
Improved Controller Design for Turbocharged
Diesel Engine

Magdi S. MahmoudMember, IAENG

Abstract—Turbocharged diesel engines are now being used
in every automobile by a lot of automobile manufacturing
companies. A turbocharged diesel engine (TDE) equipped with
variable geometry turbocharger and exchange gas recirculation
is explained in detail. A linear turbocharged diesel engine model
is presented and its control techniques are explained in detail.
Controllers are designed using the linear-quadratic regulator
(LQR), linear-quadratic Gaussian regulator (LQGR), H2, H∞,
and mixed H2/H∞. A comparison is made among these
controllers based on the ensuing results of Matlab simulation.

Index Terms—Optimal control, LQR, LQG, H2, H∞, tur-
bocharged diesel engines

I. I NTRODUCTION

I N recent years more stringent requirements on perfor-
mance, fuel conservation and low emissions have paved

way for increased complicated engine performance. Strate-
gies like exhaust gas recirculation and turbocharging have
been devised to cope up with the requirements. These give
us a great bit of freedom to control the behavior of the engine.
Previous practices used these in a suboptimal way since the
devices used to control these features affect many different
parts of the engine through the cross-couplings in the system.
The development of an optimal coordinated strategy often
takes more time than available in a production cycle. In order
to fully extract the potential of these devices we consider this
as a multivariable control problem. A multivariable approach
to this will yield a better performance. Turbochargers mainly
find their applications in racing cars,automobiles, aircrafts
and gas turbines. Diesel (compression ignition) engines hold
a significant advantage over spark ignited (gasoline) engines
in fuel economy. Moreover, diesel engines have lower feed-
gas emissions of the regulated exhaust gases, but the after-
treatment devices for diesel engines are far less efficient
than the conventional three way catalysts for spark ignition
engines.

In this paper, the plant to be controlled is a turbocharged
passenger car diesel engine equipped with exhaust gas recir-
culation and a variable geometry turbine as shown in Fig.
1. Turbocharger increases the power density of the engine
by forcing air into the cylinders, which allows injection of
additional fuel without reaching the smoke limit. The turbine,
which is driven by the energy in the exhaust gas, has a
variable geometry that allows the adaptation of the turbine
efficiency based on the engine operating point. The second
feedback path from the exhaust to the intake manifold is
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due to the EGR, which is controlled by the EGR valve. The
recirculated exhaust gas replaces oxygen in the inlet charge,
thereby reducing the temperature profile of the combustion
and hence the emissions of oxides and nitrogen. Modern

Figure 1: Schematic diagram of the TDE model

diesel engines are typically equipped with the VGT and EGR
and both introduce feedback loops from exhaust to intake
manifold. The recirculated exhaust gas is cooled down in
the EGR cooler and its mass flow is controlled via the EGR
valve. Both the EGR valve and the VGT are pneumatically
actuated and fitted with position sensors. An intercooler
reduces the temperature of the compressed air coming from
the compressor. In addition to the standard production type
sensors, for mass air flow (MAF) and manifold absolute pres-
sure (MAP), the engine is equipped with various temperature
and pressure sensors as well as with a turbocharger speed and
inline shaft torque sensor. Exhaust gas recirculation (EGR)
combined with the variable geometry turbocharging provides
an important avenue for NOx emission reduction.

The objective of this paper is to proved improved methods
for the controller design of a turbocharged diesel engine. The
methods include linear-quadratic regulator (LQR), linear-
quadratic Gaussian regulator (LQGR),H2, H∞, and mixed
H2/H∞, which are proved in convenient computable form.
A comparison is made among these controllers based on
the ensuing results of Matlab simulation. As judged by
how much exhaust mass and exhaust pressure is reduced to
reduce the emission from the engine, it is conluded from the
comparison that .
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II. STATE-SPACE MODEL

