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Abstract—The Random Walk with d Choice (RWC(d)) is a
recently proposed variation of the simple Random Walk that
first selects a subset ofd neighbor nodes and then decides
to move to the node which minimizes the value of a certain
parameter; this parameter captures the number of past visits of
the walk to that node. In this paper, we propose the Enhanced
Random Walk with d Choice algorithm (ERWC(d, h)) which
first selects a subset ofd neighbor nodes and then decides to
move to the node which minimizes a valueH defined at every
node; this H value is depending on parameterh and captures
information about past visits of the walk to that node and -
with a certain weight - to its neighbors. Simulations of the
Enhanced Random Walk with d Choice algorithm on various
types of graphs indicate beneficial results with respect to the
Cover Time and Load Balancing. The graph types used are the
Random Geometric Graph, Torus and Lollipop.

Index Terms—Random Walk, Power of Choice, Cover Time,
Load Balancing, Wireless networks.

I. I NTRODUCTION

Recently there is a growing interest in random walk-based
algorithms, especially for a variety of networking tasks (such
as searching, routing, self stabilization and query processing
in wireless networks, peer-to-peer networks and other dis-
tributed systems [1], [7]), due to its locality, simplicity, low
overhead and inherit robustness to structural changes. Many
wireless and mobile networks are subject to dramatic struc-
tural changes caused by sleep modes, channel fluctuations,
mobility, device failures and other factors. Topology driven
algorithms are inappropriate for such networks, as they incur
high overhead to maintain up-to-date topology and routing
information and also have to provide recovery mechanisms
for critical points of failure. By contrast, algorithms that
require no knowledge of network topology, such as random
walks, are advantageous.

A random walk on a graph is the process of visiting the
nodes of a graph in some sequential random order. The
simple random walk starts at some fixed node (with uniform
probability among all nodes in the network) and at each
time instant, it moves to a randomly chosen neighbor of the
currently visited node. The simple random walk is a totally
uncontrolled process, which often shows unwanted behavior,
like frequent revisits of already covered nodes and substantial
delays in visiting the most isolated regions within a network.

Motivated by the need toimprove random walk-based per-
formance over graphs, researchers have proposed, to reduce
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the Cover Time of a random walk, various methodologies.
A recently proposed methodology in [6] suggests that the
use of multiple, parallel random walks starting from a fixed
vertex of the graph will speed up the cover process. The
authors prove that running many random walks in parallel
yields a speed-up which is linear in the number of parallel
walks. They also demonstrate that an exponential speed-up
is sometimes possible, but that some natural graphs allow
only a logarithmic speed-up.

A further methodology for reducing Cover Time on graphs
is the use of Power of Choice. The essential idea behind the
power of choice, is to make some decision process more
efficient, by selecting the best among a small number of
randomly generated alternatives. The most basic results [16]
about the power of choice are as follows: Suppose thatn
balls are placed inton bins, with each ball being placed into
a bin chosen independently and uniformly at random. Let
the load of a bin be the number of balls in that bin after all
balls have been thrown. What is the maximum load over all
bins once the process is terminated? It is well known that,
with high probability, the maximum load upon completion
will be approximately logn

loglogn
. We now state a surprising

result proved in a seminal paper by Azar, Broder, Karlin,
and Upfal [8]. Suppose that the balls are placed sequentially
so that for each ball we choose2 bins independently and
uniformly at random and place the ball into the less full bin
(breaking ties arbitrarily). In this case, the maximum load
drops to loglogn

log2 + O(1) with high probability. If each ball
hasd ≥ 2 choices instead, then the maximum load will be
loglogn

logd
+ O(1) with high probability. Having two choices

hence yields a qualitatively different type of behavior from
the single choice case, leading to an exponential improve-
ment in the maximum load; having more than two choices
further improves the maximum load by only a constant factor.

