
 

  
Abstract— The advent of the multicore era [1, 2] has made 

the execution of more complex software applications more 
efficient and faster. On-chip communication among the 
processing cores, in the form of packetized messages, is 
managed with the use of on-chip networks (NoCs) [3]. Routers 
handling on-chip communication are point-to-point 
topologically interconnected using parallel links laid onto the 
silicon surface comprising a number of individual parallel 
wires. With the underlying interconnect structure becoming 
denser, due to improvements in CMOS technology, parallel 
links become susceptible to wear-out [4], with permanent link 
failures inhibiting communication completely and indefinitely. 
It is hence critical to explore their failure patterns in the wires 
comprising these links and hence build mechanisms which can 
recover corrupted in-transit data [5, 6]; since no real data from 
chip manufacturers exist, the derivation of a mathematical 
model in aiding the understanding of the distribution of 
individual wire faults in parallel on-chip links becomes 
mandatory. This paper takes the first steps in such direction. 
First it is shown how the given problem reduces to an 
equivalent combinatorial problem through partitions and 
necklaces. Then a model that counts certain classes of 
necklaces is derived by making a separation between periodic 
and aperiodic cases. The model is tested against a brute-force 
algorithm to prove its exactness. Finally the obtained model is 
used in finding the probability distribution of the size of the 
fault segment of wires in a parallel NoC-based multicore chip. 
 

Index Terms—Network-on-Chip, fault-tolerance, probability 
distribution, integer partition, necklace, combinatorics, 
modeling. 
 

I. INTRODUCTION 
N this article we derive and demonstrate the 
combinatorics-based models that can be used to calculate 
the spatial probability distribution of wire faults in a 

parallel Network-on-Chip (NoC) [3] interconnect link given 
its width (summation of the numbers of healthy and 
unhealthy1 wires in this parallel link), and a given number 
of faulty wires that can appear in this link. In previous 
studies [5, 6] that target the recovery of corrupted 
packetized data being re-transmitted through Partially 
Faulty Links (PFLs) it has been shown that the 
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1 The terms “unhealthy”, “corrupted”, and “faulty” are used 

interchangeably throughout this article. 

consecutiveness2 or “clustering” of these faulty wires 
directly determines the recovery latency required to restore 
received corrupted data among a pair of sender-receiver 
link-interconnected NoC routers. We are, therefore, 
particularly interested in the number of such consecutive 
faulty wires in a parallel NoC link as the “maximum wire 
fault clustering” directly determines the number of 
additional or overhead clock cycles that are required to re-
transmit a flit over a faulty parallel link that are necessary 
for data reconstruction and recovery at the downstream 
(receiver) router.  

To achieve this we derive a novel algorithm that can be 
used to determine the segmentation probability for an 
ordered collection of objects (i.e., parallel wires) of two 
distinct classes (faulty wires and healthy or “non-faulty” 
wires). The adjacent faulty wires form fault-segments 
(faulty wire clusters) separated by at least one healthy wire. 
As stated, the size of the largest segment determines the 
additional clock-cycle delay required by the Partially Faulty 
Link Recovery Mechanism (PFLRM) demonstrated in [5, 6] 
to recover corrupted flit3 data at a receiver router. We pay 
particular attention to the wire fault segmentation since the 
PFLRM mechanism is based on a flit data recovery scheme 
that utilizes a 1-bit circular rotation (per cycle of flit 
recovery) of the received flit vectors at the receiver router to 
extract and combine healthy bit portions from these 
corrupted received flit copies (at each cycle) with the rotated 
intermediate flit data results from the previous clock 
cycle(s) to eventually re-generate the flit in its healthy form 
downstream (the reader is urged to refer to [5, 6] for 
details). Hence, to be able to construct our faulty wire 
spatial distribution probabilistic model, the link comprised 
of parallel wires can be abstractly represented as a ring of 
parallel wires (since the rotational nature of the PFLRM 
mechanism virtually connects together the two wires found 
at the two ends of the parallel wire; refer to Fig. 1 for 
demonstration). We assume a random spatial distribution 
of faulty wires in the parallel NoC link, and aim to 
determine the probability distribution of corrupted (and non-
corrupted) flit data bits. A flit is assumed to consist of a 
number of binary bits, equal to the width of the parallel link, 
i.e. each wire in the parallel NoC link carries one bit of data.  

