
 

  
Abstract—Prediction intervals for future order statistics are 

widely used for reliability problems and other related 
problems. The determination of these intervals has been 
extensively investigated. But the optimality property of these 
intervals has not been fully explored. In this paper we discuss 
this problem for extreme value distributions. Introducing a risk 
function to compare prediction intervals, the interval which 
minimizes it among the class of invariant prediction intervals is 
obtained. The technique used here for optimization of 
prediction intervals based on censored data emphasizes pivotal 
quantities relevant for obtaining ancillary statistics and factors. 
It allows one to solve the optimization problems in a simple 
way. 
 

Index Terms — Extreme value distribution, future order 
statistic, prediction interval, risk function, optimization 
 

I. INTRODUCTION 
REDICTION of an unobserved random variable is a 
fundamental problem in statistics. Patel [1] provides an 

extensive survey of literature on this topic. In the areas of 
reliability and life-testing, this problem translates to 
obtaining prediction intervals for life distributions such as 
the Exponential and the Weibull. One of the earlier works on 
prediction for the Weibull distribution is by Mann and 
Saunders [2]. They considered prediction intervals for the 
smallest of a set of future observations, based on a small 
(two or three) preliminary sample of past observations. An 
expression for the warranty period (time before the failure of 
the first ordered observation from a set of future 
observations or a lot) was derived as a function of the 
ordered past observations. Mann [3] extended the results for 
lot sizes n = 10 (5) 25 and sample sizes m = 2 (1) n − 3 for a 
specified assurance level of 0.95. This method requires 
numerical integration. In addition, the tables provided are 
limited to sample sizes less than 25 and are given only for 
the assurance level of 0.95. Antle and Rademaker [4] 
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provided a method of obtaining a prediction bound for the 
largest observation from a future sample of the Type I 
extreme value distribution, based on the maximum 
likelihood estimates of the parameters. They used Monte 
Carlo simulations to obtain the prediction intervals. Using 
the well-known relationship between the Weibull 
distribution and the Type I extreme value distribution one 
can use their method to construct an upper prediction limit 
for the largest among a set of future Weibull observations. 
However this method is valid only for complete samples and 
limited to constructing an upper prediction limit for the 
largest among a set of future observations. Lawless [5] 
proposed a method for constructing prediction intervals for 
the smallest ordered observation among a set of k future 
observations based on a Type II censored sample of past 
observations. These results are based on the conditional 
distribution of the maximum likelihood estimates given a set 
of ancillary statistics. This procedure is exact, but it requires 
numerical integration, for each new sample obtained, to 
determine the prediction bounds. Mee and Kushary [6] 
provided a simulation based procedure for constructing 
prediction intervals for Weibull populations for Type II 
censored case. This procedure is based on maximum 
likelihood estimation and requires an iterative process to 
determine the percentile points. 

To develop appropriate probabilistic models and assess 
the risks caused by stochastic events, business analysts and 
engineers frequently use the extreme value distributions 
(EVD). In this paper we assume that the parent EVD are the 
Gumbel distribution, 
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where µ is the location parameter, and σ is the scale 
parameter (σ > 0), and the Weibull distribution, 
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where both distribution parameters (δ − shape, β − scale) are 
positive. 

Let Y be a random variable with the Weibull distribution 
(2), and define X = lnY. Then X becomes a random variable 
with the Gumbel distribution (1) where µ = lnβ and σ = δ−1. 
Therefore it is enough to consider only the Gumbel 
distribution, because the results for the Weibull distribution 
are easily obtained from those for the Gumbel distribution. 
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II. WITHIN − SAMPLE PREDICTION  

A. Mathematical Preliminaries 

Theorem 1. Let X1 ≤ ... ≤ Xk be the first k ordered 
observations (order statistics) in a sample of size m from a 
continuous distribution with some probability density 
function fθ (x) and distribution function Fθ (x), where θ is a 
parameter (in general, vector). Then the joint    probability 
density function of X1 ≤ ... ≤ Xk and the lth order statistics Xl 
(1 ≤ k < l ≤ m) is given by  
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represents the conditional probability density function of Xl 
given Xk=xk. 

