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Abstract—In this paper we present an algorithm for 
minimization of a nondifferentiable proper closed convex 
function. Using the second order Dini upper directional 
derivative of the Moreau-Yosida regularization of the 
objective function we make a quadratic approximation. The 
purpose of the paper is to establish that the sequence of points 
generated by the algorithm has an accumulation point which 
satisfies the first order necessary and sufficient conditions. A 
convergence proof is given, as well as an estimate of the rate 
of convergence. 
 

Index Terms— Moreau-Yosida regularization, non-smooth 
convex optimization, second order Dini upper directional 
derivative. 

I. INTRODUCTION 

he following minimization problem is considered: 

)(xfmin
nRx∈

{ }∞+∪→ RRf n:
*

,                             (1) 

where  is a convex and not necessary 

differentiable function with a nonempty set X  of minima. 
For nonsmooth programs, many approaches have been 

presented so far and they are often restricted to the convex 
unconstrained case. It is reasonable because a constrained 
problem can be easily transformed to an unconstrained 
problem ussing a distance function. In general, the various 
approaches are based on combinations of the following 
methods: subgradient methods; bundle techniques and the 
Moreau-Yosida regularization.  

For a function  it is very important that its Moreau-
Yosida regularization is a new function which has the same 
set of minima as and is differentiable with Lipschitz 

continuous gradient, even when  is not differentiable. In 
[12, 13, 17] the second order properties of the Moreau-
Yosida regularization of a given function are considered.  

f

f
f
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Having in mind that the Moreau-Yosida regularization of 
a proper closed convex function is an  function, we 
present an optimization algorithm (using the second order  
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Dini upper directional derivative (described in [1,2]) based 
on the results from [3]. That is the main idea of this paper. 

We shall present an iterative algorithm for finding an 
optimal solution of problem (1) by generating the sequence 
of points { }kx

0,...,1,02
1 ≠=++=+ kkkkkkk dkdsxx αα

k

 of the following form: 

     (2) 

where the step-size α  and the directional vectors  and 

  are defined by the particular algorithms. 
ks

kd

s ∇

Paper is organized as follows: in the second section some 
basic theoretical preliminaries are given; in the third section 
the Moreau-Yosida regularization and its properties are 
described; in the fourth section the definition of the second 
order Dini upper directional derivative and the basic 
properties are given; in the fifth section the semi-smooth 
functions and conditions for their minimization are 
described. Finally in the sixth section a model algorithm is 
suggested and its convergence is proved, and an estimate 
rate of its convergence is given, too.  

II. THEORETICAL PRELIMINARIES 

Throughout the paper we will use the following notation. 
A vector  refers to a column vector, and denotes the 

gradient operator 

Technology, Arandjelovac, Serbia; e-mail: milankafilipovic@yahoo.com 
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nxxx ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

∂
∂ ,...,,

21

. The Euclidean 

product is denoted by ⋅⋅,  and ⋅  is the associated norm. 

For a given symmetric positive definite linear operator M  
we set ⋅⋅=⋅⋅ ,:, M

M
; hence it is shortly denoted by 

MM
xxx ,:2 = . The smallest and the largest eigenvalue 

of M  we denote by λ  and  respectively. Λ

The domain of a given function { }∞+∪→ RRf n:  is 

the set ( ) ( ){ }+∞<∈= xfRxfdom n f. We say  is 

proper if its domain is nonempty. The point 
( )xfargx =*

A vector nRg ∈  to be a subgradient ven 

min
nRx∈

 refers to the minimum point of a 

given function .  { }∞+∪→ RRf n:
 is said  of a gi

proper convex function { }∞+∪→ RRf n:  at a point 

T 
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( )xp  of t  function (3), i. e.:  henRx ∈  if nequality  the i ( ) ( ) ( )xzgxfzf T −⋅+≥  

holds for all nRz ∈ . Th s of e set of all nt subgradie ( )xf  
int at the po x , called the subdifferential at the point x , is 

denoted by ( ) . The subdifferential xf∂ ( )xf∂  is a 

nonempty se if and only if ( )fdomxt ∈ . The cond tion 

( )xf∂∈0  is a first order necessary an fficient 

condition for a global minimiz vex function f  

 nRx ∈  (see in [14,15]). 

