
 

 
Abstract— This paper extends the Queuing Maximum 

Availability Location Problem (Q-MALP) model to locate 
ambulances offering two kinds of services, i.e., Advance Life 
Support (ALS) and Basic Life Support (BLS). The 
development of the model includes the randomness of server 
availability and of travel times. This model is applied to a 33-
node census tract representation of Austin, Texas. The 
implications of the new model for the ambulance services 
system design are discussed as well as the limitations of the 
modeling approach. 
 

Index Terms— Ambulance deployment, set covering location 
problems, stochastic travel time, multi-server 
 

I. INTRODUCTION 

 critical component of the emergency health care 
system is a responsive and well-managed ambulance 

service. An almost universal measure of ambulance 
location system performance is the response time, generally 
defined as the time between dispatch of the emergency 
medical personnel until arrival of the personnel on-scene. 
Dispatching time depends on dispatching policies and the 
delay is independent of the ambulance location. The only 
component that is affected by changing the location of the 
ambulance is the travel time. Thus, for ambulance location, 
using travel time as a surrogate for response time is a 
common practice and is the most meaningful measure [1]-
[3]. 

Ambulance services systems often face many types of 
demand for service and provide multiple levels of 
emergency care. Demands on ambulance services can be 
broadly grouped into two categories: critical and non-
critical. The former comprises calls of a potentially "life-
threatening" nature while the latter describes calls which are 
considered emergent but "non-life threatening". Ambulance 
services can also be grouped into two broad categories: 
advanced life support (ALS) and basic life support (BLS). 
ALS service is provided by paramedic units equipped to 
effectively handle critical demands such as airway 
management and cardiac resuscitation.  BLS service is 
provided by emergency medical technician (EMT) units 
equipped to respond to less urgent and non-critical 
problems. Although EMT units are not equipped with ALS 
capabilities, a role exists for these units in responding to 
critical calls. In place of immediate paramedic assistance,  
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the EMT units can perform first aid and basic life-support 
procedures (oxygen, control of external bleeding and other 
interventions) in critical situations until ALS-equipped 
vehicles arrive.  
 The objective of this study is to develop a technique for 
locating ambulances in an urban environment. First, we will 
extend the Queuing Maximum Availability Location 
Problem (Q-MALP) model to locate two types of 
ambulances, i.e., the BLS and the ALS. Henceforth, this 
model will be known as the Multi-server Queuing 
Maximum Availability Location Problem (MQ-MALP). 
Next, we will extend the formulation when the stochastic 
nature of the urban environment is taken into account 
explicitly, namely, the travel time in response to service. A 
measure of uncertainty of the response time, i.e., a 
probability measure, will be incorporated into the existing 
optimization model.  

II. THE NOTION OF COVERAGE IN THE MQ-MALP MODEL 

The ambulance location system is represented as a 
network of nodes and arcs. The nodes of the network 
constitute demand points or demand areas as well as 
potential locations for the ambulance units. The arcs that 
connect nodes to one another are feasible routes, usually 
taken to be the shortest travel times between the nodes. 
Demand at a particular node is measured by the number of 
calls/time unit and if unavailable, by it’s proxy, the 
population size. The maximum (standard) travel time and 
the number of available ambulance units to be located will 
be provided by the decision maker. Of particular importance 
in these models is the set Nsi defined as follows: 

Nsi = { j | tij < S, jJ } where J = set of eligible facility 
sites, tij = shortest time from potential facility site j to 
demand node i and S = time standard for coverage of critical 
calls. In other words, Nsi is the set of facility sites located 
within the time standard S of demand node i. If a call for 
service originating at this node is answered by available 
ambulances stationed inside this neighborhood, it will be 
answered within the time standard. 

