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Abstract—The Random Walk with d Choice (RWC(d))is a the Cover Time of a random walk, various methodologies.
recently proposed variation of the simple Random Walk that A recently proposed methodology in [6] suggests that the
first selects a subset ofd neighbor nodes and then decides use of multiple, parallel random walks starting from a fixed

to move to the node which minimizes the value of a certain ¢ f th h will d th Th
parameter; this parameter captures the number of past visits of VEIEX Of the grapi will Speed up the COver Process. e

the walk to that node. In this paper, we propose the Enhanced authors prove that running many random walks in parallel
Random Walk with d Choice algorithm (ERWC(d, h)) which Yyields a speed-up which is linear in the number of parallel
first selects a subset ofl neighbor nodes and then decides to walks. They also demonstrate that an exponential speed-up

move to the node which minimizes a valudi defined at every g gometimes possible, but that some natural graphs allow
node; this H value is depending on parameterh and captures . .
only a logarithmic speed-up.

in_formation e_lbout past visits of the walk to_that r_10de and -
with a certain weight - to its neighbors. Simulations of the A further methodology for reducing Cover Time on graphs

Enhanced Random Walk with d Choice algorithm on various s e ;56 of Power of Choice. The essential idea behind the
types of graphs indicate beneficial results with respect to the

Cover Time and Load Balancing. The graph types used are the POWer of choice, is to make some decision process more

Random Geometric Graph, Torus and Lollipop. efficient, by selecting the best among a small number of

Index Terms—Random Walk, Power of Choice, Cover Time, randomly generated alternatives. The most basic results [16]
Load Balancing, Wireless networks. about the power of choice are as follows: Suppose that
balls are placed inta bins, with each ball being placed into

|. INTRODUCTION a bin chosen independently and uniformly at random. Let

Iae load of a bin be the number of balls in that bin after all

algorithms, especially for a variety of networking tasks (sudi@'s have been thrown. What is the maximum load over all
Ins once the process is terminated? It is well known that,

as searching, routing, self stabilization and query processi h high babilitv. th ; load leti
in wireless networks, peer-to-peer networks and other gilth figh probability, thé maximum load upon compietion

i H logn ..
tributed systems [1], [7]), due to its locality, simplicity, lowV!l P& approximately ;;7/c. We now state a surprising
overhead and inherit robustness to structural changes. Mafi

ult proved in a seminal paper by Azar, Broder, Karlin,
wireless and mobile networks are subject to dramatic str 1d Upfal [8]. Suppose that the balls are placed sequentially
tural changes caused by sleep modes, channel fluctuati

oﬁ%that for each ball we choogebins independently and
mobility, device failures and other factors. Topology drive ”'f"”‘_”'y a_t rando_m a_nd place _the ball into the l?SS full bin
algorithms are inappropriate for such networks, as they inc eakmglogleojnarbltranIy).. In t.h's case, t.h.e maximum load
high overhead to maintain up-to-date topology and routi ops to loqu. + O.(l) with high probab|!|ty. If each b.aII
information and also have to provide recovery mechanisr ZSOCgan 2¢ oices msltead, then .t'he maximum load V\."" be
for critical points of failure. By contrast, algorithms that logd + O(1) with _h|g_h propablllty. Having two ch0|ces
require no knowledge of network topology, such as randotpr‘?nce yields a qualitatively d_n‘ferent type of beh_avpr from
the single choice case, leading to an exponential improve-
ent in the maximum load; having more than two choices
ther improves the maximum load by only a constant factor.

Recently there is a growing interest in random walk-bas

walks, are advantageous.

A random walk on a graph is the process of visiting th
nodes of a graph in some sequential random order. T
simple random walk starts at some fixed node (with uniform Chen Avin and Bhaskar Krishnamachari in their paplee
probability among all nodes in the network) and at eagtower of choice in Random Walks: An Empirical Stjdly
time instant, it moves to a randomly chosen neighbor of thgoposed to combine random walk on a graph with the
currently visited node. The simple random walk is a totalliPower of Choice. The Random Walk withChoice algorithm
uncontrolled process, which often shows unwanted behavi(RWC(d)) works in such a way that it selects neighbors
like frequent revisits of already covered nodes and substanti@iformly at random and then chooses to step to the node
delays in visiting the most isolated regions within a network; of the d neighbors than minimizes the fracti(ﬁqgi(‘gi;fl,