For a convex function f  it follows that 

( ) ( )

i

d su

r er fo the con

at th

( )

e point

{ }zxgmaxf T −+=  hozfx
Rz n∈

lds, where ( )zfg ∂∈  

eralization
ions. 

(s

The  of the subgradi
 for nondi

ee in [10]). 

s a simple gen  
of the gradi

concept
ent

e
fferenti

nt i
able convex funct

The directional derivative of a real function f  defined on 
nR  at the point nRx ∈′  in the direction nRs ∈ , denoted 

by ( )sxf ,′′ , is ( ) ( ) ( )
t

xfstxflimsxf
0t

′−⋅

function a 
x′  the direction

call th

+′
=′′

↓
,  

n this limit exi For a real convex 
dire rivative  
s  exists in any direction Rs ∈  (see in [2]). 
 

At the end of this section we re definition of an 
1C  function. 

whe sts.
at t

L

D

 
he poictional de nt 

n

n  in

e 

R∈

efinition 1. A real function f  defined on nR  is an 1LC  

on on thefuncti  open set D
t 

n  continuously R⊆  if it is
differentiable and its gradien f∇ is locally Lipschit , 

i.e. ( ) ( )
zian

yxLyfxf ≤∇−∇ r Dyx ∈,  holds for 

some 0>L . 
 

TH

−

-YOSIDA 

 fo

III.  

n 2

E M R

.

OREAU EGULARIZATION

Definitio  Let +{ }∞  be a proper closed 
 of a 

f etric defined by M, 

∪→ R

associated to the m

Rf n:

, 
fined as  

convex function. The Moreau-Yosida regularization
given functio
denoted by F, is de

( )

n

⎭M

utio
onv

on defi

⎬
⎫

⎩
⎨
⎧ −+

∈

21)(:
Ry

xyyfminxF
n

.                 (3) =
2

The above funct infimal convol
hat the in uti f a c

so a convex funct h i ned by (3) is 

The min

ion is an 
fimal convol

ion. Hence t

n. In [10] it is 
ex function is proved t

al
a convex 

on o
e funct

function and has the same set of minima as the 
function f  (see in [6]), so the motivation of the study of 
Moreau-Yosida regularization is due to the fact that 

( )xfmin
nRx∈

 is equal to ( )xFmin
nRx∈

. 

 

imum point 

( )
⎭
⎬−+=

∈ 2
)(:

M
Ry

xyyargmixp
n

         
⎫

⎩
⎨
⎧ 21fn    (4) 

is called the proximal point of x .  

In [6] it is proved that the function F defined by (3) is 

el
s, F  has a Lipschitzian gradient on 

th n

always differentiable. 

The first order regularity of F  is w l known: without 
any further assumption

e whole space R . More precisely,  

( ) ( ) ( ) ( ) 212   

holds for all nRxx ∈21,  (see in [12]), where 

1
2

21 , xxxFxFxFxF −∇−∇Λ≤∇−∇

( ) ( )( )xpfxpxMxF (∂∈− ))((  and ∇ = )xp  is the 
in (4). 

consideration and Definition 1, we co that 
1

Lemm

unique minimum So, according to above 
nclude F  is an 

LC  function. 

 
a 1. [13]: The following statements are equivalent: 

(i)  minimizes f ;          (ii) ( ) xxp =  ; x
(iii) ( ) 0=∇ xF  ;             (iv) x  minimizes F ; 

(v) ( )( ) ( )xfxpf = ;       (vi) (xf( ) )xF = . 
 