Proof. The joint density of X1 ≤ ... ≤ Xk and Xl is given by 
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It follows from (4) and (6) that 
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i.e., the conditional distribution of Xl, given Xi = xi for all i = 
1,…, k, is the same as the conditional distribution of Xl, 
given only Xk = xk, which is given by (5). This ends the 
proof.   � 

Theorem 2. Let X1 ≤ ... ≤ Xk be the first k ordered 
observations from a sample of size m, which follow the 
Gumbel distribution (1) with the density 
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where θ = (µ, σ). Then the joint probability density function 
of the pivotal quantities 
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are ancillary statistics, any k−2 of which form a functionally 
independent set, µ)  and σ) are the maximum likelihood 
estimates for µ and σ  based on the first k ordered 
observations (X1≤ ... ≤Xk) from a sample of size m from the 
Gumbel distribution (1), which can be found from solution 
of  
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is given by 
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is the normalizing constant, 
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Proof. The joint density of X1 ≤ ... ≤ Xk is given by  
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Using the invariant embedding technique [7-14], we then 
find in a straightforward manner, that the probability 
element of the joint density of S1, V2, conditional on fixed 
z(k) = ), ..., ,( 1 kzz  is 
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This ends the proof.   � 

Theorem 3. Let X1 ≤ ... ≤ Xk be the first k ordered 
observations (order statistics) in a sample of size m from the 
Gumbel distribution (1). Then the joint probability density 
function of the pivotal quantities 
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where Xl (1 ≤ k < l ≤ m) is the lth order statistic from the 
same sample, is given by 
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Proof. The joint density function of the order statistics Xk, 

Xl (1 ≤ k < l ≤ m) is given by  
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This ends the proof.   � 

Corollary 3.1. The probability density function of the 
pivotal quantity V1 is given by 
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Corollary 3.2. The joint probability density function of 

the pivotal quantities 
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B. Piecewise-Linear Loss Function 

We shall consider the interval prediction problem for the 
lth order statistic Xl, k<l≤m, in the same sample of size m for 
the situation where the first k observations X1 < X2 < ⋅⋅⋅< Xk, 
1≤k<m, have been observed. Suppose that we assert that an 
interval d=(d1,d2) contains Xl. If, as is usually the case, the 
purpose of this interval statement is to convey useful 
information we incur penalties if d1 lies above Xl or if d2 
falls below Xl. Suppose that these penalties are c1(d1− Xl) 
and c2(Xl−d2), losses proportional to the amounts by which 
Xl escapes the interval. Since c1 and c2 may be different the 
possibility of differential losses associated with the interval 
overshooting and undershooting the true µ is allowed. In 
addition to these losses there will be a cost attaching to the 
length of interval used. For example, it will be more difficult 
and more expensive to design or plan when the interval 
d=(d1,d2) is wide. Suppose that the cost associated with the 
interval is proportional to its length, say c(d2−d1). In the 
specification of the loss function, σ is clearly a ‘nuisance 
parameter’ and no alteration to the basic decision problem is 
caused by multiplying all loss factors by 1/σ. Thus we are 
led to investigate the piecewise-linear loss function   
 














>−+−

≤≤−

<−+−

=

).(            )()(

),(                             )(

),(             )()(

),(

2
2212

21
12

1
1211

dX
dXcddc

dXd
ddc

dX
ddcXdc

r

l
l

l

l
l

σσ

σ

σσ
dθθθθ  (31) 

 

The decision problem specified by the informative 
experiment density function (1) and the loss function (31) is 
invariant under the group of transformations, which takes µ  
(the location parameter) and σ  (the scale) into cµ + b and 
cσ, respectively, where b lies in the range of µ,  c > 0. This 
group acts transitively on the parameter space.  Thus, the 
problem is to find the best invariant interval predictor of Xl,  
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where D is a set of invariant interval predictors of Xl, 
R(θθθθ,d)=Eθθθθ{r(θθθθ,d)} is a risk function. 