Motivated by the need tanprove random walk-based per-where ¢! (u) is the number of visits of the random walk
formance over graphs, researchers have proposed, to redyc&ime ¢ at nodew and d(u) is the degree of node:.
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shows a consistent improvement in the cover time, cover is mainly at Cover Time. There is a small improvement
time distribution and the load balancing at cover time for in Load Balancing at Cover Time.
different graphs and different sizes. A surprising result is The rest of the paper is organized as follows: Section Il
that for the 2-dimensional torus, choice seems to improgaes background information and definitions on graphs, ran-
the cover time and the load on the most visited node by @am walk algorithms and the metrics of interest, associated
unbounded factor. Specifically while the cover time of th@ith random walks on graphs. Section Il formally introduces
n nodes torus is known to b®(nlog®n), the simulations the Enhanced Random Walk with Choice (ERWC(d, )
showed that withl = 2, random walk with choice has lowera|gorithm. In Section IV simulation results are presented
cover time than the simple random walk on the hyper-cub®r many types of graphs, including Random Geometric
that is known to have optimal cover tint&(nlogn). Graph, Torus, and Lollipop. Conclusions and Future Work

In this paper we propose tlignhanced Random Walk withare presented in Section V.
d Choice (ERWC(d, )) algorithm. We introduce, additionally
to d, a new parametet > 1. Let H'(v) be a value defined Il. BACKGROUND, DEFINITIONS AND METRICS
gt?sgjiv(itt(ggnf;)ai fogojws(.ct(u) +1) wherect(u) is the Let G = (V, E) be an undirected graph withi the set of

- uEN (v) nodes andE' the set of edges. Lel/| = n and |E| = m.

number of visits of the random walk at tinteat nodew. Forv e V let N(v) = {u € V|(vu) € E)} be the set of

The main idea behind ERW@(h) is to stir the course neighbors ofv and é(v) = |N(v)| the degree ofo. A ¢-
of the random walk based not only on the number degular graph is a graph in which the degree of all nodes is
visits to the candidate node it is considering to move
(as it is the case with the RW@)), but based on a more
comprehensive metric that captures the level of past passageRandom Walk on Graphs
of the _random.walker throgg.h the b_roa(?ier region around thel) Simple Random WalkThe Simple Random Walk
potential candidate node it is considering to move to. Thg1

. d that th d Ik will be si %RW) is a walk where the next node to visit is chosen
way, Itis expected that the random walk will not be stirreicqrmy at random from the set of neighbors of a currently

toward highly visited regions and, thus, it would be likely WQisited node. That is. when the walk is at nodéhe proba-
enter less visited regions incurring less revisits to the nOd%?Iity to mové in the ’next step to nodeis P(v,u) = -

In order to represent the intensity of visits to a region, we (v,u) € E and 0 otherwise. If {v; : ¢ = 0,1,2 0 ”i
3 . t . — 3 3 PICEEI

introduce the idea of recording the "trail” of a random Walgenotes the node visited by the SRW at stépen the walk

through a region by increasing a counter of a visited no @n be described with a Markov chain. The Simple Random

by > 1 and that of its neighbors by. The more frequent Walk is attractive due to its simplicity and robustness, yet

and the closer the passage of a random walk from a Certﬁ"fllacks in performance inducing high Cover Time and bad
node, the higher the accumulated value of its counter, Load Balancing

would be expected to be. By selecting randomlyodes, the 2) Random Walk with d Choicefhe Random Walk with

random walk selects d potential directions for moving towarg Choice, RWC(d) has been introduced in [4]. It is a walk
in its next step. Among those possibilities, the random ghose néxt node to move is determined as follows: tet

walk will consider first the. subset of nodes never visite enote the node reached by the walk at timéet ¢!(v) be
before and among them will select the one with the Ioweme number of visits to node until time ¢; let N'(v) be the

value of H divided by the degree of the node; if the Iatte[mion of neighbor nodes connected to nade
subset is empty, it will select the neighbor (direction) with thﬁWC(d)'Upon visiting nodey at timet, the RWC(d):

lowest value ofH divided by the degree of the node. Through Sel des f ind dentl d uniforml
such moving rules, the random walk is stirred towards thel' elects! nodes fromV (v) independently and uniformly
at random. )t
c (u)+

unvisited nodes from the selectédwhich is located in the 2 st ¢ de that minimi break ties i
least visited region (lowest value &f divided by the degree < €ps 10 hode that miNIMIZeS=57,; (break ties in
an arbitrary way)

of the node); or else, it is stirred towards the revisited node _ ) )
from the select!, which is located in the least visited region.! "€ Random Walk with Choice has been shown to improve