. DINI SECOND U CTIONAL DERIVATIVE 

We shall give some preliminaries that will be used in the 

D

IV PPER DIRE

remainder of the paper. 

efinition 3. The second order Dini upper directional 
derivative of the functio 1 nn LCf ∈  at the point Rx∈  in 

the direction nRd ∈ is defined to be 

 ( ) ( ) ( )[ ]
α

dxfflimdxf
T

D
⋅∇−∇

=′′ , α
α

dxsup +
↓0

. 

 f∇ is directionally differentiable at kx , we have 

( ( )

If

() ( ) )[ ]
α

xfxflimdxfdf kD =′′=′′ ,, α
α

ddx
T

k
⋅∇−+∇

↓0
  

for all nRd ∈ . 

Since the Moreau-Yosida regularization of a proper 
convex unction f  is an 1LC  function, we can 

co
re R

closed  f
nsider its second order Dini upper directional derivative at 

the point nRx∈  in the di ction nd ∈ , i.e.: 

( ) ,, 21 dgglimsupdxF
0

D αα

−
=′′

↓
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where ( )( )( ) ( )xpfgdxpfg ∂∈+∂∈ 21 ,α , and ( )xF  is 
defined by (3) for IM = . 

 
Lemma 2.[2]: Let conve er 

function and 

RRf n →:  be a closed x prop

F  is its Moreau –Yosida regularization for 
IM = ents are valid. 

( )

))2d  

. Then the next statem

(i) ( ) dxFkkdxF kDkD ,,  

) ( ) (( 121 ,2, xFdxFddx ′′+′′≤+

2 ′′=′′

(ii) ( ,F kDkDkD′′

(iii) ( ) 2d, KdxF kD ⋅≤′′ , where K  is some constant. 

V. SEMI-SMOOTH FUNCTIONS A

 

ND OPTIMALITY 
CONDITIONS 

Definition 4. A function RRF →∇ :  is said t

 the point nRx ∈

n o be 

semi-smooth at  if F∇  is locally 

d the limit 

r any 

e that osed convex proper funct
gradient of its Moreau-Yosi s a i-
smooth functi

n

nRx∈  an

)  exists fo

Lipschitzian at 

{ } ( hxFVVhlim
dh

λ
λ

+∂∈
↓
→

2

0

, nRd ∈ . 

Not  for a cl ion, the 
da regularization i  sem

on. 
 

Lemma 3. [16]: If nn RRF →∇ :  is semi-smooth at the 

point nRx ∈  then F∇  is di

 and for any

rectionally differentiable at 
nRx∈ ( ) 0, →+ hhx  we have: 2∂∈ FV

) (( ) ( )hohxVh =′− , . Similarly we have that 

( )
F∇

( )2hVhh − . 

 

Lemma 4.

, ohxF =′′T

 [4] R  be a proper closed convex 

nction and l  Moreau-Yosida regularization. 
on em (1) then 

( ) 0≥′′

.

: Let Rf n →:
et F  be its
nR  is soluti

fu
So, if x∈ of the probl

( ) 0, =′ dxF  and  for all nRd ∈ . 
 

,dxFD

Lemma 5  [4]

F
: L

 oreau-Y

et RRf n →:  be a proper closed convex 

its M a regula , function, rization andosid x  a 

point from nR . If ( ),′ dxF 0=  and ,′′ xF ( ) 0>d  for all 
nR

). 

VI. A 

In this section an algorithm for so problem (1) is 
introduced. We suppose that at each  it is possible 

to com

D
nRd ∈ , then x∈  is a strict local minimizer of the 

problem (1
 

MODEL ALGORITHM 

lving the 
nRx ∈

pute ( ),),( xFxf  ( )xF∇  and ( )dxD ,′′  for a 

gi

 w  er th wing b

( ) ( ) ( )

F
ven nRd ∈ . 

At the k-th iteration e consid e follo  pro lem  

( )dxFdxFdd kD
T

kkkn
,

2
1 ′′+∇=ΦΦ ,   (5) 

where 

min
Rd

,
∈

( )dxF kD ,′′  stands for the second order Dini upper 

directional derivative at kx  in the direction d . Note that if 

 is a Lipschitzian constant for F , it is also a Lipschitzian 
 for 

Λ
constant F∇ . The function ( )dΦ  is called an 

iteration function. It is easy to see that 
k

( ) 00 =Φ k  and 

( )dkΦ  is Lipschitzian on nR . We generate the sequence 

{ }kx of the form 

0,0,2
1 ≠≠++=+ kkkkkkk dsdsxx α , kα

where the step-size kα  and the direction vectors ks  and 

kd  are defined by particular algorithms.  