To reach the goal of a complete mathematical model 
describing the probability distribution of the length of a 
fault-segment for a given number of wires and faulty wires 

 
2 The terms “consecutive”, “clustering”, “adjacent”, and “segment(s)” 

are used interchangeably throughout this article.  
3 A flit or “flow-control unit” is a logical segment of a packetized NoC 

message. 
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we make use of a series of combinatorial arguments that 
include partitions and necklaces. Necklaces, apart from their 
intrinsic usefulness in the field of Combinatorics, have 
proven to be a powerful tool in other areas of Mathematics 
and other sciences. Some customary notions and theories 
related to necklaces include the Lyndon word [7], the actual 
homonym necklace problem (see, for example [8]), the 
necklace spitting problem [9], and most notably a proof of 
Fermat’s little theorem [10]. 

The rest of this article is organized as follows. In Section 
II the problem is formally defined. In Section III we explain 
the algorithm that leads to the determination of the 
probability distribution of the length of fault-segments for a 
given number of wires and faulty wires comprising a 
parallel NoC link, which is constructed through basic 
counting principles and probability rules, where appropriate, 
and through a derivation showing its correspondence to an 
equivalent necklace problem. In Section IV a series of 
results based on the derived model are presented, and then 
proven to coincide with the results of a brute-force 
algorithm implemented with the relevant Matlab software 
toolbox. In Section V an arithmetic example demonstrates 
the effectiveness of the obtained analytical model. Finally, 
Section VI concludes this article and sets future work 
directions with regard to the findings of this study.  

 

II. PROBLEM DEFINITION 
HERE is a [parallel] NoC link consisting of W  wires 
that are placed in parallel, wrapped around a common 

axis forming a ring shape (refer to Fig. 1). Each of these 
wires may be either healthy or faulty, and cannot possess 
both of these states. The number F  and position 
(placement) of faulty wires are both random, where 

.0 WF ≤≤  
Consecutively (adjacent) positioned faulty wires form a 

fault segment. Let S  denote the size (or length) of the 
largest fault segment present in the link, where .0 FS ≤≤  

For given values of W  and ,F  we seek to find the 
probability distribution of ,S  ).|( FSPW  

 

 
 
Fig. 1. An example of a parallel link (cross section) consisting of W = 8 
wires with F = 4 faulty wires (shaded), where the largest fault-segment size 
is S = 2 (formed by the clustering of faulty wires 3 and 4). In reality, wires 1 
and 8 are physically located at the two opposite ends of the parallel link. 
 

III. ALGORITHM DESCRIPTION 
EREAFTER we present an algorithm in order to find 
the probability )|( FSPW  for each value of S  for 

given values of W  and .F  We find it useful to demonstrate 

the construction of the algorithm through arithmetic 
examples that clarify all notions involved. 

A. Number of Possible Wire Arrangements 
Let ),( FWA  denote the set of all possible wire 

arrangements, for given W  and F  values. The cardinality 
(i.e., number of elements) of set ),( FWA  is simply equal to 
the number of combinations in choosing F  faulty wires out 
of  W  wires, given by 
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Similarly, let ),(),,( FWASFWA ⊂  denote the set of 

all possible wire arrangements for given ,W  F  and S  
values. Then, the problem reduces to finding ),,( SFWA  

which when divided by ),( FWA  will yield exactly the 
required probability distribution ).|( FSPW  

B. Initial Values 
As a first step, it is not difficult to see (using basic 

counting principles and probability rules) that for certain 
value choices of S  and ,F )|( FSPW  can be obtained as 
follows 
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             (if ⎡ ⎤ FSF ≤≤+ 2/)1( ). 
 
Thus, the task is reduced to finding the probability 

distribution )|( FSPW  for all ⎡ ⎤2/)1(0 +<< FS , for 
given values of  W  and .F  

 

C. Size of Fault-Segment 
Let H  denote the number of healthy wires in a parallel 

NoC link, i.e., .FWH −=  From the problem definition, 
the size of the largest fault segment S  has a lower bound 
which is equal to zero. However, it is possible to define the 
greatest lower bound of S  more precisely (refer to Example 
1 for demonstration) as 

 
⎡ ⎤ ./ FSHF ≤≤              (3) 

 
Example 1: Let 12=W , .7=F  Then 5=−= FWH  

and the greatest lower bound of S  is ⎡ ⎤ ⎡ ⎤5/7/ =HF  
.2 S≤=  Consequently for this case S  can never be equal 

to 0 or 1. An illustration of such a wire arrangement is 
××○××○×○×○×○, 

where the link is shown as an “unwrapped” transverse 
section, with ○ and × denoting a healthy and faulty wires, 

T 

H 
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respectively. The same link/wire representation is adopted 
throughput the remaining length of this article. 
 