At any point in time ¢ the Enhanced Random walkthe Cover Time without losing the Iloc.ality, §implicity and
algorithm selects! neighbors uniformly at random and therfobustness of the random walk. This is an important goal,
chooses to step to the unvisited node among them(if exisi@}jice it is directly related to the performance and energy
If all the selectedd nodes have already been visited th&S2ge of any random walk-based mechanism in a wireless
random walk chooses to step to the nadef thed neighbors network.
than minimizes the fractioﬁ%, whered(u) is the degree
of nodeuw. B. Types of graphs used in simulation

Our result, by using simulations, is that the ERWC({,h  We obtain simulations results for the types of graphs listed
algorithm outperforms the RWC(d) algorithm in thebelow:

following way: 1) Random Geometric Graph(i(n,r). Random Geo-
metric GraphsG(n,r) result from placingn points
1. For the Random Geometric and Torus graphs the per- uniformly at random on the unit square and connecting
formance improvement is in both Cover Time and Load  two nodes if and only if their Euclidean distance is at
Balancing at Cover Time. mostr. Recently, it has been proven that, when=
2. For the Lollipop graphs the performance improvement  ©(r.,,) then w.h.p.G(n,r) has optimal Cover Time
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O(nlogn) and optimal Partial Cover Timé&(n) [5]
for the simple random walk:.,,, grows asO(/ 24")

and is the critical radius to guarantee connectivity
w.h.p. [13]. The random geometric graphs have been
widely used to model link connectivity and protocol

behavior in randomly deployed wireless networks.

these nodes. Each visit to a node is associated with
a fixed energy amount required to handle transmission
and reception of the random walk agent. At the same
time, it is evident that the MNL metric is representative
of the energy depletion in the network. It is expected
that the more uniformly distributed the visits of the
random walk over the nodes of the network, the more
uniform is energy expenditure on behalf of each node.

ENHANCED RANDOM WALK WITH CHOICE
ALGORITHM

The Enhanced Random Walk withChoice,ERWC(d, §,
is a walk whose next node to move to is determined as

by the walk at timet; let ¢!(v) be the number of visits to

u€N (v)

ERWC(d, ) Algorithm: Upon visiting nodev at time ¢,

Selectsl nodes fromV (v) independently and uniformly

2) Torus, T'(n1,ng). A 2-dimensional torusT(ni,ns)
is a graph in which the vertices are arranged on a
rectangular2 dimensional array with dimensions;
and n, with the additional property that the vertices I
on opposite sides of the boundaries of the array are
connected. The number of nodesis given by the
equationn = ny * ny. It is known thatT'(nq,n9)
has non-optimal Cover Tim&(nlog®n) [10] for the follows: Let 4 > 1 be an integer. Let be the node visited
simple random walk.

3) Lollipop, Ly, »,. The Lollipop graph can be creatednodev until time ¢; let N(v) be the set of neighbor nodes
by joining a complete grapk,,, to a boundary vertex to nodev. Now we defineH!(v) as follows:
of a path graphP,,,. The number of nodes is given H'(v) = ()« h)+ 3 (ct(u)*1)
by the equatiom = n; + ns. It is known to have the
worst case Cover Time aD(n?) [5] for the simple
random walk. the ERWC(d, A:

1.
C. Metrics

In this subsection, we present a set of performance metric

associated with random walks on graphs, used later to

validate the performance of the proposed algorithm. The
metrics of interestare:

1)

2)

ISBN: 978-988-19252-1-3

Cover Time (CT). The Cover Tim€, of a graphG

is the maximum (over all starting node$ expected
time taken by a random walk off to visit all nodes

in G. Formally, forv € V let C, be the expected
number of steps for the simple random walk starting
at v to visit all nodes inG, and the Cover Time

3

at random. LetM (v,d) denote the selected set of
neighbors ofv, M (v,d) C N(v).
Modify M (v, d) as follows

B Vu € M(v,d) andct(u) =0
M(v,d) = { remains the same otherwise

U,

M(v,d)

. Steps to node € M (v, d) that minimizes% (break

ties in an arbitrary way).

4. t(u) =ct(u)+ 1, H(u) = H'(u) + h, and H' (k) =

H'(k)+1,Vk € N(v) — {u}.

