Performance Evaluation of Wi-Fi IEEE 802.11 A,G WPA2 PTP Links: a Case Study

J. A. R. Pacheco de Carvalho, H. Veiga, C. F. Ribeiro Pacheco, A. D. Reis

Abstract—Wireless communications using microwaves are increasingly important, such as Wi-Fi. Performance is a most fundamental issue, leading to more reliable and efficient communications. Security is equally very important. Laboratory measurements are made about several performance aspects of Wi-Fi (IEEE 802.11a, g) WPA2 point-to-point links. A contribution is given to performance evaluation of this technology under WPA2 encryption, using available equipments (DAP-1522 access points from D-Link and WPC600N adapters from Linksys). Detailed results are presented and discussed, namely at OSI levels 4 and 7, from TCP, UDP and FTP experiments: TCP throughput, jitter, percentage datagram loss and FTP transfer rate. Comparisons are made to corresponding results obtained for open links. Conclusions are drawn about the comparative performance of the links.

Index Terms—Wi-Fi, WLAN, WPA2 Point-to-Point Links, IEEE 802.11a, IEEE 802.11g, Wireless Network Laboratory Performance.

I. INTRODUCTION

Contactless communication techniques have been developed using mainly electromagnetic waves in several frequency ranges, propagating in the air. Examples of wireless communications technologies are Wi-Fi and FSQ, whose importance and utilization have been growing.

Wi-Fi is a microwave based technology providing for versatility, mobility and favourable prices. The importance and utilization of Wi-Fi have been growing for complementing traditional wired networks. It has been used both in ad hoc mode and in infrastructure mode. In this case an access point, AP, permits communications of Wi-Fi devices with a wired based LAN through a switch/router. In this way a WLAN, based on the AP, is formed. Wi-Fi has reached the personal home where a WPAN permits personal devices to communicate. Point-to-point and point-to-multipoint configurations are used both indoors and outdoors, requiring specific directional and omnidirectional antennas. Wi-Fi uses microwaves in the 2.4 and 5 GHz frequency bands and IEEE 802.11a, 802.11b, 802.11g and 802.11n standards [1]. As the 2.4 GHz band becomes increasingly used and interferences increase, the 5 GHz band has received considerable attention, although absorption increases and ranges are shorter.

Nominal transfer rates up to 11 (802.11b), 54 Mbps (802.11 a, g) and 600 Mbps (802.11n) are specified. CSMA/CA is the medium access control. Wireless communications, wave propagation [2,3] and practical implementations of WLANs [4] have been studied. Detailed information has been given about the 802.11 architecture, including performance analysis of the effective transfer rate. An optimum factor of 0.42 was presented for 11 Mbps point-to-point links [5]. Wi-Fi (802.11b) performance measurements are available for crowded indoor environments [6].

Performance evaluation is a crucially important criterion to assess the reliability and efficiency of communication. In comparison to traditional applications, new telematic applications are specially sensitive to performances. Requirements have been pointed out, such as: 1-10 ms jitter and 1-10 Mbps throughput for video on demand/moving images; jitter less than 1 ms and 0.1-1 Mbps throughputs for HiFi stereo audio [7].

Wi-Fi security is very important. Microwave radio signals travel through the air and can be easily captured by virtually everybody. Therefore, several security methods have been developed to provide authentication such as, by increasing order of security, WEP, WPA and WPA2. WEP was initially intended to provide confidentiality comparable to that of a traditional wired network. A shared key for data encryption is involved. In WEP, the communicating devices use the same key to encrypt and decrypt radio signals. The CRC32 checksum used in WEP does not provide a great protection. However, in spite of its weaknesses, WEP is still widely used in Wi-Fi communications for security reasons. WPA implements the majority of the IEEE 802.11i standard [1]. It includes a MIC, message integrity check, replacing the CRC used in WEP. WPA2 is compliant with the full IEEE 802.11i standard. It includes CCMP, a new AES-based encryption mode with enhanced security. WPA and WPA2 can be used in either personal or enterprise modes. In this latter case an 802.1x server is required. Both TKIP and AES cipher types are usable and a group key update time interval is specified.