D. Number of Fault-Segments 
Let σ  denote the number of fault-segments in a parallel 

NoC link. It is not difficult to see (refer to the demonstration 
exhibited in Example 2) that 

 
⎡ ⎤ .0),,1min(/ >+−≤≤ SHSFSF σ    (4) 

 
Example 2: Let 12=W , 7=F  and .4=S  Then, 

⎡ ⎤ ⎡ ⎤ .24/7/min === SFσ Moreover,  

).1(4)5,4min(),1min(max +−===+−= SFHSFσ  
Such wire arrangements for σ  = 2, 3 and 4, are 
respectively, the following: 

××××○×××○○○○, ××××○××○×○○○, ××××○×○×○×○○,  
Now let 2=S  for the same W  and F  values. Then, 

⎡ ⎤ ⎡ ⎤ .42/7/min === SFσ  Moreover,  

).(5)5,6min(),1min(max HHSF ===+−=σ  
Such wire arrangement for σ  = 4 and 5, are respectively, 
the following: 

××○××○××○×○○, ××○××○×○×○×○. 
 

E. String Representation of Wire Arrangements 
Let a wire arrangement ),,( SFWAa ∈  be represented 

by the string ,...21 Hsssl =  where is  is the size of the i th 
fault-segment followed by a single healthy wire. Making the 
convention that ,1 Ss =  we have: 

 

Fs
H

i
i =∑

=1

   ( SsSsi =≤Ζ∈ +
10 , ).     (5) 

 
Note that (5) allows ,0=is  denoting an empty fault 

segment followed by a single healthy wire (refer to Example 
3 below). 

Example 3: Let 12=W , 6=F  and .2=S  Then 
.6=−= FWH  Clearly, one of the respective wire 

arrangements ××○○××○×○○×○ can be expressed by the 
string .202101654321 == ssssssl  

The string representation for a wire arrangement, as 
described above, will allow us to count the actual number of 
wire arrangements. We now introduce some terminology 
that will help us to reach this goal. 

Definition 1: (a) The string Hsssl ...21=  is said to be 
periodic iff (i) H  is a composite integer, and (ii) there 
exists +Ζ∈t such that ., +

+ Ζ∈∀= iss iti  We call t  the 
period of string .l  

(b) If there is more than one t  satisfying the condition (ii) 
above, then the string is said to have multiple periods that 
are all prime divisors of ,H  excluding 1 and .H  

(c) If condition (ii) is not satisfied, although the string l  
is non-periodic, for the sake of simplicity, the period is 
considered to be .Ht =  

(d) The period wt  of a wire arrangement ),,( SFWAa ∈  

that is represented by the string l  of period ,t  can be 
obtained as follows. 
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          (6) 

 
Example 4: As a demonstration of (6) consider the wire 

arrangement ××○×○××○×○ )2,6,10(A∈  which has a period 
of 5=wt  (while the corresponding string 4321 ssss = 2121 is 
of period 2=t ). 

 Definition 2: The frequency f  of string Hsssl ...21=  is 
the number of occurrences of a repeating substring 

tt sssl ...21=  within ,l  where t  is the period of ,l  and is 
given by 

 
./ tHf =                 (7) 

 
Clearly, if string l  has multiple periods, hence it has 

multiple frequencies as well. 
Definition 3: The frequency wf  of the wire arrangement 

),,( SFWAa ∈  is the number of occurrences of a repeating 
sub-arrangement 

wt
a  within ,a  where wt  is the period of ,a  

and it is given by 
 

./ ww tWf =                (8) 
 
Clearly, using (6), (7), and (8) and Definition 2, the 

respective frequencies wf  and f  of the wire arrangement 
),,( SFWAa ∈  and the corresponding string l  are equal. 