Chen Avin and Bhaskar Krishnamachari in their paperThe
power of choice in Random Walks: An Empirical Study[4]
proposed to combine random walk on a graph with the
Power of Choice. The Random Walk withd Choice algorithm
(RWC(d)) works in such a way that it selectsd neighbors
uniformly at random and then chooses to step to the node
u of the d neighbors than minimizes the fractionc

t(u)+1
δ(u) ,

where ct(u) is the number of visits of the random walk
at time t at nodeu and δ(u) is the degree of nodeu.
If the graph is regular, the walk steps to the least-visited
neighbor; if not, the walk steps to the node that is farthest
away from its stationary distributionπ(u). For the complete
graph the analytical results show that the cover time of
RWC(d) is reduced by a factor ofd, compared with the
cover time of the simple random walk. For general graphs
the lack of Markov property suggests that the analytical
results may be harder to obtain. The simulation-based study
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shows a consistent improvement in the cover time, cover
time distribution and the load balancing at cover time for
different graphs and different sizes. A surprising result is
that for the 2-dimensional torus, choice seems to improve
the cover time and the load on the most visited node by an
unbounded factor. Specifically while the cover time of the
n nodes torus is known to beΘ(n log2 n), the simulations
showed that withd = 2, random walk with choice has lower
cover time than the simple random walk on the hyper-cube,
that is known to have optimal cover timeΘ(n log n).

In this paper we propose theEnhanced Random Walk with
d Choice (ERWC(d, h)) algorithm. We introduce, additionally
to d, a new parameterh > 1. Let Ht(v) be a value defined
to nodev at time t as follows:
Ht(v) = (ct(v) ∗ h) +

∑

u∈N(v)

(ct(u) ∗ 1) wherect(u) is the

number of visits of the random walk at timet at nodeu.
The main idea behind ERWC(d, h) is to stir the course

of the random walk based not only on the number of
visits to the candidate node it is considering to move to
(as it is the case with the RWC(d)), but based on a more
comprehensive metric that captures the level of past passage
of the random walker through the broader region around the
potential candidate node it is considering to move to. This
way, it is expected that the random walk will not be stirred
toward highly visited regions and, thus, it would be likely to
enter less visited regions incurring less revisits to the nodes.
In order to represent the intensity of visits to a region, we
introduce the idea of recording the ”trail” of a random walk
through a region by increasing a counter of a visited node
by h > 1 and that of its neighbors by1. The more frequent
and the closer the passage of a random walk from a certain
node, the higher the accumulated value of its counter,H,
would be expected to be. By selecting randomlyd nodes, the
random walk selects d potential directions for moving toward
in its next step. Among thosed possibilities, the random
walk will consider first the subset of nodes never visited
before and among them will select the one with the lowest
value of H divided by the degree of the node; if the latter
subset is empty, it will select the neighbor (direction) with the
lowest value ofH divided by the degree of the node. Through
such moving rules, the random walk is stirred towards the
unvisited nodes from the selectedd, which is located in the
least visited region (lowest value ofH divided by the degree
of the node); or else, it is stirred towards the revisited node
from the selectd, which is located in the least visited region.

At any point in time t the Enhanced Random Walk
algorithm selectsd neighbors uniformly at random and then
chooses to step to the unvisited node among them(if exists).
If all the selectedd nodes have already been visited the
random walk chooses to step to the nodeu of thed neighbors
than minimizes the fractionH

t(u)
δ(u) , whereδ(u) is the degree

of nodeu.
Our result, by using simulations, is that the ERWC(d, h)

algorithm outperforms the RWC(d) algorithm in the
following way:

1. For the Random Geometric and Torus graphs the per-
formance improvement is in both Cover Time and Load
Balancing at Cover Time.

2. For the Lollipop graphs the performance improvement

is mainly at Cover Time. There is a small improvement
in Load Balancing at Cover Time.

The rest of the paper is organized as follows: Section II
gives background information and definitions on graphs, ran-
dom walk algorithms and the metrics of interest, associated
with random walks on graphs. Section III formally introduces
the Enhanced Random Walk withd Choice (ERWC(d, h))
algorithm. In Section IV simulation results are presented
for many types of graphs, including Random Geometric
Graph, Torus, and Lollipop. Conclusions and Future Work
are presented in Section V.