Several performance measurements have been made for 2.4 and 5 GHz Wi-Fi open [8,9] WEP [10,11] and WPA2.
II. EXPERIMENTAL DETAILS

The measurements used a D-Link DAP-1522 bridge/access point [14], with internal PIFA *2 antenna, IEEE 802.11 a/b/g/n, firmware version 1.31 and a 100-Base-TX/10-Base-T Allied Telesis AT-8000S/16 level 2 switch [15]. The wireless mode was set to access point mode. The firmware from the manufacturer did not make possible a point-to-point link with a similar equipment. Therefore, a PC was used having a PCMCIA IEEE.802.11 a/b/g/n Linksys WPC600N wireless adapter with three internal antennas [16], to enable a PTP link to the access point. In every type of experiment, interference free communication channels were used (ch 36 for 802.11a; ch 8 for 802.11g). This was checked through a portable computer, equipped with a Wi-Fi 802.11 a/b/g/n adapter, running NetStumbler software [17]. WPA2 personal encryption was activated in the APs, using AES and a shared key composed of 26 ASCII characters. The experiments were made under far-field conditions. No power levels above 30 mW (15 dBm) were required, as the access points were close.

A new laboratory setup has been planned and implemented for the measurements, as shown in Fig. 1. At OSI level 4, measurements were made for TCP connections and UDP communications using Iperf software [18]. For a TCP connection, TCP throughput was obtained. For a UDP communication with a given bandwidth parameter, UDP throughput, jitter and percentage loss of datagrams were determined. Parameterizations of TCP packets, UDP datagrams and window size were as in [12]. One PC, with IP 192.168.0.2 was the Iperf server and the other, with IP 192.168.0.6, was the Iperf client. Jitter, representing the smooth mean of differences between consecutive transit times, was continuously computed by the server, as specified by the real time protocol RTP, in RFC 1889 [19]. The scheme of Fig. 1 was also used for FTP measurements, where FTP server and client applications were installed in the PCs with IPs 192.168.0.2 and 192.168.0.6, respectively. The server PC also permitted manual control of the settings in the access point.

The server and client PCs were HP nx9030 and nx9010 portable computers, respectively, running Windows XP. They were configured to optimize the resources allocated to the present work. Batch command files have been written to enable the TCP, UDP and FTP tests.

The results were obtained in batch mode and written as data files to the client PC disk. Each PC had a second network adapter, to permit remote control from the official IP University network, via switch.

III. RESULTS AND DISCUSSION

The access points were configured for each standard IEEE 802.11 a, g with typical nominal transfer rates (6, 9, 12, 18, 24, 36, 48, 54 Mbps). For each standard, measurements were made for every fixed transfer rate. In this way, data were obtained for comparison of the laboratory performance of the links, measured namely at OSI levels 1 (physical layer), 4 (transport layer) and 7 (application layer) using the setup of Fig. 1. In each experiment type, for each standard and every nominal fixed transfer rate, an average TCP throughput was determined from several experiments. This value was used as the bandwidth parameter for every corresponding UDP test, giving average jitter and average percentage datagram loss.

At OSI level 1, noise levels (N, in dBm) and signal to noise ratios (SNR, in dB) were monitored and typical values are shown in Fig. 2 and Fig. 3 for WPA2 and open links, respectively.