Our main goal in this paper is to reduce the Cover Time,

of G is C, = max, C,. The Cover Time of graphs SO it is an important discussion to find out a gaobdalue
have been widely investigated [15], [2], [10], [9], [3],which .minimize th_e ERWC(d, s Cover Time for all graph
[17], [5], [14]. It was shown by Feige in [11], [12] IYP€S instances with the same number of nodes.

that for simple random walkgl + o(1))nlogn <

a) Discussion to find out a goodh value: The

Cy < (1+ 0(1))£n3. Results for the Cover Time of ERWC(d, h) algorithm uses thé{ value at graph nodes to

specific graphs vary from optimal cover tifsénlogn)

make decisions about subsequent random walk movements.

associated with the complete graph, to the worse cadggorder to calculate?"(u) we have to calculate first a good
O(n?) associated with the lollipop graph. The pesyalue forh, wh|c_h minimize t_he ERWC(d, hCover Time for
known cases correspond to dense, highly connect@lj graph types instances with the same number of nodes.
graphs; on the other hand, when connectivity decreases>°IVing such a problem requires us to find an analytical

and bottlenecks exist in the graph, the Cover Timfainction for describing ERWC(d, yxCover Time with respect
increases. to parameter, choiced and graph type instance. However,

To measure Load Balancing at Cover Time we usiich an analytical function is difficult to find. Instead we

Maximum Node Load (MNL). At Cover Time ever))"’i" propose an experimgqta! way to find a gqbd/alue for
nodev € V of the undirected graple = (V, E) is the ERWC(d, H which minimizes the Cover Time.
visited by the random walkVL, times. It is obvious First we shall describe how we obtain Cover Time and

that NL, >1 VYo e V. MNL for the RWC(d) and ERWC{, h) algorithms running

The Maximum Node Load is the infinite norm ofon &ll graph types instances studied in this paper.

the number of visits to every node at Cover Time. Given a graph instanc& = (V, E) and a random walk

Formally: MNL = ||NL||s = max |[NL,| algorithm. Let NS, be the number steps needed by the
. . X veV - random walk algorithm to covefr starting at nodev. Let

It is a metric representing how well the visits of thec(u) be the number of Visits to node. for eachu € V

random walk are distributed over the nodes of the . ' !

graph. The reason we use MNL value as a metric c\S\fhen the random walk algorithm covegs The Cover Time

Load Balancing is that the decrease of MNL valu<|as o1 = %Ea\}(NS”) and the. Maximum Node Load is

leads to better Load Balancing. This is an importadt/ VL = max(c(u)) at Cover Time. We note that all graph

metric primarily for nodes cooperating in wirelessnstances with the same number of nodes are identical for

networks due to energy consumption limitations odll graphs types studied in this paper except of RGG.

WCE 2012
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Now we determine a simple method for finding a gdod To compare the Cover Time result€’l; we use
value for the ERWC{, k) algorithm which minimize Cover the following statistics: CT,,;, =  min (CTZ-),
Time. Letd be the choicep = |V|, and N the number N =t
of graph instances. Given a graph type and fixédn, CT,.. = max (CT;), CThmean = Z(CTi)/N
N. For eachh = 2,3,...,100 using N graph instances =heoN i=1
G; ,i = 1 2,...,N we calculate the mean Cover Time Furthermore, to compare the Maximum Node Load results

e use the same statistics.

mCTh = E(OT)/N From these mean Cover Times we' We present simulation results for ERWCE 2, h) and

find a gOOdh value as the value resulting in lowest meaRWC(d = 2) usmg the appropnate goohj value for the

Cover Time i.emCTh,,,, =, i (mCTh) enhanced random walk algorithm, on:

Figure 1 presents an example of finding a good valué.for 1) Random geometric graph&(n, r) for n = 900 nodes
on N = 200 instances of RGG witlk = 900 andr = 27..,,. and radiusr = 2r.,,.
The mean Cover Time of the ERWC 2, h) algorithm on 2) Torus graphsT(ni,n2) for n = 900 nodes, where
the graph is shown for all values &f € [2,100]. A good ny = ng = 30.

value forh is 4 and is clearly in the region of low values. 3) Lollipop graphsL,, ,, for n = 100 nodes, where
ny =ng = 50.
x 10* ERWC(2, h) RGG, nodes = 900

17

ERWC(2hoons) A. Experimental results for Random Geometric Graphs
] (RGG)

This subsection presents simulation results for ERWE(
2,h = 4) and RWC{ = 2) algorithms onG(n, 2r..y,) With
n =900 and N = 500. We obtain our result§&'T;, M N L;,
wherei = 1,2, ..., N, for both algorithms using the samé
instances of Random Geometric Graphs.