II. BACKGROUND, DEFINITIONS AND METRICS

Let G = (V,E) be an undirected graph withV the set of
nodes andE the set of edges. Let|V | = n and |E| = m.
For v ∈ V let N(v) = {u ∈ V |(vu) ∈ E)} be the set of
neighbors ofv and δ(v) = |N(v)| the degree ofv. A δ-
regular graph is a graph in which the degree of all nodes is
δ.

A. Random Walk on Graphs

1) Simple Random Walk:The Simple Random Walk
(SRW) is a walk where the next node to visit is chosen
uniformly at random from the set of neighbors of a currently
visited node. That is, when the walk is at nodev the proba-
bility to move in the next step to nodeu is P (v, u) = 1

δ(v)

for (v, u) ∈ E and 0 otherwise. If {vt : t = 0, 1, 2, . . .}
denotes the node visited by the SRW at stept then the walk
can be described with a Markov chain. The Simple Random
Walk is attractive due to its simplicity and robustness, yet
it lacks in performance inducing high Cover Time and bad
Load Balancing.

2) Random Walk with d Choice:The Random Walk with
d Choice, RWC(d) has been introduced in [4]. It is a walk
whose next node to move is determined as follows: Letv
denote the node reached by the walk at timet; let ct(v) be
the number of visits to nodev until time t; let N(v) be the
union of neighbor nodes connected to nodev.
RWC(d):Upon visiting nodev at time t, the RWC(d):

1. Selectsd nodes fromN(v) independently and uniformly
at random.

2. Steps to nodeu that minimizesct(u)+1
δ(u) (break ties in

an arbitrary way)
The Random Walk with Choice has been shown to improve
the Cover Time without losing the locality, simplicity and
robustness of the random walk. This is an important goal,
since it is directly related to the performance and energy
usage of any random walk-based mechanism in a wireless
network.

B. Types of graphs used in simulation

We obtain simulations results for the types of graphs listed
below:

1) Random Geometric Graph,G(n, r). Random Geo-
metric GraphsG(n, r) result from placingn points
uniformly at random on the unit square and connecting
two nodes if and only if their Euclidean distance is at
most r. Recently, it has been proven that, whenr =
Θ(rcon) then w.h.p.G(n, r) has optimal Cover Time
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O(nlogn) and optimal Partial Cover TimeO(n) [5]

for the simple random walk.rcon grows asO(
√

logn
πn

)
and is the critical radius to guarantee connectivity
w.h.p. [13]. The random geometric graphs have been
widely used to model link connectivity and protocol
behavior in randomly deployed wireless networks.

2) Torus, T (n1, n2). A 2-dimensional torusT (n1, n2)
is a graph in which the vertices are arranged on a
rectangular2 dimensional array with dimensionsn1

and n2 with the additional property that the vertices
on opposite sides of the boundaries of the array are
connected. The number of nodesn is given by the
equationn = n1 ∗ n2. It is known that T (n1, n2)
has non-optimal Cover TimeΘ(n log2 n) [10] for the
simple random walk.

3) Lollipop, Ln1,n2
. The Lollipop graph can be created

by joining a complete graphKn1
to a boundary vertex

of a path graphPn2
. The number of nodesn is given

by the equationn = n1 + n2. It is known to have the
worst case Cover Time ofO(n3) [5] for the simple
random walk.

C. Metrics

In this subsection, we present a set of performance metrics
associated with random walks on graphs, used later to
validate the performance of the proposed algorithm. The
metrics of interestare:

1) Cover Time (CT). The Cover TimeCg of a graphG
is the maximum (over all starting nodesv) expected
time taken by a random walk onG to visit all nodes
in G. Formally, for v ∈ V let Cv be the expected
number of steps for the simple random walk starting
at v to visit all nodes inG, and the Cover Time
of G is Cg = maxv Cv. The Cover Time of graphs
have been widely investigated [15], [2], [10], [9], [3],
[17], [5], [14]. It was shown by Feige in [11], [12]
that for simple random walks(1 + o(1))n log n <
Cg < (1 + o(1)) 4

27n3. Results for the Cover Time of
specific graphs vary from optimal cover timeΘ(nlogn)
associated with the complete graph, to the worse case
Θ(n3) associated with the lollipop graph. The best
known cases correspond to dense, highly connected
graphs; on the other hand, when connectivity decreases
and bottlenecks exist in the graph, the Cover Time
increases.