The main average TCP and UDP results are summarized in Table I, both for WPA2 and open links. In Fig. 4 polynomial fits were made to the 802.11a, g TCP throughput data for WPA2 links, where R² is the coefficient of determination. It was found that, on average, the best TCP throughputs are for 802.11a. A fairly good agreement was found for the 802.11 a, g data both for WPA2 and open links. In Figs. 5-6, the data points representing jitter and percentage datagram loss were joined by smoothed lines. It was found that, on average, the best jitter performances are for 802.11g both for WPA2 (2.6 ± 0.3 ms) and open links (2.3 ± 0.1 ms). On average, for 802.11g, the best jitter performances were for open links. On average, for 802.11a, jitter performances did not show significantly sensitive, within the experimental errors, to WPA2. Concerning percentage datagram loss data (1.1 % on average) no significant sensitivities were found, within the experimental errors, either to standard or link type.

At OSI level 7 we measured FTP transfer rates versus nominal transfer rates configured in the access points for the IEEE 802.11a, g standards. The result for every measurement was an average of several experiments involving a single FTP transfer of a binary file with a size of 100 Mbytes. The average results thus obtained are summarized in Table I, both for WPA2 and open links. In Fig. 7 polynomial fits are shown to 802.11a, g data for WPA2 links. It was found that, for each link type, the best FTP performances were for 802.11a. A fairly good agreement was found for the 802.11a, g data both for WPA2 and open links. These results show the same trends found for TCP throughput.

Generally, except for jitter and 802.11g, the results measured for WPA2 links were found to agree, within the experimental errors, with corresponding data obtained for open links.
TABLE I

<table>
<thead>
<tr>
<th>Parameter/IEEE standard</th>
<th>WPA2</th>
<th>Open</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP throughput (Mbps)</td>
<td>15.9</td>
<td>13.7</td>
</tr>
<tr>
<td></td>
<td>+0.5</td>
<td>+0.4</td>
</tr>
<tr>
<td>UDP-jitter (ms)</td>
<td>2.7</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>+0.4</td>
<td>+0.3</td>
</tr>
<tr>
<td>UDP-% datagram loss</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>+0.1</td>
<td>+0.2</td>
</tr>
<tr>
<td>FTP transfer rate (kbyte/s)</td>
<td>1735.1</td>
<td>1515.2</td>
</tr>
<tr>
<td></td>
<td>+69.4</td>
<td>+60.6</td>
</tr>
</tbody>
</table>

Fig. 1- Laboratory setup scheme.

Fig. 2- Typical SNR (dB) and N (dBm).

Fig. 3- Typical SNR (dB) and N (dBm). Open links.
Fig. 4- TCP throughput (y) versus technology and nominal transfer rate (x).

Fig. 5- UDP – jitter results versus technology and nominal transfer rate.

Fig. 6- UDP – jitter results versus technology and nominal transfer rate. Open links.

Fig. 7- UDP – percentage datagram loss results versus technology and nominal transfer rate.
IV. CONCLUSION

In the present work an additional laboratory setup arrangement was planned and implemented, that permitted systematic performance measurements of new available wireless equipments (DAP-1522 access points from D-Link and WPC600N adapters from Linksys) for Wi-Fi (IEEE 802.11 a, g) in WPA2 point-to-point links.

Through OSI layer 4, TCP throughput, jitter and percentage datagram loss were measured and compared for each standard. It was found that, on average, the best TCP throughputs are for 802.11 a. A fairly good agreement was found for the 802.11 a, g data both for WPA2 and open links. On average, for 802.11g, the best jitter performances were for open links. On average, for 802.11a, jitter performances did not show significantly sensitive, within the experimental errors, to WPA2. For percentage datagram loss, no significant sensitivities were found, within the experimental errors, either to standard or link type.

At OSI layer 7, it was found that, for each link type, the best FTP throughputs are for 802.11a. A fairly good agreement was found for the 802.11 a, g data both for WPA2 and open links. These results show the same trends found for TCP throughput.

Generally, except for jitter and 802.11g, the results measured for WPA2 links were found to agree, within the experimental errors, with corresponding data obtained for open links.

Additional performance measurements either started or are planned using several equipments and security settings, not only in laboratory but also in outdoor environments involving, mainly, medium range links.

REFERENCES