In what follows, we consider a typical turbocharger con-
sisting of an exhaust gas driven turbine that, by means of
a mechanical shaft, is able to transfer its kinetic energy to
the compressor impeller. The impeller imparts this energy
to the air, which is turned into density increase in the
compressor diffuser. The variable geometry turbocharging
is accomplished by a turbine that has a system of movable
guide vanes located on the turbine stator. By adjusting the
guide vanes, the exhaust gas energy to the turbocharger can
be regulated, thus controlling the compressor mass airflow
and exhaust manifold pressure. The variable geometry tur-
bocharger(VGT) actuator is typically used to control the
intake manifold absolute pressure(MAP) and the EGR valve
controls the mass air flow (MAF) into the engine. Both the
EGR and VGT paths are driven by the exhaust gas and hence
constitute an inherently multivariable control problem. Recall
that the effect of the EGR and VGT actuators is coupled
through the pressure in the exhaust manifold, therefore a co-
ordinated approach will yield a better performance than the
control strategies using SISO techniques.

An appropriate linearized model that can be conveniently
cast into the format

ẋ(t) = Ax(t) + Bu(t) + Γw(t)

z(t) = Gx(t) + Du(t) + Φw(t)

y(t) = Cx(t) + Ψw(t) (1)

wherex(t) ∈ ℜn, u(t) ∈ ℜm, y(t) ∈ ℜp, z(t) ∈ ℜq

andw(t) ∈ ℜq are the state, the control input, the measured
output, the controlled output and the external disturbance
vectors. The matricesA, B, C, G, D, F, Φ, Ψ are real
constants, the numerical values of which are given in the
simulation section. In system (1), the states components are
mx = mass at the exhaust manifold,px = pressure at the
exhaust manifold,mi = mass at the intake manifold,pi =
pressure at the exhaust manifold,Nt = turbocharger shaft
speed andWci = compressor mass flow. The system inputs
are u1 = exhaust gas recirculation (EGR) actuator position
and u2 = variable geometry turbocharger (VGT) actuator
(vanes) position, whereas the system outputs which arey1 =
intake manifold absolute pressure (MAP) andy2 = intake
mass air flow (MAF).

III. LQR D ESIGN

Here, the associated quadratic cost function is

J =

∫
∞

0

[yt(t)Qy(t) + ut(t)Ru(t)]dt (2)

where0 < Q, 0 < R are output error and control weighting
matrices, which are selected in the course of simulation by
observing several sets of criteria of the closed loop-system.
In what follows, we present an LMI-based formulation to the
LQ control of system (1) while minimizing the quadratic cost
(2). We proceed to determine a linear optimal state-feedback
control u = Lx that achieves this goal. Assume thatV (x)
has the formV (x) = xtK+x, K+ > 0 and satisfies

V̇ (x) ≤ −[xtCtQCx + utRu] (3)

Then, the linear system controlled byu is asymptotically
stable andJ∞ ≤ V (xo). With u = Lx, inequality (3) is
equivalently expressed as

xt[K+(A + BL) + (A + BL)tKt
+]x

≤ −xt[CtQC + LtRL]x (4)

From (4), it is evident that (3) is satisfied if there existsL
andK+ such that

K+(A + BL) + (A + BL)tKt
+ +

[CtQC + LtRL] ≤ 0 (5)

Morover, instead of directly minimizing the costxt
oK+xo,

we proceed to minimize its upper bound. Therefore, we
assume that there existsγ+ > 0 such that

xt
oK+xo ≤ γ+ (6)

In effect, the linear optimal control problem under consider-
ation for givenγ+ can be cast into the format

min
γ+,K+,L

γ+ subject to (5) − (6) (7)

To convexify the above problem, we first express (5) as

Φ = K+(A + BL) + (A + BL)tKt
+

Π =




Φ Ct Lt

• −Q−1 0
• • −R−1



 ≤ 0 (8)

Pre- and post-multiply (8) bydiag{K−1
∗

, I, I} and using
Y = K−1

+ , S = LK−1
+ it follows that (8) is equivalent to




(AY + BS) + (AY + BS)t Y Ct Y Lt

• −R−1 0
• • −Q−1



 ≤ 0(9)