(For a given )1,0∈q  the step-size kα is a number 

sfying s (ati ) e smallest integer 

from

ki
k q=α , where ( )ki  is th

{ },...2,1,0  such that  

( ) ( )
( ) ( ) ( ) ( )( )⎟

⎠
⎞

⎜
⎝
⎛ ′′−≤

≤

∇

−+

T
k

k

sxF

xF 1

kkD
ki

k
ki

k

dxFqq

xF

,
2
1 4σ   (6) 

and where ( )1,0∈σ  is a preassigned constant, and 
nRx ∈0  is a given point. 

 
ollowing

A1. Sup

We make the f  assumptions. 

pose that  ( ) 2
21 , dcdxF kD ≤′′≤  hold for 

 for every  nRd ∈ . 

2dc

some 1c  and 2c  such that 210 cc <<

A2. ,1=kd ,...2,1,0,1 == k   

a value

sk

A3. There exists 0>β  su atch th  

( ) ( ) ,...2,1,0,⋅∇−≤ ksxFsx kkk
T

k β  =∇F

Lemma 6. [4]: Under the assump 1 the function tion A
( )Φ ⋅k  is coercive. 

ptima
also m nder the assumption A1 the direction 
se

Remark. Coercivity of the function kΦ  assures that the 
o l solution of the problem (5) exists (see in [16]). It 

eans that, u
quence { }kd is a bounded sequence  n on R  (proof is 

analogous to the proof in [16]). 
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Proposition 1. [3]: If the Moreau-Yosida regularization 
( )⋅F of the proper closed convex function ( )⋅f  satisfies 

assumption A1 then : 

conv
( )

(i) the function ( )⋅F  is uniformly and, hence, strictly 
ex; 

(ii) the level set ( ) ( ){ }00

compact convex se d 
(iii) there exi

: FxFRxx n ≤∈= x  is a 
t, an

sts a unique point *x  such that 

L

( )
( )

( )FminxF
xLx 0

*

∈
= x . 

 
Lemma 7. [4]: The following statements are equivalent: 

ly(i) 0=d  is the global  optimal solution of the problem (5) 
i) 0 is the optimum of the objective function in (5) (i

(iii) the corresponding kx  is such that ( )kxf∂∈0  
 

Convergence theorem. Suppose that f is a proper closed 

ts M da regularization F  
tisfies mptions A1, A2  A3. Then for any initial 

convex funct
sa

ion and i oreau-Yosi
assu and

point ∞→∈ xxRx k
n ,0 , as +∞→k , where ∞x  is a 

unique minimal point of the function f . 

Proof.  If 0≠kd is a n of (5 ws

tl we have by 
assumption A1 that 

 solutio ), it follo  that 

( ) ( )00 kkk d Φ=≤Φ . Consequen y, 

 

( ) ( ) 01,
2

2
1 <−≤′′ kkkDkk dcdx .        (7) 

2
1

−≤∇ T FdxF

From the above inequality it follows that the vector 

a descent direction at y (6) and assumption A1 we get 

 

kd  is 

kx . B
 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) 0
2
1 2

1
4 <⎟

⎠
⎞

⎜
⎝
⎛ −⋅∇−≤

∇

k
ki

kk dcqsxF

F

βσ

 
0≠ . Hence the sequence ( ){ }kxF

descent y, and, consequent he sequence 
) ( )0xL is by the Proposition 1 a 

uence

,
2
1 4

1 ⎟
⎠
⎞

⎜
⎝
⎛ ′′−≤−+ kkD

ki
k

T
k

ki
kk dxFqsxqxFxF σ

       (8) 

for every kd
 propert

} ( 0xL⊂

 has the 
ly, t

eq

{xk . Since 

compact convex set, it follows that the s  { }kx  is 
bounded. Therefore there exis ccumulation points of the 

. 