C. Transformation of the Loss Function 

It follows from (31) that the invariant loss function, 
r(θθθθ,d), can be transformed as follows: 
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V=(V1,V2),   V1= σ/)( kl XX − ,   V2= σσ /) ; 
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D. Risk  Function 

It follows from (34) that the risk associated with d and θθθθ 
can be expressed as 
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which is constant on orbits when an invariant predictor 
(decision rule) d is used, where f(v1,v2) is defined by (30). 

E. Risk Minimization and Invariant Prediction Rules 

The following theorem gives the central result in this 
section. 

Theorem 4. Suppose that (U1,U2) is a random vector 
having density function 
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where f is defined by f(v1,v2), and let Q be the probability 
distribution function of U1/U2.  

(i) If c/c1+c/c2<1 then the optimal invariant linear-loss 
interval predictor of Xl based on X is d*=(Xk+η1Sk, Xk+η2Sk), 
where 
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)./()( 212 cccQ +=•η  (39) 
 

Proof. From (36) 
{ }

1

),(
η∂

∂ ηηηηVrE &&
 

 

∫ ∫∫ ∫
∞ ∞∞

−=
0 0

21212
0 0

212121 ),(),(
21

dvdvvvfvcdvdvvvfvc
vη

 

 

  ],)([),( 11
0 0

21212 cQcdvdvvvfv −= ∫ ∫
∞ ∞

η  (40) 

and  
 

{ } ,]))(1([),(),(

0
22

0
21212

2
∫ ∫
∞ ∞

+−−=
∂

∂
cQcdvdvvvfv

rE η
η

ηηηηV&&  

(41) 

Proceedings of the World Congress on Engineering 2012 Vol III 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-2-0 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



 

where 

  ∫=
η

η
0

,)()( dwwqQ  (42) 

 

,

),(

),(

)(

0 0
21212

0
222

2
2

∫ ∫

∫
∞ ∞

∞

=

dvdvvvfv

dvvwvfv

wq   (43) 

 
./ 21 VVW =   (44) 

 
Now ∂E{ r&& (V,ηηηη)}/∂η1 = ∂E{ r&& (V,ηηηη)}/∂η2 = 0 if and only 

if (38) hold. Thus, E{ r&& (V,ηηηη)} provided (38) has a solution 
with η1<η2 and this is so if 1−c/c2>c/c1. It is easily 
confirmed that this ηηηη=(η1,η2) gives the minimum value of 
E{ r&& (V,ηηηη)}. Thus (i) is established.  

If c/c1+c/c2≥1 then the minimum of E{ r&& (v,η)} in the 
region η2≥η1 occurs where η1=η2= •η , •η  being determined 
by setting  
 

 ∂E{ r&& (V,( •• ηη , ))}/∂ •η =0  (45) 
 

and this reduces to 
 

,0)](1[)( 21 =−− •• ηη QcQc    (46) 
 
which establishes (ii).    

Corollary 4.1. The minimum risk of the optimal invariant 
predictor of Xl based on X is given by 
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for case (i) with ηηηη=(η1,η2) as given by (38) and for case (ii) 
with η1=η2= •η  as given by (39). 

Proof. These results are immediate from (36) when use is 
made of ∂E{ r&& (V,ηηηη)}/∂η1 = ∂E{ r&& (V,ηηηη)}/∂η2 = 0 in case (i) 
and ∂E{ r&& (V,( •• ηη , ))}/∂ •η =0 in case (ii).    

The underlying reason why c/c1+c/c2 acts as a separator of 
interval and point prediction is that for c/c1+c/c2≥1 every 
interval predictor is inadmissible, there existing some point 
predictor with uniformly smaller risk.  