In the Q-MALP model, a demand/call for service is 
considered "covered" if there is an ambulance available 
within the time standard with the stated α-reliability. With 
this notion of "coverage", the Q-MALP is now extended to 
locate 2 types of ambulances, i.e., the BLS and ALS units. 
The coverage of two different types of calls, then, suggests 
two travel time standards, S for covering critical calls and T 
for covering non-critical calls (S < T).  First, coverage of 
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critical calls by paramedics and EMT (ALS or BLS) units is 
considered. We wish to deploy these ambulances (ALS or 
BLS) units in such a way as to cover this critical demand 
within S time units with an ambulance available with 
reliability α. Further, since ALS units are more 
appropriately equipped for this task, we seek to maximize 
primarily their coverage of these critical calls; BLS units are 
serving as only a "back-up" function. Next, we also wish to 
deploy BLS units in such a way as to cover the non-critical 
demand within T time units with the BLS unit available 
with reliability α. Thus, the BLS units in the above system 
are assigned two tasks, that of providing "back-up" 
coverage of critical demand and that of providing coverage 
of non-critical demand.  

The use of "coverage" as defined above requires an 
estimate of the probability that an ambulance is busy or 
sometimes referred to as busy fraction. The estimate 
presented here is analogous to the Q-MALP in which we 
not only use region-specific busy fractions (i.e., server busy 
fraction is adjusted to the call level around demand node) 
but we also allow dependence between busy fractions at a 
local, neighborhood level. These assumptions provide an 
improvement over the total independence assumptions or 
the situation in which the probability of the server being 
busy is the same across the whole system (as in Maximum 
Expected Covering Location Problem (MEXCLP)). 

 

A. Deriving server needs with reliability   for ALS or 
BLS units 

A call of critical nature is considered "covered" if there is 
an ALS or BLS server within S time standard with 
reliability α. To achieve such reliability  a minimum number 
of  ALS or BLS units (bai) must be derived, located within S 
time standard of node i, such that the probability that any of 
these servers are busy is less than 1-α.   

The demand of critical nature in each neighborhood S of 
demand node i is modeled as an M/G/s/s system [4], i.e., the 
number of critical calls for service in neighborhood S of 
demand node i is assumed to be distributed as Poisson 
arrivals with intensity 

ai  and the service time served by the 

ALS or BLS unit is assumed to be general with a mean rate 

of ai . When all the ALS servers in the neighborhood are 

busy, new calls are presumed lost (servers from outside the 
neighborhood take these calls). Implicit in this model is the 
assumption [see, e.g., [5]] that the flows of servers into 
neighborhood S of demand node i and out of neighborhood 
S of demand node i approximately cancel each other and 
thus justify the treatment of each neighborhood as an 
isolated, independent unit whose demands and servers 
interact solely with each other.  

Let si be the total number of ALS or BLS servers in the 
neighborhood S of i and define the state k of the ambulance 
system with critical calls as k ALS or BLS servers being 
busy within the neighborhood of demand node i. Using the 
standard queuing theory steady-state equations, the 
probability pk of the system being in state k can be computed 
as [4]: 

P(getting into state k) – P(getting out of state k) 

   1 1( 1) 0      ai k ai k ai k ai kp k p p k p    , 

for states 1, 2,..., si 

 
where 

pk = the probability that k servers within the 
neighborhood S of demand node i are busy, 

ai = arrival rate of critical call in neighborhood S of 

demand node i (calls per day), 

ai1 = mean service time of an ALS or BLS unit 

(hours per call) responding to a call in the 
neighborhood of demand node i , and  

1 0 0, ai aip p  for state 0. 

For convenience, the subscript i is omitted from pk. At 
steady-state, solution of these equations yields the 
probability of all si servers being busy, psi [4]:                   
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ai can be estimated by 
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 and the 

parameters 
ai can be estimated by 24 / at  (calls per day) 

where 
fai=  demand of critical natureat demand node  (number 
of calls per unit time) and 

at =  average duration of a single critical call 

serviced by an ALS or BLS unit (in hours) averaged 
over the entire network.  
Msi = { k | tik < S, k   I } where I = set of demand 
notes,  
tik = shortest time from demand node i to demand node 
k and  S = time standard for coverage of critical calls. 
In other words, Msi is the set of demand nodes located 
within S of i.   

The recursive formula for psi is given by [4]: 

1
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         (2) 

Since the term in the parenthesis is less than 1,  psi then is a 
decreasing function of the parameter si. Expressions (1) and 
(2) are identical to the expression in the original Q-MALP 
Model [see [5]].  