Figure 2 is a diagram of sorted th&T; results for the
Cover Time metric. It can be seen that ERWC{Ralgorithm
outperforms RWC(2}throughout the whole range of graph
0 20 20 60 80 100 instances used in our simulations. One can thus verify that a

h random walk using the ERWC(2) algorithm requires lower
average number of steps to fully cover the RGG. This is an
important result because it can be directly associated with
reduced energy expenditures required by a wireless network

mean Cover Time

Fig. 1. Mean Cover Time for differerit on RGG G(900, 27con )

Graph type| Number of nodes: | Goodh value to support the random walk.

RGG, 270, 900 4 \ R )

Torus 900 3 7)(10 ‘ RGG covert:me dlsmbutlor?‘ nodes-QOO‘ ‘

LO”ipOp 100 2 o - === RWC(Q) :
TABLE | sees :

GOOD h FOR VARIOUS TYPES OF GRAPHS

Cover time

In Table | can be seen the goadvalues calculated for all
graph types and sizes used in this paper.

IV. EXPERIMENTAL RESULTS

In this section, we present comparative results for the o 100 200 300 200 500
performance of ERWC(d,»and RWC(d) algorithms on crevrs
RGG, Torus and Lollipop graphs with respect to Cover Tim . ,
and Load Balancing at Cover Time. We obtain experimentﬁ?'RzéG Results for the Cover Time metric for ERWICE) and RWC(2)
results in the following way:

Let d be the choicen = |V|, N the number of graph  Figure 3 shows sorted thel NV L; results for the Maximum
instances andh be a previously calculated good value iNode Load at Cover Time for both algorithms. We can
the algorithm is the ERWC(d,)» Given a graph type, an see that ERWC(2l) algorithm is significantly better than
ERWC(d,h) or RWC(d) algorithm and fixedi, n, N, h  RWC(2) algorithm with respect to Maximum Node Load.
then for each graph instandg;, i = 1,...,N we obtain The numerical results, along with percentage reductions for
the CT;, MNL;. This way we getCT;, MNL;, where both algorithms are presented in Table Il. These results
i=1,...,N, for ERWC(d, h) and RWC(d) algorithms on the indicate a 38% reduction in required steps for Cover Time
sameN graph instances of a graph type. The next step is éamd 23.2% reduction of th&/NL,,.., value in favor of
compare these results to show performance improvementt RWC(2,4) against RWC2) algorithm. Table Il shows also
the ERWC(, k) algorithm over the RWG{) algorithm. percentage improvements associated with other measures,
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Maximum node load distribution for RGG, nodes = 900 Torus cover time distribution, nodes = 900
T T T T T T

150

; 7500 ; :
1 - = =RWC(2)

- = =ric -

—— ERWC(2,4) 7000 1

6500

i

o

=]
T

6000 el ] 1
5500 1 B
1
1
5000 p ]

4500 -

Maximum node load
Cover time

3y
=}
T

4000

0 . . . . . 3500 . . . .
0 100 200 300 400 500 0 100 200 300 400 500

Graphs Graphs

Fig. 3. Results for the Maximum Node Load metric for ER(2C4) and  Fig. 4. Cover Time results for ERW@(3) and RWC(2)on Torus
RWC(2) on RGG

Maximum node load distribution for Torus, nodes = 900

Statistics CTrin CTrnax CTorean e P :
RWC(Z) 9036 66352 16896 105¢ ERWC(2,3) B
ERWC(2,4) | 6505 50195 10437 S ]
Reduction(%)| 28% 24% 38% - X
Statistics MNLpin | MNLpmaw | MN Lpean s
RWC(2) 19 144 32.766 £ oop-
ERWC(2,4) | 15 126 25.138 E L ]
Reduction(%)| 21% 12.5% 23.2% = 8;
TABLE 11
STATISTICS FORCT AND MNL ON RGG GRAPHS 7501