Note here that, due to the convention in the definition of 
string l  above (refer to (5)), one string l  corresponds to wt  
equivalent rotations of wire arrangements (refer to Example 
5). If string l  is non-periodic, i.e. ,Ht =  then, by (5), the 
number of equivalent rotations of wire arrangements is 

 

.
1

WHFtst
t

i
iw =+=+= ∑

=

         (9) 

 
Example 5: Let ,8=W  4=F , and 2=S . Then 

.4=H  A non-periodic string 2200=l  corresponds to 
8== Wtw  equivalent rotations of wire arrangements, 

demonstrated as follows: 
××○××○○○,  ○××○××○○,  ○○××○××○,  ○○○××○××, 
×○○○××○×,  ××○○○××○,  ○××○○○××,  ×○××○○○×. 
However the periodic string 2020=l  corresponds to 

only 420221 =++=++= tsstw  equivalent rotations of 
wire arrangements: 

××○○××○○,  ○××○○××○,  ○○××○○××,  ×○○××○○×. 
Clearly, with the introduction of the notion of the string 

as explained above has reduced the presented problem to 
finding all possible strings l  with non-intersecting sets of 
equivalent rotations of wire arrangements. 
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F. Partitioning of the Number of Faulty Wires and 
Corresponding Necklaces 
We use integer partitions in order to find all string 

representations of all wire arrangements. 
Definition 4: A k-partition p  of a positive integer n is a 

partition consisting of exactly k terms, adding zeros 
whenever necessary. 

Returning to the presented problem for a parallel link 
arrangement of W  wires, with F  faulty wires and a largest 
fault segment ,S  an H -partition p  of (integer) F  
consists of  H  (number of healthy wires) terms, with the 
largest term being equal to S  (refer to Example 6). 

Example 6: Let ,18=W  12=F  and .3=S  Then 
6=H . The 6-partitions of 12=F , with the largest term 

being equal to 3=S , are given as follows: 
003333 +++++ , 012333 +++++ , 

111333 +++++ , 022233 +++++ , 
112233 +++++ , 122223 +++++ . 

Clearly there is no 1-1 correspondence between the 6-
partitions above with the strings l  of the wire 
arrangements. For instance p  = 3 + 3 + 3 + 3 + 0 + 0 
corresponds to a set of strings, namely 333300, 333030, 
333003, and so forth. Hence, still, knowing the actual H -
partitions corresponding to given ,W  F  and S  does not 
solve the problem, as the number of strings per partition 
must be found. This can be achieved by noting that the 
number of all possible strings l  with non-intersecting sets 
of equivalent rotations of wire arrangements can be 
represented by the number of necklaces of each H -partition 
(refer to Example 7 for illustration). We recall the definition 
of a necklace as follows. 

Definition 5: A k-ary necklace of length n is an 
equivalence class of n-character strings over an alphabet of 
size k, taking all rotations as equivalent [11]. 

Example 7: Let 6=W , 3=F  and 2=S . Then .3=H  
It turns out that there is only one 3-partition of 3=F , with 
the largest term being equal to 2=S , namely 

012 ++ . 
All necklaces for the 3-partition above, with the 

corresponding equivalent rotations of wire arrangements, 
are 

210 : ××○×○○, ○××○×○, ○○××○×,  
×○○××○, ○×○○××, ×○×○○×. 

201: ××○○×○, ○××○○×, ×○××○○,  
○×○××○, ○○×○××, ×○○×○×. 

Note that there is a 1-1 correspondence between the 
necklaces above and (all possible, for this case) strings ,l  
whose corresponding sets of equivalent rotations of wire 
arrangements do not intersect. 

For each H -partition one can compute the corresponding 
number of necklaces (refer to (11)), which in turn can be 
used to compute the number of wire arrangements. Hence, 
the problem reduces to finding: (a) all such H -partitions, as 
described above, and subsequently, (b) their corresponding 
number of necklaces. 

 
1) H-partitions 

There are a number of known algorithms that can actually 

generate such a list of H -partitions in a constant amortized 
time [12]. Note here that a partition can be extended to an 
H -partition by simply adding the necessary number of 
zeros. 

However, we use an alternative and simpler approach. 
We define a string Snnnnr ...210= , where jn  is equal to the 

number of occurrences of integer j  in a string .l  Then, 
from the way the strings l  and r  are constructed and from 
(4) and (5), we set the following system of equations. This 
system has a limited number of solutions for ,jn  with each 

solution giving a distinct string .r  
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2) Necklaces 

Using the substring rnnnn k ⊂−1210 ... , where 0≠jn  and 

k  is the number of non-zero terms in string ,r  we can find 
the number of necklaces of an initial string l  as follows. 
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where ),...,,( 110 −knnnN  denotes the number of necklaces 
composed of jn  occurrences of ,1,...,1,0 −= kj  
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11)(ϕ  is the Euler’s 

Totient Function, defined as a number of positive integers 
less than or equal to j , that are coprime to j  [13, 14]. 