2) To measure Load Balancing at Cover Time we use
Maximum Node Load (MNL). At Cover Time every
node v ∈ V of the undirected graphG = (V,E) is
visited by the random walkNLv times. It is obvious
that NLv ≥ 1 ∀v ∈ V .
The Maximum Node Load is the infinite norm of
the number of visits to every node at Cover Time.
Formally: MNL = ||NL||∞ = max

v∈V
|NLv|

It is a metric representing how well the visits of the
random walk are distributed over the nodes of the
graph. The reason we use MNL value as a metric of
Load Balancing is that the decrease of MNL value
leads to better Load Balancing. This is an important
metric primarily for nodes cooperating in wireless
networks due to energy consumption limitations of

these nodes. Each visit to a node is associated with
a fixed energy amount required to handle transmission
and reception of the random walk agent. At the same
time, it is evident that the MNL metric is representative
of the energy depletion in the network. It is expected
that the more uniformly distributed the visits of the
random walk over the nodes of the network, the more
uniform is energy expenditure on behalf of each node.

III. E NHANCED RANDOM WALK WITH CHOICE

ALGORITHM

The Enhanced Random Walk withd Choice,ERWC(d, h),
is a walk whose next node to move to is determined as
follows: Let h > 1 be an integer. Letv be the node visited
by the walk at timet; let ct(v) be the number of visits to
nodev until time t; let N(v) be the set of neighbor nodes
to nodev. Now we defineHt(v) as follows:
Ht(v) = (ct(v) ∗ h) +

∑

u∈N(v)

(ct(u) ∗ 1)

ERWC(d, h) Algorithm: Upon visiting nodev at time t,
the ERWC(d, h):

1. Selectsd nodes fromN(v) independently and uniformly
at random. LetM(v, d) denote the selected set of
neighbors ofv, M(v, d) ⊆ N(v).

2. Modify M(v, d) as follows

M(v, d) =

{

u, ∀u ∈ M(v, d) andct(u) = 0
M(v, d) remains the same otherwise.

3. Steps to nodeu ∈ M(v, d) that minimizesHt(u)
δ(u) (break

ties in an arbitrary way).
4. ct(u) = ct(u) + 1, Ht(u) = Ht(u) + h, andHt(k) =

Ht(k) + 1, ∀k ∈ N(v) − {u}.
Our main goal in this paper is to reduce the Cover Time,

so it is an important discussion to find out a goodh value
which minimize the ERWC(d, h) Cover Time for all graph
types instances with the same number of nodes.

a) Discussion to find out a goodh value: The
ERWC(d, h) algorithm uses theH value at graph nodes to
make decisions about subsequent random walk movements.
In order to calculateHt(u) we have to calculate first a good
value forh, which minimize the ERWC(d, h) Cover Time for
all graph types instances with the same number of nodes.

Solving such a problem requires us to find an analytical
function for describing ERWC(d, h) Cover Time with respect
to parameterh, choiced and graph type instance. However,
such an analytical function is difficult to find. Instead we
will propose an experimental way to find a goodh value for
the ERWC(d, h) which minimizes the Cover Time.

First we shall describe how we obtain Cover Time and
MNL for the RWC(d) and ERWC(d, h) algorithms running
on all graph types instances studied in this paper.

Given a graph instanceG = (V,E) and a random walk
algorithm. Let NSv be the number steps needed by the
random walk algorithm to coverG starting at nodev. Let
c(u) be the number of visits to nodeu, for eachu ∈ V ,
when the random walk algorithm coversG. The Cover Time
is CT = max

v∈V
(NSv) and the Maximum Node Load is

MNL = max
u∈V

(c(u)) at Cover Time. We note that all graph

instances with the same number of nodes are identical for
all graphs types studied in this paper except of RGG.
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Now we determine a simple method for finding a goodh
value for the ERWC(d, h) algorithm which minimize Cover
Time. Let d be the choice,n = |V |, and N the number
of graph instances. Given a graph type and fixedd, n,
N . For eachh = 2, 3, ..., 100 using N graph instances
Gi , i = 1, 2, ..., N we calculate the mean Cover Time

mCTh =
N
∑

i=1

(CTi)/N . From these mean Cover Times we

find a goodh value as the value resulting in lowest mean
Cover Time i.e.mCThgood

= min
h=2,..,100

(mCTh)