. . . .
0 100 200 300 400 500
Graphs

such as the 28% reduction f@r'7;,:,, 24% reduction for Fig. 5.  Maximum Node Load results for ERWEZ@3) and RWC(2)on
CTrae and 21% forM N Ly,ip,, 12.5% fOrAM N L,y These  Torus
results confirm the improved performance of random walk

with ERWC(d, k) algorithm over the random walk with . . o
RWC(d) on RGGs. The ERWC(23) algorithm achieves a significant 20%

average reduction in required steps to Cover Time compared
_ with RWC(2) for the Torus graph. Furthermore, the average
B. Experimental results for Torus graphs reduction with respect to MNL metric measures is 19.6%
Figure 4 and Figure 5 present sorted #h&;, M NL; indicating improved Load Balancing characteristics. One can
results, whereN = 500 andi = 1,2,..., N. These results thus verify performance improvements for the ERWC(, h
were obtained for the algorithms ERWCE 2,h = 3) and  based random walk proposed in this paper.
RWC(d = 2), using the saméV instances of Torus graphs
with n = 900. It can be seen in Figure 4 that the ERWC3R C. Experimental results for Lollipop graphs
algorithm outperforms the RWC(Qa)Igorithm for all Torus . The last graph type used for comparing ERWG{ 2, h —
graphs instances with respect to Cover Time. The flat I@z and RWC( = 2) algorithms is the Lollipop graph with

part of the results for Torus graphs are identical valu% — 100. Figure 6 shows sorted th€T} results, where
for CT resulting due to the symmetry of the Torus grapfy _ 90 and; — 1,2,..., N. These results where obtained

Therg are aIsp reductions for the Maximum Node Lo. r both algorithms using the sam¥ graph instances of
metric. Numerical values of the results and the correspondlngIIiIOOp graphs

percentage reductions are shown in Table III.

_ Statistics CTin CT e CTrean
Statistics Clmin CTnax Clmean RWC(2) 3603 14605 6510.9
RWC(2) 4965 7297 6008.9 ERWC(2,2) | 1813 7868 3544.7
ERWC(2,3) | 3621 5358 4799.4 Reduction(%)| 49.6% 46.1% 45.5%
Reduction(%)| 27% 26.5% 20% ABLE IV
Statistics MN Lyin MN Lyae MN Linean STATISTICS FORCT IN LOLLIPOP GRAPHS
RWC(2) 8 11 9.92
ERWC(2,3) | 7 9 8.03
Reduction(%)| 12.5% 18% 19.6% The reduction inCT,,cq, in favor of ERWC(22) mea-
TABLE IlI sures 45.5%. Furthermore, Table IV shows reductions of
STATISTICS FORCT AND MNL IN TORUS GRAPHS 49.6% atCT,,;, and 46.1% atCT,,.,. These results show
a significant performance improvement in Cover Time of
ISBN: 978-988-19252-1-3 WCE 2012
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Lollipop cover time distribution, nodes = 100
T T T

(5]

15000

- = = = RWC(2
ERWC(2,2)

| (6]

10000

(7]

Cover Time

5000

8]

(9]
[10]

. .
1000 1500

Graphs

2000

Fig. 6. Cover Time results for ERWC(2,2) and RWC(2) on Lollipoagrs
(11]

ERWC(2 2) algorithm over the RWC(2algorithm on Lol-
lipop graphs.

The performance improvement in Load Balancing on Lo
lipop graphs is small. For example there is289% im-
provement with respect t&/ N L,,,cq,, SO We don't presen
any other results about the Maximum Node Load metric. [15]

[12]

p

¢ [14]

[16]
V. CONCLUSIONS

In this work, the Enhanced Random Walk with Choicéﬂ]
algorithm is introduced as an improved version of the Ran-
dom Walk with Choice algorithm. ERWC(d)/algorithm is
formally defined and compared against RWC(d) via simu-
lations over three different graph types, including Random
Geometric, Torus, and Lollipop graphs. Comparative results
are presented for both ERWC(d), and RWC(d) algorithms,
which are based on the Cover Time metric and Maximum
Node Load metric.

Our simulation results indicate significant savings in Cover
Time up to38% for Random Geometric Graph&p% for
Torus graphs and5.5% for Lollipop graphs. Furthermore,
the Load Balancing properties of the ERWC(J, algo-
rithm are better than those of RWC(d) with reductions for
Maximum Node Load in the order df3.2% for Random
Geometric Graphs anth.6% for Torus graphs.

Our plans for future work include running simulations on
other types of graphs to verify performance improvement of
the ERWC(d, / algorithm over RWC(d). Furthermore, the
analytical description of Cover Time for both algorithms is
an open issue for future research.
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