
 

 
Abstract. There are several techniques of non-destructive 

damage detection in structures. However, these techniques 
are expensive and require an accurate examination of large 
extension of the structure under analysis. The numerical 
techniques can be helpful for non- destructive examination 
of structures. Such techniques may show a possible location of 
damage and thus decrease substantially the area to be 
examined and, consequently, may turn the non-destructive 
tests less expensive. Among many numerical methods, the 
boundary element method presents positive attributes that 
can be used in formulations proposed to solve the problem of 
detecting damages in structures such as beams. Generally, 
the problem of detecting damages is a ill-posed problem 
and the common approach used is the comparison of 
signatures obtained before and after the onset of damage. The 
signatures maybe defined in terms of displacements, mode 
shapes, strains or stresses. In this article, the methods based 
on Wavelet Transform associated with the boundary element 
technique will be combined with the scope to detect the 
position of a damage just using the damaged response of the 
actual structure. After presenting the formulation, numerical 
applications for detecting damages in beams under static loads 
are presented and discussed. 
 

Key words— beams, damage and wavelet. 
 

I. INTRODUCTION 
ost methods for damage  detection are based on the 
comparison  of signatures  written in terms of 
displacements, strains, stresses, natural frequencies, 

mode shapes, damping ratio, and so on, obtained before 
and after the coming out of  a  damage.  These methods 
are based on the assumption that a structural damage may 
cause significant variation in structural parameters such 
as mass, stiffness, or flexibility and those variations may 
cause substantial changes in structural responses, such as 
natural frequencies, mode shapes, damping ratio. The 
variations of such responses may be expressed by a 
signature which is just a residual function that compares 
the results obtained in a conceived mathematical  model 
with the data (displacements,  strains, stresses, natural 
frequencies, mode shapes, damping ratio, etc…) 
measured in the real structure.  
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The formulations  based in such signatures  search the 
minimum  of the residual  function  with any algorithm,  
that may be deterministic,  such  as  the  conjugate  
gradient  method,  the  BFGS  method,  Marquad’s  
methods  [1,2],  or  non-determinist algorithms  such  as  
the  generic  algorithm,  ant’s  colony  algorithm  [3],  and  
so  on.   
When such residual funct ion is  at  a minimum, one can 
conclude that the mathematical  model is well expressing 
the damage. Such methods gained popularities due to 
significant advances in the experimental me t h od s  and 
technologies for monitoring st ructures  [4,5].  However, 
such approaches need a comparison between two states, 
which means more work and the storage of the data 
between the two states. Methods which can detect 
d a m a g e  w i t h  only information obtained f r o m  t h e  
d a m a g e  condition of the structure are more 
advantageous since their condition before damage is 
rarely known. In this context, the application of the 
wavelet based methods can be useful. These me t h o d s  
d e t e c t  t h e  singul ar i t i es  p r e s e n t  i n  the static and 
modal response caused b y  damage   and   therefore   they   
do not require the condition of the structure before 
damage. It is also necessary to determine a numerical 
procedure for the simulation of cracked   structures.   In   
this way, evaluation of the damage detection methods can 
be practical [4]. 

This paper presents two numerical examples using 
boundary elements and Wavelet Transform for damage 
detection in a cantilever beam. The modeling of damage 
is done in boundary elements by means of program 
Elast_qua [8] developed in MATLAB.  The static  
response  of the  structure  with simulated  damage  is 
used in the  analysis  to detect  the location  of damage 
using the Wavelet Transform. 

II. THE BOUNDARY ELEMENT FORMULATION 

The Boundary Element Method (BEM) possesses 
many encouraging attributes such as: (a) Reduction by 
one of the problem dimensionality; 2D problems are 
reduced to 1D. (b) Only the boundary of the structure 
may possibly be discretized. (c) The domain of the 
continuum does not have to be divided into elements 
and nodes. (d) Structural response at all the internal 
nodes, as in FEM, can be waived. (e) Discretization 
limited only to the structure boundaries leads to a 
system of equation with smaller number of degrees of 
freedom. Those features, among others, are advantageous 
for ill-posed problems [6], for example, the numerical 
stability in the solution of ill-posed problems using BEM 
is much better than via FEM. The BEM  can  be  
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introduced,  among  other  approach,  with  the  weighted  
residual  technique  or  with  the  reciprocal  principle 
theorem, as: 
 