Figure 1 presents an example of finding a good value forh
on N = 200 instances of RGG withn = 900 andr = 2rcon.
The mean Cover Time of the ERWC(d= 2, h) algorithm on
the graph is shown for all values ofh ∈ [2, 100]. A good
value forh is 4 and is clearly in the region of lowh values.
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Fig. 1. Mean Cover Time for differenth on RGGG(900, 2rcon)

Graph type Number of nodesn Goodh value
RGG,2rcon 900 4
Torus 900 3
Lollipop 100 2

TABLE I
GOOD h FOR VARIOUS TYPES OF GRAPHS

In Table I can be seen the goodh values calculated for all
graph types and sizes used in this paper.

IV. EXPERIMENTAL RESULTS

In this section, we present comparative results for the
performance of ERWC(d, h) and RWC(d) algorithms on
RGG, Torus and Lollipop graphs with respect to Cover Time
and Load Balancing at Cover Time. We obtain experimental
results in the following way:

Let d be the choice,n = |V |, N the number of graph
instances andh be a previously calculated good value if
the algorithm is the ERWC(d, h). Given a graph type, an
ERWC(d, h) or RWC(d) algorithm and fixedd, n, N , h
then for each graph instanceGi, i = 1, ..., N we obtain
the CTi, MNLi. This way we getCTi, MNLi, where
i = 1, ..., N , for ERWC(d, h) and RWC(d) algorithms on the
sameN graph instances of a graph type. The next step is to
compare these results to show performance improvement of
the ERWC(d, h) algorithm over the RWC(d) algorithm.

To compare the Cover Time resultsCTi we use
the following statistics: CTmin = min

i=1,..,N
(CTi),

CTmax = max
i=1,..,N

(CTi), CTmean =
N
∑

i=1

(CTi)/N ,

Furthermore, to compare the Maximum Node Load results
we use the same statistics.

We present simulation results for ERWC(d= 2, h) and
RWC(d = 2), using the appropriate goodh value for the
enhanced random walk algorithm, on:

1) Random geometric graphs,G(n, r) for n = 900 nodes
and radiusr = 2rcon.

2) Torus graphsT (n1, n2) for n = 900 nodes, where
n1 = n2 = 30.

3) Lollipop graphs Ln1,n2
for n = 100 nodes, where

n1 = n2 = 50.

A. Experimental results for Random Geometric Graphs
(RGG)

This subsection presents simulation results for ERWC(d =
2, h = 4) and RWC(d = 2) algorithms onG(n, 2rcon) with
n = 900 andN = 500. We obtain our resultsCTi, MNLi,
wherei = 1, 2, ..., N , for both algorithms using the sameN
instances of Random Geometric Graphs.

Figure 2 is a diagram of sorted theCTi results for the
Cover Time metric. It can be seen that ERWC(2, 4) algorithm
outperforms RWC(2)throughout the whole range of graph
instances used in our simulations. One can thus verify that a
random walk using the ERWC(2, 4) algorithm requires lower
average number of steps to fully cover the RGG. This is an
important result because it can be directly associated with
reduced energy expenditures required by a wireless network
to support the random walk.
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Fig. 2. Results for the Cover Time metric for ERWC(2, 4) and RWC(2)
on RGG

Figure 3 shows sorted theMNLi results for the Maximum
Node Load at Cover Time for both algorithms. We can
see that ERWC(2, 4) algorithm is significantly better than
RWC(2) algorithm with respect to Maximum Node Load.
The numerical results, along with percentage reductions for
both algorithms are presented in Table II. These results
indicate a 38% reduction in required steps for Cover Time
and 23.2% reduction of theMNLmean value in favor of
ERWC(2,4) against RWC(2) algorithm. Table II shows also
percentage improvements associated with other measures,
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Fig. 3. Results for the Maximum Node Load metric for ERWC(2, 4) and
RWC(2) on RGG