For computational purposes (refer to Example 5), it is 
necessary to separate periodic and aperiodic necklaces. To 
calculate the periodic cases one needs to find the prime 
common factors of all elements in a string ,r  which are no 
more than the frequencies f  of string l  (refer to Definition 
2). Once we know the frequencies of each periodic necklace 
we divide each of the elements in the corresponding string 
r  by frequency ,f  with the result corresponding to the 
repeating substring tl  (refer to Definition 2). Consequently, 
the number of periodic necklaces is given by 
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where j  runs through all frequencies f  of string .l  
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G. Full Model for the Probability Distribution 
To complete the construction of the model describing the 

probability distribution )|( FSPW  we first establish a 
conjecture based on empirical data. 

Conjecture: The number of periodic wire arrangements 

is given by U
m mm

S
f
F

f
WA ),,( , where mf  are the prime 

common factors of  W  and .F  This can be illustrated by 
Example 8. 

Example 8: Let 12=W , 6=F  and 2=S . Then 
.6=H  The prime common factors of  W  and F  are 

21 =f  and 32 =f  and the periodic wire arrangements for 
)2,6,12(A  are the following: 

61 =wt , 21 =f  : ××○×○○××○×○○, ××○○×○××○○×○, 
○××○×○○××○×○, ○××○○×○××○○×, 
○○××○×○○××○×, ×○××○○×○××○○, 
×○○××○×○○××○, ○×○××○○×○××○, 
○×○○××○×○○××, ○○×○××○○×○××, 
×○×○○××○×○○×, ×○○×○××○○×○×, 

42 =wt , 32 =f  : ××○○××○○××○○,  ○××○○××○○××○, 
○○××○○××○○××, ×○○××○○××○○×. 

The total number of wire arrangements is 

=U
m mm

S
f
F

f
WA ),,( ,16),,(),,(

2211

=∪ S
f
F

f
WAS

f
F

f
WA  

as )2,3,6(),/,/( 11 ASfFfWA =  and ),/,/( 11 SfFfWA  
)2,2,4(A=  are disjoint with cardinalities 12 and 4 

respectively (these values were pre-calculated specifically 
for this example).  

Now it is not difficult to derive the following recursive 
equation that yields the desired number of wire 
arrangements (once the number of H -partitions; strings, 
i.e. necklaces, and frequencies are known): 
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where i  denotes the index for each of the necklaces 
corresponding to the H -partitions of ,F  j  the index of the 
prime common factors of all elements in string r  
(corresponding to a periodic necklace), and m  the index of 
the prime common factors of W  and .F  

Finally, combining (1), (2), and (13), one can obtain the 
following formula for the probability distribution 

).|( FSPW  
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The formula above has been numerically tested and is 

verified by the results obtained from a brute-force algorithm 
implemented in Matlab. The brute-force algorithm 
calculates wire combinations in a straight-forward manner 
and spends considerable time (in terms of days) to count 
combinations for 40=W  and 230 ≤≤ F , running on a 
workstation consisting of an Intel Xeon X5560 Quad Core 
CPU at 2.80 GHz and 12 GB of DDR3 random access 
memory. 

 
TABLE I. 

RESULTS OBTAINED USING THE SET OF EQUATIONS IN (14) FOR W = 16 
SHOWING THE NUMBER OF ALL POSSIBLE FAULTY WIRE ARRANGEMENTS. 

 
S=1 S=2 S=3 S=4 S=5 S=6 S=7 S=8 S=9 S=10 S=11 S=12 S=13 S=14 S=15 S=16

F=1 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F=2 104 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F=3 352 192 16 0 0 0 0 0 0 0 0 0 0 0 0 0
F=4 660 968 176 16 0 0 0 0 0 0 0 0 0 0 0 0
F=5 672 2640 880 160 16 0 0 0 0 0 0 0 0 0 0 0
F=6 336 4224 2568 720 144 16 0 0 0 0 0 0 0 0 0 0
F=7 64 4032 4704 1920 576 128 16 0 0 0 0 0 0 0 0 0
F=8 2 2212 5432 3304 1344 448 112 16 0 0 0 0 0 0 0 0
F=9 0 608 3776 3696 2016 896 336 96 16 0 0 0 0 0 0 0
F=10 0 56 1400 2560 1976 1120 560 240 80 16 0 0 0 0 0 0
F=11 0 0 208 960 1184 896 560 320 160 64 16 0 0 0 0 0
F=12 0 0 4 136 360 424 336 240 160 96 48 16 0 0 0 0
F=13 0 0 0 0 32 80 112 96 80 64 48 32 16 0 0 0
F=14 0 0 0 0 0 0 8 16 16 16 16 16 16 16 0 0
F=15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0
F=16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  