For each neighborhood S of demand node i and each 
value of si, the probability of at least one ALS or BLS server 
being available is 1- psi . If the value 1- psi ≥ α or 
equivalently, psi  ≤ 1 - α, then demand node i is assumed to 
be covered with reliability α. As psi  is a decreasing function 
of si, there exist a nonnegative integer bai, such that for   

,1i ai sis b p    [5]. The integer bai represents the 

minimum number of ALS or BLS units which must be 
located within S time standard of demand node i, for that 
node to be considered as covered with reliability α. That is, 
bai is the smallest integer satisfying 

 
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                   (3) 

The value of bai can be calculated by determining p1, p2, …, 
psi, psi+1, …, etc. in sequence, and choosing bai as the 
smallest value of  si  that satisfies (3). Thus, to maximize 
critical calls with α-reliable service, we maximize critical 
calls with  bai  or more servers. Given a value for α and 
knowing the values of λai and μai, integer bai can be pre-
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computed or determined exogenously to the optimization 
problem.  

 

B. Deriving server needs with reliability α for BLS units 

 Further, let bbi represent the minimum number of BLS 
units which must be located within T unit of demand node i 
for node i to be covered with reliability α. Similarly, given a 
value for α, bbi can be pre-computed using (3) by changing 
the values of ρai to ρbi where 

 
     ρbi  =  λbi / μbi , 

and 
 
λbi = arrival rate of non-critical call in neighborhood T 

of demand node i  (calls per day),  
 1/μbi =  mean service time of a BLS unit (hour per call). 
 

That is, bbi is the smallest integer satisfying 
 

       
 

2

1/ !
1 .

1 (1/ 2!) ... (1/ !)

bi

bi

b
bi i

b
bi bi bi bi

b

b




  
 

   
             (4) 

The parameters λbi can be estimated by 
Ti

bk
k M

f

 and the 

parameter μbi can be estimated by 24 / bt  (calls per day) 

where 
fbi=  demand of non-critical nature at demand node i  

(number of calls per unit time)and 

bt =  average duration of a single non-critical call 

serviced by BLS unit (in hours) averaged over the 
entire network. 

MTi ={k | tik < T, k   I} where I = set of demand notes, 
tik = shortest time from demand node i to demand 
node k and  T = time standard for coverage of 
non-critical calls. In other words, MTi is the set of 
demand nodes located within T of i.  

An algorithm that calculates minimum server needs with 
reliability α (smallest bai as in (3) and smallest bbi as in (4)) 
was developed in Visual C++. This algorithm was applied to 
the 33-node problem representing Austin, Texas with a few 
modifications and is presented in the next section.  
 

C. Example analysis of server needs for 33-node case 
study 

The 33-node problem from Daskin [6] represents Austin, 
Texas, at the census tract level.  Interzonal travel times are 
given by travel matrix with intrazonal times taken to be one 
minute.  The weights associated with each zones are the 
number of calls for ambulance services recorded in the 
census tract during the five-months period for which the 
data were available.  However, for the purpose of analysis, 
the population concentration at each node was multiplied by 
a constant factor such that the resulting average calls per 
day over the entire network is 0.4 calls per day. These are 
used as estimates of the number of calls per node per day. 
Second, we used the finding from Eaton et al. [7] - only 20-
25 percent of calls for ambulance service in Austin require 
the advanced skills of paramedics - in order to get estimates 

for the breakdown of these calls into critical and non-critical 
calls. Thus, the population concentration at each node was 
multiplied by a constant factor such that the resulting 
average calls for ALS services per node per day over the 
entire network is 0.1 calls per day. These are used as 
estimates of the number of critical calls per node per day. 
The difference between these two estimates are used as 
estimates of the number of non-critical calls per node per 
day. Third, an average duration of a single service of 3/4 of 
an hour was used [5]. This figure was estimated based on 
the average of three cases: the ambulance goes to the site of 
the call, stays there for some time, and then goes back to the 
facility site; the ambulance reaches the emergency site, 
takes the patient to a hospital and returns to its assigned 
facility site; and the possibility of a false alarm, or the event 
that the emergency is over when the ambulance reaches the 
alarm site. Lastly, the response time was set at 8 and 10 
minutes for an ALS unit and a BLS unit, respectively.   

