  (72) 

 
The value of the coefficient c represents the adjustment to 

be made to the guessed parameter values.  The magnitude of 
c is the adjustment to the magnitude. The angle of c )( , 

usually ,
)Re(

)Im(
tan 1










c

c
is the adjustment to the phase angle 

and is subtracted from 
 
like in (70). Once the magnitude 

and phase guesses are adjusted another iteration can be 
made.  A new guess vector is generated, a new coefficient 
calculated, and new adjustments made.  Convergence can be 
measured by how close c gets to unity. 

XIV. THE DECOMPOSITION ALGORITHM 

All the needed tools are now in place for decomposing a 
signal consisting of multiple tones.  This simplified 
algorithm assumes that the frequencies are well spaced and 
that the tones are steady through the entire time frame.   

The process starts by taking the DFT of the signal and 
calculating a set of bins.  Next, the bins are scanned for the 
presence of tones.  For each tone there will be a peak bin. 

At the first peak, the DFT is treated like the single tone 
case and an initial frequency with one pass of magnitude 
and phase calculations are done.  The calculated values will 
be close, but not accurate.  This is due to the interfering 
presence of the other tones as well as the approximate 
nature of the magnitude and phase calculations.   

At the second peak, before the parameters are calculated, 
the effect of the first tone is significantly removed.  This is 
done by generating a small patch of DFT using the first 
tone’s estimated parameters and subtracting it from the DFT 
bins to be processed.  

At the third peak, the effects of the first two tones are 
removed, or largely removed, and then the tone is processed 
like the single tone case.  At every subsequent peak, the 
same process occurs. The previous tones’ effects are 
subtracted out and the peak is treated like a single tone case. 

When the last peak is reached, and all the other tones’ 
effects subtracted away, it is very close to being a single 
tone case and a very good answer is obtained. 

At this point, the iterations begin. The first tone gets 
processed again.  The DFT bins are copied, but this time the 
effects of the other tones can be subtracted away. The 
parameters are recalculated resulting in a much more 
accurate estimate. Each tone is then processed in a similar 
manner. The last tone in the second pass is now going to be 
very accurate. 

As many passes as desired can be calculated, but for any 
practical purposes, three or four should be sufficient.  If the 
peaks are farther apart, the algorithm converges faster. For a 
signal matching the assumptions and given sufficient 
iterations, the decomposition will be complete. Otherwise, 
the result will be a very good best fit. 

APPENDIX I 

Pseudo-code for decomposition algorithm. 
 
Top Level 
 
  Step 1. Take the DFT 
  Step 2. Initial Pass Gathering Tones 
  Step 3. Iterate Until Converged 
   
============================== 
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Initial Pass Gathering Tones 
 
  For Each Bin 
      If Bin Is Larger Than Neighbors 
         Add Tone to List 
         Process Tone 
      End If 
  Next Bin 
============================== 
Iterate Until Converged 
 
  Do Until Close Enough 
     For Each of the Tones 
         Process Tone 
     Next Tone 
  Loop 
 
============================== 
Process Tone 
 
  Step 1. Grab Patch of DFT 
  Step 2. Remove Effects of Other Tones 
  Step 3. Calculate Frequency From Patch 
  Step 4. Synthesize a Patch sized Guess Vector 
  Step 5. Calculate Adjustment Coefficient 
  Step 6. Apply Magnitude Adjustment 
  Step 7. Apply Phase Adjustment 
 
============================== 
Remove Effects of Other Tones 
 
  For Each of the Other Tones 
      Synthesize a Patch sized Effect Vector 
      Subtract Effect Vector from Patch 
  Next Other Tone 
 

============================== 

APPENDIX II 

Source code for DFT synthesis. 
 

#include <math.h> 
#include <stdio.h> 

 
int main( int argc, char *argv[] ) 
{ 
//--- Set the Tone Parameters 

double Mag  = 1.000; 
double Phi  = 1.234; 
double Freq = 5.678; 
 

//--- Set the DFT Parameters 
double Pi = 3.14159265358979323; 
double N  = 32; 
int n_first = 0; 
int n_last  = N/2 - 1; 
 

//--- Calculate the Parameter Dependent Terms 
double Alpha, Gamma, U, U_hat; 
 
Alpha = Freq * 2*Pi/N; 
Gamma = Phi + Alpha * N; 
 
U = cos( Gamma )  - cos( Phi ); 
 
U_hat = cos( Gamma - Alpha ) 

            - cos( Phi   - Alpha ); 
//--- Synthesize the DFT 

double Beta_n, Sigma, Rho, D_n; 
double Re_Z_n, Im_Z_n, tmp; 
 
for( int n = n_first; n < n_last; n++ ) 
{ 
   Beta_n = n * 2*Pi/N; 
 
   D_n =  2 * (  cos( Alpha ) - cos( Beta_n )  ); 
 
   if( D_n == 0.0 ) 
   { 
       Re_Z_n =  Mag/2 * cos( Phi ); 
       Im_Z_n = -Mag/2 * sin( Phi ); 
   } 
   else if( fabs( D_n ) < 0.0001 ) 
   { 
       Sigma  = Alpha - Beta_n; 
       Rho    = Phi + Sigma * N/2.0; 
 
       tmp = Mag * sin( N * Sigma/2.0 ) 
     / ( 2.0 * N * sin( Sigma/2.0 ) 
        * sin( Beta_n + Sigma/2.0 ) ); 
 
       Re_Z_n = tmp 
      * ( sin( Rho ) * cos( Beta_n ) 
        - sin( Rho - Sigma - Beta_n ) ); 
 
       Im_Z_n = tmp 
      * ( sin( Rho ) * -sin( Beta_n ) ); 
   } 
   else 
   { 
       Re_Z_n = Mag/N/D_n 
      * ( U * cos( Beta_n ) - U_hat ); 
 
       Im_Z_n = Mag/N/D_n 
      * ( -U * sin( Beta_n ) ); 
   } 
   printf( "%3d  %14.11f %14.11f\n", 
    n, Re_Z_n, Im_Z_n ); 
} 
 

//--- Exit 
return 0; 

} 
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