 

IV. NUMERICALLY VERIFIED ANALYTICAL RESULTS 
HE following results for a parallel NoC link with 

16=W  wires were obtained with the help of Matlab 
using our spatial faulty wire probability distribution model 
from (13) and (14). Again, the results were verified to be 
correct when compared against the results of extensive 
brute-force simulations in Matlab. Table 1 shows the 
number of wire arrangements for all possible combinations 
of F  and ,S  while Fig. 2 shows the distribution of the 
corresponding probabilities ).|( FSPW  

 

 
 
Fig. 2. Probability distribution PW(S|F) for a parallel NoC link with a total 
of W = 16 parallel wires including F faulty wires, where S is the size of the 
largest fault-segment. 
 

V. AN ARITHMETIC EXAMPLE AND DEMONSTRATION OF 
THE EFFECTIVENESS OF THE DERIVED MODEL 

E demonstrate the applicability and, consequently, the 
effectiveness of the derived model using the 
following parameters that were chosen at random 

(relatively large numbers have been picked to show both the 
efficiency and accuracy of the derived model). 

Let 18=W , 12=F  and .3=S  Hence .6=H  The 6-
partitions of 12=F , with the largest term being equal to 
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3=S  are given as follows with the corresponding string r  
(refer to Section III.F.1): 

p  = 3 + 3 + 3 + 3 + 0 + 0 ~ (4, 0, 0, 2) = ,r  
p  = 3 + 3 + 3 + 2 + 1 + 0 ~ (3, 1, 1, 1) = ,r  
p  = 3 + 3 + 3 + 1 + 1 + 1 ~ (3, 0, 3, 0) = ,r  
p  = 3 + 3 + 2 + 2 + 2 + 0 ~ (2, 3, 0, 1) = ,r  
p  = 3 + 3 + 2 + 2 + 1 + 1 ~ (2, 2, 2, 0) = ,r  
p  = 3 + 2 + 2 + 2 + 2 + 1 ~ (1, 4, 1, 0) = .r  

Then, the number of necklaces for each of the partitions 
above is (refer to (11)): 

3)2,4( =N , 20)1,1,1,3( =N , 4)3,3( =N ,
 10)1,3,2( =N , 16)2,2,2( =N , 5)1,4,1( =N , 

giving a total of 58 necklaces. Moreover, the number of 
periodic necklaces is (refer to (12)) 

1)1,2()2,4( == NK , 1)1,1()3,3( == NK ,
 2)1,1,1()2,2,2( == NK , 

giving a total of 4 periodic necklaces.  
Using the conjecture established in Section III.G, we find, 

recursively, the number of periodic wire arrangements  

,33)3,3/12,3/18()3,2/12,2/18(),,( =∪= AAS
f
F

f
WA

m mm
U

as )3,6,9(A  and )2,4,6(A  are disjoint with cardinalities 27 
and 6, respectively.  

The next step is to proceed with the calculation of the 
total number of wire arrangements using (13) as follows. 

 U
m mmj

j
i

i ff
AKNWA )3,12,18()()3,12,18( +−= ∑∑  

     1005,  33  4)  18(58 =+=  
which is in complete agreement with the brute-force 
computation. 

Finally, we compute the desired probability (from (14)) to 
be 

18564
1005

12
18

)3,12,18()12|3(18 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= AP . 

 

VI. CONCLUSION 
HIS article derives and demonstrates the combinatorics-
based model which can be used to calculate the spatial 
probability distribution of wire faults in a parallel NoC 

interconnect link given its width and a given number of 
faulty wires which can appear in this link. Particular 
emphasis was paid upon the adjacency of the faulty wires 
that form fault-segments separated by at least one healthy 
wire, as the size of the largest segment determines the 
additional delay required by data recovery mechanisms, 
such as the Partially Faulty Link Recovery Mechanism 
(PFLRM) [9, 10], to recover corrupted flit data at the 
receiver router. The developed model constitutes a 
combinatorial application of partitions and necklaces 
through a systematic approach that derives the 
correspondence between the presented problem and 
necklaces, where periodicity plays a crucial role. The model 
proves to be highly accurate when compared against 
extensive brute-force numerical simulations and associated 

results. Next, future, steps, include the rigorous proof of the 
recursive conjecture established in the presented algorithm, 
while the derivation of a fully non-recursive algorithm 
persists as a challenge.  
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