Table I shows the minimum number of servers needed at 
varying levels of reliability, for different set of scenarios. 
For example, the second entry (second column, fourth row) 
in Table I specifies that 20 nodes require1 BLS unit and 13 
nodes require 2 BLS units to achieve 85% server reliability 
with a response time standard of 10 minutes. The third 
column provides similar analysis focusing on ALS units but 
with a smaller response time standard of  8 minutes to 
reflect the nature of a critical call.  

 
Table I. Minimum number of ALS and BLS units required under 

different reliabilities for the33-node problem 
 BLS 

Response Time 10 
ALS 

Response Time 8 
Reliability #locations 

(#servers) 
#locations 
(#servers) 

0.80 33(1) 33(1) 
 - 

 
- 

0.85 20(1) 33(1) 
 13(2) 

 
- 

0.90 12(1) 33(1) 
 21(2) 

 
- 

0.95 2(1) 3(1) 
 31(2) 

 
30(2) 

0.99 16(2) 5(1) 
 17(3) 28(2) 

                 
It can be seen that the number of locations with a higher 

value of minimum number of servers needed at each node in 
order for the node to be considered as covered with 
reliability α, increases with an increase in server reliability. 
This is intuitive as one would expect that increasing the 
number of ambulances at each location would increase the 
likelihood of an ambulance continuing to be available 
within the standard even after one of the ambulances had 
responded to a call. 
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III. MQ-MALP WITH TRAVEL TIME UNCERTAINTY MODEL 

FORMULATION 

One way to reduce costs while maintaining quality 
service is to design a system in which personnel with less 
training would be dispatched in lower-cost BLS vehicles to 
non-life threatening events. Highly trained paramedics in 
ALS vehicles would respond to life-threatening (critical) 
calls. In this section we are concerned with locating a 
limited number of ambulances (ALS or BLS) units. The 
objective is to provide a maximal cover of critical calls by 
ALS or BLS units and a maximal cover of non-critical calls 
by BLS units. Thus, the BLS units in this system are 
assigned two tasks, that of providing "back-up" coverage of 
critical demand (calls) and that of providing coverage of 
non-critical demand (calls).  

A. Objective function 

Since bai ALS or BLS (bbi BLS) servers (pre-calculated in 
previous section) are required by each demand area for α-
reliable coverage of critical (non-critical) calls, a lack of a 
full complement of servers leads to a lack of α-reliable 
coverage of critical (non-critical) calls. Hence, the objective 
to maximize the population (or calls) coverage of critical 
(non-critical) nature with α-reliable service, the population 
with the full complement, bai (bbi), of servers needs to be 
maximized. We now define 

1,if at least ALS or BLS units are within  of demand node 

0, otherwise,  = 1, 2, ...,  + ,  and

1,if at least  BLS units are within  of demand node 

0, otherwise,  = 1, 2, ..., 


 




aik a b

bik

k S i
y

k p p

k T i
y

k ,





bp

 

where 
  pa = number of available ALS units to locate, and 
  pb = number of available BLS units to locate. 

With these definitions, the objective of maximizing 
coverage of critical calls by ALS or BLS units can be 
formulated as  

,
aiai aib

i I

max f y

  

while the objective of maximizing coverage of non-critical 
calls by BLS can be formulated as  

.
bibi bib

i I

max f y

  

If these two objectives are used in a multiple programming 
problem, these objectives then becomes 
              ,

ai bia ai aib b bi bib
i I i I

maximize w f y w f y
 

            (5) 

where strictly positive weights wa , wb represent the 
tradeoffs amongst the two objectives. Weights need to be 
strictly positive to insure noninferiority, since some 
alternate optima maybe inferior [8]. 