Theorem 5. Suppose that µ=0 and 
 
 

V=(V1,V2),   V1= σ/)( kl XX − ,   V2= σ/kX ; 
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Let us assume that (U1,U2) is a random vector having density 
function 
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where f0 is defined by f0(v1,v2), and let Q0 be the probability 
distribution function of u1/u2. 
 

(i) If c/c1+c/c2<1 then the optimal invariant linear-loss 
interval predictor of Xl based on Xk is d*=((1+ o

1η )Xk, 

(1+ o

2η )Xk), where 
   

./1)(     ,/)( 220110 ccQccQ −== oo ηη  (50) 
 

(ii) If c/c1+c/c2≥1 then the optimal invariant linear-loss 
interval predictor of Xl based on Xk degenerates into a point 
predictor (1+ )o•η Xk, where 
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Proof. For the proof we refer to Theorem 1.    
Corollary 5.1. The minimum risk of the optimal invariant 

predictor of Xl Based on Xk is given by 
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for case (i) with ),( 21
ooo ηη=ηηηη as given by (50) and for case 

(ii) with ooo

•== ηηη 21  as given by (51). 
Proof. For the proof we refer to Corollary 4.1.    

III. EQUIVALENT CONFIDENCE COEFFICIENT 
For case (i) when we obtain an interval predictor for Xl we 

may regard the interval as a confidence interval in the 
conventional sense and evaluate its confidence coefficient. 
The general result is contained in the following theorem. 

Theorem 6. Suppose that V=(V1,V2) is a random vector 
having density function  f(v1,v2) (v1,v2>0) where f is defined 
by (30) and let H be the distribution function of W=V1/V2, 
i.e., the probability density function of W is given by 
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Then the confidence coefficient based on X and associated 
with the optimum prediction interval d*=(d1,d2), where 
d1=Xk+ ση )

1 ,  d2=Xk+ ση )

2 , is 
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Proof. The confidence coefficient for d∗ corresponding to 
(µ,σ) is given by 
 

},|:),Pr{( 21 σµσησησ ))) +<<+ klkk XXXX  
 

}/:),Pr{( 221121 ηη <<= vvvv  
 

)]./([)]/1([)()( 1
1

2
1

12 ccQHccQHHH −− −−=−= ηη  (55) 
 
This is independent of (µ,σ).    

Theorem 7. Suppose that V=(V1,V2) is a random vector 
having density function  f0(v1,v2) (v1 real, v2>0), where f0 is 
defined by 
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where µ=0, and let H0 be the distribution function of 
W=V1/V2, i.e., the probability density function of W is given 
by 
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Then the confidence coefficient based on Xk and associated 
with the optimum prediction interval d*=(d1,d2), where 
d1=(1+ o

1η )Xk,  d2=(1+ o

2η )Xk, is 
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Proof. For the proof we refer to Theorem 6.     
The way in which (54) (or (58)) varies with c, c1 and c2, 

and the fact that c1 and c2 are the factors of proportionality 
associated with losses from overshooting and undershooting 
relative to loss involved in increasing the length of interval, 
provides an interesting interpretation of confidence interval 
prediction. 

IV. CONCLUSION 
In many statistical decision problems it is reasonable co 

confine attention to rules that are invariant with respect to a 
certain group of transformations. If a given decision problem 
admits a sufficient statistic, it is well known that the class of 
invariant rules based on the sufficient statistic is essentially 
complete in the class of all invariant rules under some 
assumptions. This result may be used to show that if there 
exists a minimax invariant rule among invariant rules based 
on sufficient statistic, it is minimax among all invariant 
rules. In this paper, we consider statistical prediction 
problems which are invariant with respect to a certain group 

of transformations and construct the optimal invariant 
interval predictors. The method used is that of the invariant 
embedding of sample statistics in a loss function in order to 
form pivotal quantities which allow one to eliminate 
unknown parameters from the problem. This method is a 
special case of more general considerations applicable 
whenever the statistical problem is invariant under a group 
of transformations, which acts transitively on the parameter 
space.  
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