Since F∇ is continuous, then, if 
( ) +∞→→∇ kxF k ,

t a
}

 then it follows that every 

x  of th { }x  satisfies 

 a poi 0  such that 

sequence { kx

0
lation point 

0=∞ . Since 

here exists

accumu

∇ xF
convex, t

∞ k

( ) F  is (by the Proposition 1) strictly 

( )xLx ∈

e sequence 

nt ∞unique 

( ) 0=∇ ∞xF . Hence, the sequence { }kx  a unique 

∞  and it i  a global minimizer of F  and by 

Lemma 1 it is a global minimizer of th f . 

e have to prove that ( )

has 

limit point x s

e function 

Therefore w +∞→∇ kxF ,0 . 

Let 1K  be set of indices such that ∞∈

→k

a = x

 
a) The set of indices 

xlim kKk 1

. Then 

there are two cases to consider: 

{ ( )}k  for 1Kk ∈ , is uniformly i
bounded above by a number I . From  (6) it 
follo at: 

 A2, A3 and
ws th

( ) ( )
)( ) ( ( )

( )

( )

( )

( ) ( )

( ) ( ) .,
2
1

,
2

,
2
1

4

4

4

1

kkD
I

k
I

kkD
I

kk
I

kkD
I

k
T

k
I

kiT

kk

dxFqxFq

dxFqsxFq

dxFqsxFq

xFxF

′′−∇−≤

′′−⋅∇≤

⎟
⎠
⎞

⎜
⎝

′′−∇

′′ ,
2
1 4

kkDkk
ki dxFqsxFq

⎛≤

⎟
⎠
⎞

⎜
⎝
⎛ −∇≤

− ≤+

σβσ

σβσ

 

Hence, it follows that 

σ

σ

( ) ( )
( ) ( ).,

2
1 4

1

kkD
II

kk

dxFqxFq

xFxF
′′+∇≥

≥− +

σβσ         (9) 

Since{ ( )}kxF  is bounded bellow and 

( ) ( ) 01 →−+ kk xFxF  as 1, Kkk ∈∞→ , fro

follows that 

m (9) it 

( ) 0→∇ kxF  and ( ) 0; →′′ kkD dxF , ∞→k  

k 1K∈  i.e.  a stationary point of the objective function  ∞x  is

( ) 0F, i.e.∇ =∞xF
unique optimal point of t ion f . 

b) Th  a

. From Lemma 1 it follows that ∞x  is a 

he funct

 

ere is  subset 12 KK ⊂  such that ( ) +∞=
∞→

kilim
k

. 

By the definition of ( )ki , we have for Kk ∈  that  
 

2

( ) ( )
( ) ( ) ( ) ( )

⎠⎝
⎛

⎟
⎞

⎜ ′′−∇>

>−
−−

+

k
ki

k
ki

kk

2
441

1

. 
kD

T
k dxFqsxFq

xFx

,1σ .   (10)

By Definitin 3, A1 and Lemma 2 we have 

F

( ) ( )
( ) ( ) ( ) ( )

( ) ( )( )221,
2
1 −− ++′′+ ( )( )22

221

1

−

−−

+

+∇+∇=

− =

ki

kk
Tki

k
T

k
ki

kk

q

dxFqsxFq

xFxF

 

k
ki

k
ki

kD odqsqxF
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( )

( )

( )

( ) ( ) ( )
( )( ) ( )( ) ( )( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )
( ) ( ) ( )( ).

,,

,,

22244
2

222

221

22442

221

22221

221

−−−

−

−−−

−

−−−

−

++
+∇+∇

+′′+′′
+∇+∇

+′′+
+∇+∇

ki
k

ki
k

ki
kk

Tki
k

T
k

ki
kkD

ki
kkD

k
kk

Tki
k

T
k

ki
k

ki
kDk

ki
k

kk
Tki

k
T

k

qodqcs
dxFqsxF

qodxFqsxF
dxFqsxF

qodqxFsqx
dxFqsxF

 

2

2

−

−

−

+
≤

+
=

′′+
≤

ki

i

ki

D

ki

qc
q

q
q

F
q

 
Hence, from (10) it follows that: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )( ).