B. Constraints 

 In this formulation, the fact that the kth ALS unit should 
not be located at a facility node without the (k – 1)st ALS 
unit, is enforced through the ordering constraints. Thus, 
analogous to Q-MALP, yaik cannot be one unless yai(k-1) is 
also one and the same relationship holds for ybik.  These 
contraints are 

 
     yaik ≤ yai(k-1) i, k = 2, 3, …, bai ,      (6) 

and 
     ybik ≤ ybi(k-1) i, k = 2, 3, …, bbi ,      (7) 
 

Further, to count coverers for each demand node, we define  
, if at least  ALS servers are located at site ,

0, otherwise,  = 1, 2, ..., .                              


 


aj a

m m j
x

m p
    

and  

 
, if at least  BLS servers are located at site ,

0, otherwise,  = 1, 2, ..., .                              


 


bj b

m m j
x

m p
 

Expressions and
si si

aj bj
j N j N

x x
 
  represent the total number 

of ALS and BLS servers that are stationed within S of node 
i, respectively.  In order for node i to be covered bai times, 
there would have to be at least bai ALS or BLS servers that 
are stationed within S of node i.  Thus constraint 

             
1

,
ai

si si

b

aik aj bj i
k j N j N

y x x I
  

          (8) 

defines coverage for critical demand by ALS and the "back-
up" coverage of critical demand by BLS units, that is, node i 
is covered bai times only if at least bai ALS or BLS servers 
are stationed within S of node i. Similarly, expression  

Ti

bj
j N

x

 represents the total number of  BLS servers that are 

stationed within T of node i. In order for node i to be 
covered bbi times, there would have to be at least bbi BLS 
servers that are stationed within T of node i.  Thus, 
constraint 

                      
1

,
bi

Ti

b

bik bj i
k j N

y x I
 

          (9) 

defines coverage for non-critical demand by BLS units, i.e., 
node i is covered bbi times only if at least bbi BLS servers 
are stationed within T of node i.  

 Often the number of available ALS and BLS units are 
limited due to, for example, budget constraint. Expressions   

and aj bj
j J j J

x x
 
  represent the total number of ALS and 

BLS units that are located in the system. Hence, to limit the 
number of available ALS units to locate to pa and the 
number of available BLS units to locate to pb, constraints  
                                    ,aj a

j J

x p


          (10) 

                                    ,bj b
j J

x p


          (11) 

should be included in the model formulation. Further, the 
number of servers that can be located at a specific location 
is usually constrained by its capacity. The capacity Cj (in 
servers) of each location j can be reflected in the model as 
constraints 

 
                       xaj  +  xbj  ≤  Cj   j J ,    (12) 

and 
                  xaj , xbj  =  integer ≤  Cj      j J,    (13) 
 

Finally, constraints  
     yaik , ybik  =  0, 1   i , k       (14) 
                     

forces coverage variables to be binary (i.e. 0, 1). 

Proceedings of the World Congress on Engineering 2012 Vol I 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19251-3-8 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



 

C. Travel Time Uncertainty 

Travel time is an important component of response time 
and is the most directly affected by deployment changes. It 
is important to note that travel times are random; that is they 
cannot be predicted exactly in advance. Even if the 
ambulance traveled from a particular facility site to the same 
street corner over and over again under essentially constant 
conditions-same vehicle, driver, weather, time of day, etc.-
there would still be variations in travel time from run to run. 
If the conditions changed between runs there would be even 
greater variations. Thus, the random nature of travel time 
must be taken into account when doing analysis using travel 
time as a performance measure.    

In the formulations of Q-MALP the response time/travel 
times along the arcs of the network are assumed to be 
deterministic. In other words, the probability distribution of 
the response time is degenerate. Daskin [9] formulated his 
location, dispatching and routing model by treating travel 
times as normally distributed with known mean and 
variance. While assuming normally distributed travel time 
makes his analysis considerably more tractable, it risks 
losing some realism because normal distribution admits the 
possibility of negative travel times. Marianov and ReVelle 
[5] on the other hand, proposed a different approach to the 
treatment of travel times but still using the same 
distribution. However, no analysis was done to see the 
effect of random travel time on server location. Abdul 
Ghani [10] and Abdul Ghani and Mohd Ruslim [11] on the 
other hand, uses a Monte Carlo simulation of travel times 
and of demand, respectively, as inputs into the optimization 
model with a heuristic method developed to site the 
ambulances.   