∫ ∗௜௝ߝ௜௝ߪ ݀Ωஐ = ∫ ௜௝∗ஐߪ  (௜௝݀Ω 1ߝ
 

Where   is the structure mathematical domain with 
boundary, see Fig.1, ij , *

ij , ij  and *
ij  are, respectively, 

stresses and strains in the same body   in equilibrium 
state under different loads assigned without and with the 
starred symbol (*). After integrating by parts Equation (1), 
and taking into consideration the equilibrium equation in 
the continuum, written as * *

ij, j jb 0    (for *
jb  as a unit 

point load – Dirac delta function), the Somigliana’s Identity 
[7] can be easily obtained as: 
 

න ܾ௞∗
ஐ

௞݀Ωݑ + ර ∗௞ݐ
୻

௞݀Γݑ = න ܾ௞ݑ௞∗
ஐ
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 ௞∗݀Γݑ

         (2) 
 

In Eq. (2), kt , ku and   are, respectively, loads, 
displacements, and boundary of the body. Using the Dirac 
delta function mathematical properties, Eq. (2) can be 
rewritten as: 
 

௜ݑ = ර ∗௜௝ݑ ௝݀Γݐ
୻

−ර ∗௜௝ݐ ௝݀Γݑ
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 (3) 
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Equation (4) represents the fundamental solution [7] 
where ߭	,  ,are, respectively; the Poisson’s ratio ,ܧ and  ߤ
the shear modulus, and the modulus of Elasticity. The term 
ܴଶ = ௜ܻ ௜ܻ . Moreover, ௜ܻ = ௜ݔ − ௜ߦ   represents the 
distance between the field point ݔ௜  and the load point ߦ௜ . 
The term ݊௜ is the outward normal at boundary Γ – for 
more details see [7].  The close solution for obtaining the 
displacement ݑ௜ in the integral Equation (3) of 
Somigliana’s Identity is a very difficult task and only 
attainable for simple geometries and boundary conditions. 
The BEM provides a numerical approach for the solution of 
Eq. (3) in the following steps: (a) The boundary Γ is 
discretized into a series of N boundary elements Γ =
∑ Γ௜ே
௜ୀଵ  

 
defined over a set of nodes. (b) Eq. (3) is applied 

in the discretized form to each nodal point of the boundary 
and the integrals are computed by numerical quadrature 
scheme over each boundary element. (c) A system of M 
linear algebraic equations involving the set of Mଵ  nodal 

traction and Mଶ nodal displacements is obtained. (d) The 
boundary conditions are imposed and consequently the M  
modal values (tractions or displacements in each direction 
per node) are prescribed. (e) The system of  M  equations is 
solved by standard methods to obtain the remaining 
boundary data, for more details see [7]. 

In this work the elements used are for quadratic 
boundary elements implemented in the MatLab program 
[8]. In the program, the displacement ݑ௜ in the integral 
Equation (3) is obtained for the boundary nodes. After that, 
any internal point can have its displacements calculated [7]. 
Such displacements are the quantities that will be 
considered in this work and will be wavelet transformed.  

III. WAVELETS THEORY 
Considering a signal of interest in the time or space 

domain and ψ(t) the values of wavelet function in the time 
and frequency domains. The wavelets are generated from 
the mother wavelet ψ(t) by translation and dilation, as 
follow below: 

 
߰௔,௕(ݐ) = ଵ

√௔
߰ ቀ௧ି௕

௔
ቁ (5) 

 
Where a and b are integer numbers which represents the 

dilation and translation parameters respectively. The 
wavelet transform of a signal f(t) is defined by: 

 
௔,௕ܥ = (௢ݐ)௔,௕ܥ = ∫ ஶ(௢ݐ)௔,௕ߖ(ݐ)݂

ିஶ  (6)  ݐ݀
 

The results of this transformation are called wavelet 
coefficients and show how well the function correlates with 
the signal. These wavelet coefficients are very sensitive to   
discontinuities and singularities present in the analyzed 
signal. Considering this property, it was found that damage 
due to a sudden loss of stiffness can be detected through 
mode shapes with wavelet coefficients which achieve large 
amplitudes like a spike or an impulse in the damage 
location. This perturbation of wavelet coefficients due to 
this damage is clearer in the finest scales of the wavelet 
transform. This procedure is the basis of the wavelet 
transform damage detection [5].   

IV. NUMERCICAL EXAMPLES 
This  section  presents  the  boundary  element  model  

of  cantilever  beams  modeled using  quadratic  elements  
of  the Elast_qua[8] program. This element has three 
nodes and three degrees of freedom by node: translations 
in x,y and traction. 

The static responses (displacements) were analyzed 
in MATLAB program to compute the wavelet 
coefficients using the Biorthogonal 3.7 mother-wavelet. 