Statistics CTmin CTmax CTmean

RWC(2) 9036 66352 16896
ERWC(2,4) 6505 50195 10437
Reduction(%) 28% 24% 38%
Statistics MNLmin MNLmax MNLmean

RWC(2) 19 144 32.766
ERWC(2,4) 15 126 25.138
Reduction(%) 21% 12.5% 23.2%

TABLE II
STATISTICS FORCT AND MNL ON RGG GRAPHS

such as the 28% reduction forCTmin, 24% reduction for
CTmax and 21% forMNLmin, 12.5% forMNLmax. These
results confirm the improved performance of random walk
with ERWC(d, h) algorithm over the random walk with
RWC(d) on RGGs.

B. Experimental results for Torus graphs

Figure 4 and Figure 5 present sorted theCTi, MNLi

results, whereN = 500 and i = 1, 2, ..., N . These results
were obtained for the algorithms ERWC(d = 2, h = 3) and
RWC(d = 2), using the sameN instances of Torus graphs
with n = 900. It can be seen in Figure 4 that the ERWC(2, 3)
algorithm outperforms the RWC(2)algorithm for all Torus
graphs instances with respect to Cover Time. The flat line
part of the results for Torus graphs are identical values
for CT resulting due to the symmetry of the Torus graph.
There are also reductions for the Maximum Node Load
metric. Numerical values of the results and the corresponding
percentage reductions are shown in Table III.

Statistics CTmin CTmax CTmean

RWC(2) 4965 7297 6008.9
ERWC(2,3) 3621 5358 4799.4
Reduction(%) 27% 26.5% 20%
Statistics MNLmin MNLmax MNLmean

RWC(2) 8 11 9.92
ERWC(2,3) 7 9 8.03
Reduction(%) 12.5% 18% 19.6%

TABLE III
STATISTICS FORCT AND MNL IN TORUS GRAPHS
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Fig. 4. Cover Time results for ERWC(2, 3) and RWC(2)on Torus
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Fig. 5. Maximum Node Load results for ERWC(2, 3) and RWC(2)on
Torus

The ERWC(2, 3) algorithm achieves a significant 20%
average reduction in required steps to Cover Time compared
with RWC(2) for the Torus graph. Furthermore, the average
reduction with respect to MNL metric measures is 19.6%
indicating improved Load Balancing characteristics. One can
thus verify performance improvements for the ERWC(d, h)
based random walk proposed in this paper.

C. Experimental results for Lollipop graphs

The last graph type used for comparing ERWC(d = 2, h =
2) and RWC(d = 2) algorithms is the Lollipop graph with
n = 100. Figure 6 shows sorted theCTi results, where
N = 2000 and i = 1, 2, ..., N . These results where obtained
for both algorithms using the sameN graph instances of
Lollipop graphs.

Statistics CTmin CTmax CTmean

RWC(2) 3603 14605 6510.9
ERWC(2,2) 1813 7868 3544.7
Reduction(%) 49.6% 46.1% 45.5%

TABLE IV
STATISTICS FORCT IN LOLLIPOP GRAPHS

The reduction inCTmean in favor of ERWC(2, 2) mea-
sures 45.5%. Furthermore, Table IV shows reductions of
49.6% atCTmin and 46.1% atCTmax. These results show
a significant performance improvement in Cover Time of
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Fig. 6. Cover Time results for ERWC(2,2) and RWC(2) on Lollipop Graphs

ERWC(2, 2) algorithm over the RWC(2)algorithm on Lol-
lipop graphs.
The performance improvement in Load Balancing on Lol-
lipop graphs is small. For example there is a2.99% im-
provement with respect toMNLmean, so we don’t present
any other results about the Maximum Node Load metric.

V. CONCLUSIONS

In this work, the Enhanced Random Walk with Choice
algorithm is introduced as an improved version of the Ran-
dom Walk with Choice algorithm. ERWC(d, h) algorithm is
formally defined and compared against RWC(d) via simu-
lations over three different graph types, including Random
Geometric, Torus, and Lollipop graphs. Comparative results
are presented for both ERWC(d, h) and RWC(d) algorithms,
which are based on the Cover Time metric and Maximum
Node Load metric.