,
2
1

2224
22

221

441

−−

−−

−−

+
∇

⎟
⎠
⎞

⎜
⎝
⎛ ′′−∇

ki
kk

kk
TkiTki

kkD
ki

k
T

k
ki

qod
dxF

dxFqsxFqσ

  

 
Accumulati order higer than 

4222 − ++
+∇≤

kiki
kk

qcsqc
qsxFq

ng all terms of ( )( )22 −kiqo to 

the ( )
 in

( )2  (by assum

0≤   from th

2 −kiqo pti ng the fact that 

( )∇ k
T dxF llows that: 

on A2), and usi

equality it fok e last in

( ) ( ) ( ) ( )
( ) ( )( )22222

2
− ++

∇<∇

k
ki

kkkk

sqc
sxFqsxFqσ

, 
11

−

−− +
ki

TkiTki

qo

i.e. 

( ) ( ) ( ) ( ) ( )( ) 0222221 >++∇ −−− kikiTki qosqcsxFq . 1 2− kkkσ

Hence , dividing by 2 ⋅ qc  and A3 it follows 
 

( ) 1−ki , by A2
that 

( ) ( )
( )( )

( )
( )( ) .1 1qo ki

k

−

+
−

≥ β

1

22

2

1

2

1

c
xF

c

c
qosxF

c
q

ki

kk
Tki

−
−

∇

+∇
−

>

σ

σ

 

Since ( )kiq llows that 01 →− as k 2, Kk ∈∞→ , it fo

( ) 0 as ,k ∞→→∇ kxF

In order to have a fi  value 

2K∈ . k

nite ( )ki fficient th

and kd  have descent ( ) <k
T

k sx

∇ k

, it is su

∇F

at ks  

 propert

 whenever 

ies, i.e. 0  and 

( )xF 0<k
T d ( )∇ k 0≠xF . 

ion The first relat follows from A3 and the second rel
f
 

t a omes 

( )

ation 
ollows from (7).  

A saddle point the relation (6) bec

( ) (kiq4−≤ ) ( )dxFxFxF ,4 ′′− −
kkDkk 21+

σ

In the case 0≠kd  by Lemma 7 and hence, by assumption 

A1 it follows that  ( ) 0, >′′ kkD dxF ; so (11) can be clearly 
satisfied. 
 
Convergence rate theorem.

.                   (11) 

  Under the assum
 we have t

nce 

ptions of the 
previous theorem hat the following estimate holds 
for the seque { }k  generated by the algorithm. 
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0= ⎥⎦⎢⎣ ∇k kxFη

for ,..3,2,1

F

=n where ( ), ( )∞−= xFxF 00μ  and 

( ) = <η +∞0xLdiam  (since by Proposition 1 it follows that 

( )0xL is bounded). 

Proof . The proof directly follows from the Theorem 9.2, 
page 167, in [11]. 

The Moreau-Yosida regularization is a powerful tool for 

 optimization problem using the properties of this 
regularization.  

To our knowl h to solving NDO 
p

[3] Djuranovic Milicic Nada: “ An Algorithm For 1LC  Optimization”, 
Yugoslav Journal of Operations Research, Vol. 15, No. 2, pp 301-
306, 2005 

[4] Djuranovic Milicic N., Gardasevic Filipovic M..: „An Algorithm For 

r Minimization of a 
Nondifferentiable Convex Function“, Filomat, in press 

 

VII. CONCLUSION  

smoothing nondifferentiable functions. It allows us to 
transform the solving an NDO problem into the solving an 

1LC

edge this is a new approac
roblems, and in some sense it is close to the proximal quasi 

Newton algorithm. 
The algorithm presented in this paper is based on the 

algorithm from [3]. This method uses minimization along a 
plane defined by the vectors ks  and kd  to generate a new 
iterative point at each iteration. Relating to the algorithm in 
[3], the presented algorithm is defined and converges for 
noonsmooth convex function. 
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