Analogous to the approach by Marianov and ReVelle [5], 
we will use other distribution, namely the Weibull 
distribution. Suppose now the response times Tij are non-
degenerate random quantities with probability distribution, 
FTij . By treating the response times as random quantities, an 
improvement can be introduced in the way Nsi is computed. 
This can be done by choosing a neighborhood of each node 
in such a way that, if a call for service originating at this 
node is answered by an available server located within the 
neighborhood, it will be answered within time standards 
with probability . To do this, Nsi is redefined as 

   ( ) ) .
ijSi ij TN j P T S j F           (15) 

When 1

ijTF   exists, then (15) can be rewritten as  

   1 1( ) ( ) .
ij ijSi T TN j S F j F S           (16) 

If travel time is distributed as Weibull with shape 
parameter 0ij  , and scale parameter 0ij  , then  (16) 

becomes 

 1/( ln(1 )) .ij

Si ijN j S      

A full formulation of MQ-MALP is given in Tables II, III 
and IV. 

 

Table II.    Input constant 
I = set of demand nodes (indexed by i). 
J = set of eligible facility sites (indexed by j). 
tij = shortest time from potential facility site j to 

demand node i. 
S = time standard for coverage of critical calls. 
T = time standard for coverage of non-critical calls. 
fai = demand of critical nature at node i (number of calls 

per day). 
fbi = demand of non-critical nature at node i (number of 

calls per day). 
α = reliability of a server. 
bai = the minimum number of  ALS or BLS units which 

must be located within S unit of node i for node i 
to be covered with reliability α, pre-computed 
using (3). 

bbi = the minimum number of BLS units which must be 
located within T unit of node i for node i  to be 
covered with reliability α, pre-computed using (4). 

pa = number of available ALS units to locate. 
pb = number of available BLS units to locate. 
cj = capacity of site j. 
wa , wb , ≥ 0 are the weights associated with each objective. 

  
Table III. Decision variables 

1,  if at least ALS or BLS units are within  of demand node 

0, otherwise,

1, if at least  BLS units are within  of demand node 

0, otherwise.

, if at least  ALS servers are lo














k S i,
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IV. ANALYSIS OF MQ-MALP MODEL WITH TRAVEL TIME 

UNCERTAINTY 

This section considers the application of the MQ-MALP 
with stochastic travel times to the 33-node problem 
representing Austin, Texas with the same modifications as 
outlined in Section C. The travel time distributions are 

Weibull distributions with scale and shape parameters, ij  

and ij , chosen such that the means equalled to their 

counterparts for the deterministic response times. A constant 
variance of 4 were used for all travel times. For the 33-node 
problems, reliability for server availability and reliability for 
the response times were set at 0.95. The numbers of ALS 
and BLS servers to locate were set at 2 and 6, respectively. 
While for the 55-node problem, reliability for server 
availability and reliability for the response times were set at 
0.95 and 0.90, respectively, and the number of ALS and 
BLS servers to locate were set at 3 and 8, respectively. 
Results of these analyses were obtained using Xpress-MP 
version 13.1. Using the method of Cohon et al. [12], the 
solution procedure results are summarized in Table V. For 
this table, otherwise indicated by an asterik (*), only one 
ALS or BLS server is to be located at the indicated nodes. 

The use of the method by Cohon et al. [12] resulted in 
several alternative solutions that do well under both 
objectives and that a range of potential performance levels 
make themselves known. For example, in moving from 
solution A to solution C, percent of critical calls covered  
increases by 19.8 percent but percent of non-critical calls 
covered decreases by a relatively smaller amount of  8.9 
percent. "Covered" for critical calls here is defined as 
having an available server, either an ALS or a BLS,  
responding to a critical call within 8 minutes with 
probability of at least 0.95 and the probability of the server 
being available to respond is at least 0.95. 