A. Cantilever Beam – Case 1 
In case 1, the cantilever beam used in the analysis 

was submitted to a load F = 500kN in the free end and 
to a transverse crack a’= 0,025m positioned at d = 0,25m 
(L/2) from the left end, see Fig. 1. The material and 
geometric properties of the beams analyzed are shown in 
Table1. 
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Fig. 1- Cantilever beam analyzed crack ½ 
 

Table 1: Geometric and materials properties of cantilever beam 

Properties Symbol Value Unity 
Beam width B 0,10 m 
Beam height H 0,10 m 
Area S 0,01 m² 
Beam length L 0,50 m 
Modulus of elasticity E 200,00 GPa 
Poisson coefficient ν 0,30 - 

 
The  boundary  element  model  of  cantilever  beam  

was  discretized  in  25  elements  and  204  nodes.  The 
damage  was simulated  defining  the  crack  in the 
clockwise  direction  and as a hole that is an open  
crack, furthermore,  the boundary conditions were applied 
in the all nodes of left end restricting the degrees of 
freedom in x and y direction, see Fig. 2. 
 

 
Fig. 2 - Boundary element model of cantilever beam for case 1(L/2) 

 
Four hundred and eighty internal points were created 

at 1/3 of beam height to be used to plot the deflection of 
beam and to applicate the wavelet transform in the static 
response (nodal displacements).The d e for m ed  shape 
and the deflection of beam with crack and without crack 
obtained in the program are presented in the Fig. 3 and 
Fig. 4 respectively. 

 

 
Fig. 3– Deformed shape case 1 (L/2) 

 

 
Fig. 4– Deflection of cantilever beam case 1 (L/2) 

 
The  variations  in the  nodal  displacements  in the  

cantilever  beam  with  and without  crack  could  not  be  
distinguished satisfactorily to provide the case with the 
damage; it may be because the damage is too small. 
 

The wavelet transform was applied in the signal of 
displacements obtained in the internal points using the 
wavetoolbox of MATLAB to compute the wavelet 
coefficients for mother-wavelet Biorthogonal 
3.7(bior3.7). The Fig. 5 shows the result of this wavelet 
transform application. 

 

 
Fig. 5 – Wavelet coefficients using bior3.7 case 1(L/2) 

 
The bior3.7 mother-wavelet were able to detect the 

exact position of damage (node 240), moreover, the 
graphics presented perturbations in the ends due to 
geometric discontinuities.  These perturbations were also 
observed in others papers that used finite element method 
to detect damages in beams [9,10]. 

B. Cantilever Beam – Case 2 
In case 2, the crack was positioned d = 0,375m from 

the left end, see Fig. 6. The material and geometric 
properties of the beam analyzed are the same of case 1: 

 
Fig. 6- Cantilever beam analyzed case 2 (3L/4) 
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The boundary element model of cantilever beam was 
discretized in  25 elements and 204 nodes.  The beam 
with the boundary conditions is presented in Fig. 7. 

 

 
Fig. 7 - Boundary element model of cantilever beam case 2(3L/4) 

 
Four hundred and eighty internal points were created 

at 1/3 of beam height to be used to plot the deflection of  
beam and to applicate the wavelet transform in the static 
response (nodal displacements).The  deformed and the 
deflection of the beam in case 2 presented similar results 
to case 1. The results are presented in the Fig. 8 and Fig. 
9. 
 

 
Fig. 8– Deformed shape case 2(3L/4) 

 

 
Fig. 9– Deflection of cantilever beam case 2(3L/4) 

 
Again, the variations in the nodal displacements in 

the cantilever beam with and without crack could not be 
distinguished satisfactorily; it may be because the damage 
is too small. 
 

The wavelet transform was applied in the signal of 
displacements obtained in the internal points using the 
wavetoolbox of MATLAB to compute the wavelet 
coefficients for mother-wavelet Biorthogonal 
3.7(bior3.7). The Fig. 10 shows the result. 

 

 
Fig. 10 – Wavelet coefficients using bior3.7 case 2(3L/4) 

 
The bior3.7 mother-wavelet were able to detect the 

exact position of damage (node 360), and another time 

the graphics presented perturbations in the ends due to 
geometric discontinuities. 

 

V. CONCLUSION 
This paper presented a new methodology applied to 

the inverse problem of damage detection using 
boundary elements and wavelet transform using a 
cantilever beam with a crack at two different positions. 

The wavelet transform applied in the static signals 
could detect the exact position of damages and also, 
singularities due to geometric discontinuities. 

The use of boundary element method could be an 
alternative in the getting of numerical response for 
damaged structures to be used in the damage detection 
process. 
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