Our simulation results indicate significant savings in Cover
Time up to 38% for Random Geometric Graphs,20% for
Torus graphs and45.5% for Lollipop graphs. Furthermore,
the Load Balancing properties of the ERWC(d, h) algo-
rithm are better than those of RWC(d) with reductions for
Maximum Node Load in the order of23.2% for Random
Geometric Graphs and19.6% for Torus graphs.

Our plans for future work include running simulations on
other types of graphs to verify performance improvement of
the ERWC(d, h) algorithm over RWC(d). Furthermore, the
analytical description of Cover Time for both algorithms is
an open issue for future research.

REFERENCES

[1] M. Alanyali, V. Saligrama, and O. Sava,A random-walk model for
distributed computation in energy-limited networkIn Proc. of 1st
Workshop on Information Theory and its Application, San Diego,
2006.

[2] D.J. Aldous,Lower bounds for covering times for reversible Markov
chains and random walks on graphsJ.Theoret. Probab.,2(1): 91−100,
1989

[3] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lov́asz, and C. Rackoff,
Random walks, universal traversal sequences, and the complexity
of maze problemsIn 20th Annual Symposium on Foundations of
Computer Science (San Juan, Puerto Rico,1979), pages218 − 223.
IEEE, New York,1979.

[4] Chen Avin and Bhaskar Krishnamachari,The Power of Choice in
Random Walks: An Empirical Study, The9th ACM/IEEE International
Symposium on Modeling, Analysis and Simulation of Wireless and
Mobile Systems, (MSWiM), Malaga, Spain, October2006.

[5] Chen Avin and Gunes Ercal,On The Cover Time of Random Geometric
Graphs. In Proceedings. Automata, Languages and Programming,
32nd International Colloquium, ICALP-05, pages677 − 689, 2005.

[6] Noga Alon, Chen Avin, Mchail Koucky, Gady Kozma, Zvi Lotker
and Mark R. Tuttle (2011).Many Random Walks Are Faster Than
One. Combinatorics, Probability and Computing, 20, pp 481-502
doi:10.1017/S0963548311000125

[7] Chen Avin and C. Brito,Efficient and robust queryprocessing in
dynamic environments using random walk techniques. In Proc. of the
third international symposium on Information processing in sensor
networks, pages277 − 286, 2004.

[8] Y. Azar, A. Broder, A. Karlin, and E. Upfal,Balanced allocations,
In Proceedings of the26th ACM Symposium on the Theory of
Computing, pages593 − 602, 1994.

[9] A. Broder and A. Karlin,Bounds on the cover timeJ. Theoret. Probab.,
2: 101 − 120, 1989.

[10] A. K. Chandra, P. Raghavan, W. L. Ruzzo, and R. Smolensky,The
electrical resistance of a graph captures its commute and cover times
In Proc. of the twenty-first annual ACM symposium on Theory of
computing, pages574 − 586. ACM Press,1989.

[11] U. Feige,A Tight Upper Bound on the Cover Time for Random Walks
on Graphs, Random Struct. Alg.6 (1995), 51 − 54.

[12] U. Feige,A Tight Lower Bound on the Cover Time for Random Walks
on Graphs, Random Struct. Alg.6 (1995), 433 − 438.

[13] P. Gupta and P.R. Kumar,Critical power for asymptotic connectivity in
wireless networks. In Stochastic Analysis, Control, Optimization and
Applications: A Volume in Honor of W.H.Fleming,1998, 547−566.

[14] Johan Jonasson and Oded Schramm,On the Cover Time of Planar
Graphs in Electronic Communicationsin Probability5 (2000) 85−90.

[15] P. Matthews,Covering problems for Brownian motion on spheres, Ann.
Probab.,16(1): 189 − 199, 1988

[16] Michael Mitzenmacher,The Power of Two Choices in Randomized
Load Balancing, PhD Thesis,1996.

[17] D. Zuckerman,A technique for lower bounding the cover time, In
Proc. of the twenty-second annual ACM symposium on Theory of
computing, pages254 − 259. ACM Press,1990.

Proceedings of the World Congress on Engineering 2012 Vol II 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012