 
 
 
 
Table V. Weighting Method Results of MQ-MALP Uncertainty 

Model  
Applied to the 33-Node Problem 

Solution  Percent Call Covered Node Location 
 W Critica

l 
Non-

critical 
All ALS BLS 

A 0.38 50.4 68.7 64.1 8, 13 6*, 15*, 24* 
B 1.35 57.9 66.7 64.5 8, 20 6, 7, 14, 15, 25* 
C 2.75 70.2 59.8 62.4 23, 27 2, 6, 8, 14, 15, 20 
D 17.40 71.7 52.1 57.0 23, 29 2,7,10, 14, 20, 27 
E 39.70 74.7 33.6 43.9 23, 27 2,8,14, 15, 20, 29 

* 2 BLS servers located 
 
Fig. 1 below shows the spatial distribution of servers 

corresponding to solutions in Table V. One can see that the 
location of the two ALS servers in the 33-node problem are 
more dispersed  in solution C and E, while in solution D the 
two ALS servers are more concentrated in the middle and 
two BLS servers located on the same location (node 25). 
Which solution the decision maker picks would depend on 
the kind of tradeoffs he/she is willing to make. However, the 
spatial distribution of the more dispersed location of the 
servers are intuitively more appealing. In addition to 

improving the public sense of safety by more proximate 
locations, the system itself may perform better by 
potentially decreasing the mean response time in the 
dispersed formation. Furthermore, the more dispersed siting 
pattern could enhance the ability of the system to continue 
to respond should key access routes from the consolidated 
locations be blocked. 

1 ALS 

1 BLS 

2 BLS 

A B C

D E

1 ALS 

1 BLS 

2 BLS 

1 ALS 

1 BLS 

2 BLS 

A B C

D E

  
Fig. 1. Spatial Distribution of Servers Corresponding to 
Solutions of MQ-MALP Uncertainty Model for the 33-
Node Problem in Table V.  

V. CONCLUSIONS AND RECOMMENDATIONS 

The MQ-MALP formulated here is an attempt to account 
for the uncertainties in the travel times in the context of 
locational planning of the ambulance services systems. 
These systems are characterized by multiple levels of 
emergency health services, i.e., a two-tiered system with 
"basic life support" and "advanced life support". The use of 
the multiobjective format in the formulation allows the 
decision maker to identify good location alternatives and the 
tradeoffs between them. The model integrates several of the 
important determinants of the emergency system 
performance into a single optimization model in order to 
strategically locate and allocate the ambulances. While the 
formulation progresses the state of the art of the emergency 
services modeling, the problem solution and the 
methodology presented herein are not intended to be 
definitive due to their limitations.  

First, the queueing method, introduced by Marianov and 
Re Velle [5] and adapted herein to accomodate multiple 
servers (i.e. a BLS unit backing up an ALS unit), of 
obtaining the minimum number of servers to achieve the 
stated reliability does not take into account the possibility 
that these minimum number could be placed at a site that 
satisfies two or more demand nodes. Hence, it 
underestimates the number of servers needed to achieve the 
stated reliability. Incorporation of this possibility into the 
model could be an area of future research. Second, this 
model as in the case of Q-MALP, does have a tightly 
defined objective. That is, coverage for a demand node is 
achieved only when sufficient servers are located to achieve 
a response within the time standard with reliability . A 
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demand node is not counted as covered if there is one server 
less than the sufficient number required to achieve the 
specified level of service. Since this model maximizes calls 
with sufficient servers, some demand nodes may be left with 
very few servers within the standard in order to shift more 
demand nodes to the category of "sufficient". This situation 
can be rectified by the introduction of two other constraints, 
i.e., basic coverage and goal coverage as was used by 
Groom [13] and also proposed by Marianov and Re Velle 
[5]. The basic coverage would be the minimum level at 
which all demand nodes must be served. While maintaining 
basic coverage, goal coverage would seek to maximize the 
number of calls to the desired level. The addition of these 
constraints, however, would come at the expense of a 
decreased objective value. Third, the model do not explicitly 
consider other stochastic nature that are often important in 
designing emergency service such as demand for services.  
Hence, incorporating the stochastic demand into the 
formulation would be another important extension. Finally, 
it may be the case that some areas are strategically more 
important than others, such as areas where schools are 
located. In order to incorporate nodes that are strategically 
important, the optimization model can be adapted by adding 
weights to those nodes. 
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