Additionally, inequality (6) can be expressed as
[

γ+ xt
o

• K−1
+

]
≥ 0 ⇐⇒

[
γ+ xt

o

• Y

]
≥ 0 (10)

The minimization problem (7) is cast into the form

min
γ+,Y,S

γ+ subject to (9) − (10) (11)

When a feasible solution of problem (11) is attained, then
we getL = S Y −1, K+ = Y −1

IV. H2 AND H∞ DESIGN

We now direct attention to alternative techniques for
computing the state-feedback controlleru = Lx, . The
closed-loop system is described by

ẋs(t) = Asxs(t) + Γw(t)

z(t) = Gs xs(t) + Φw(t) (12)

As = A + BL, Gs = G + DL (13)

Designing anH2 controller is approached via convex analy-
sis. Suppose a Lyapunov function for the closed-loop system
(12) is selected as

V (xs) = xt
sPxs(t), 0 < Pt = P ∈ ℜn×n (14)

Along the solutions of the closed-loop system (12) with
w(t) ≡ 0, we obtain

V̇ (xs) = xt
s

(
PAs + At

sP
)
xs (15)

Proceedings of the World Congress on Engineering 2012 Vol III 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-2-0 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



From the Lyapunov theorem, the closed-loop system (12) is
internally asymptotically stable if

At
sP + PAs < 0 (16)

is satisfied. The objective of this paper is to develop LMI-
based characterization of the two optimization problems

A) The H2-norm optimization in which it is required
to find the state-feedback gainL that ensures the stability
of closed-loop system (12) and keeps theH2-norm of the
transfer functionTzw(s) from w to z as small as possible.

B) The H∞-norm optimization in which it is required to
find the state-feedback gainL that ensures the stability of
closed-loop system (12) and keeps the||z||2 < γ ||w||2 for
a prescribed attenuation levelγ > 0.

A. H2 design

Provided matrixAs is Hurwitz for given L with Φ ≡
0, Ψ ≡ 0, the square of theH2-norm of the transfer
funstion Hzw(s) can be expressed in terms of the solution
of a Lyapunov equation (controllability Grammian) such that
the corresponding minimization problem with respectL is
given by

min

{
Tr[Ct

sPsCs] : AsPs + PsA
t
s + ΓΓt = 0

}
(17)

whereTr[.] denotes the trace operator. SincePs < P for
anyP satisfying

AsP + PAt
s + ΓΓt < 0 (18)

it is readily verified that||Hzw(s)||22 = Tr[Ct
sPCs] < ν

if and only if there existsP > 0 satisfying (18) and
Tr[Ct

sPCs] < ν. Introducing an auxiliary parameterW,
and in line of [7] the following analysis result is obtained:

Theorem 4.1: : Matrix As is stable and ||Hzw(s)||22 < ν
for a prescribed ν if and only if there exist matrices P̂, W
such that

Tr(W) < ν, (19)[
At

sP̂ + P̂As P̂Γ
• −I

]
< 0

[
P̂ Ct

s

• W

]
> 0, (20)

The main design result is summarized by the following
theorem:

Theorem 4.2: : System (12)-(13) is stable with
||Hzw(s)||22 < ν for a prescribed ν if and only if
there exist matrices 0 < X , 0 < Y and W such that

Tr(W) < ν, (21)[
AX + XAt + BY + YtBt Γ

• −I

]
< 0 (22)

[
X XGt + YtDt

• W

]
> 0 (23)

Moreover, the controller gain is L = YX−1

Proof: A congruent transformation [7], [8], [9] via
diag[X I], X = P̂−1 on (20) yields (23).

B. H∞ design

In what follows, we consider theH∞-norm optimization
problem. It follows from robust control theory [10] that
the solution of this problem corresponds to determining the
controller parameters that guarantees the feasibility of

V̇ (xs) + ztz − γ2 wtw < 0 (24)

The design result is summarized by the following theorem:
Theorem 4.3: : System (12) is asymptotically stable with

γ-disturbance attenuation if there exist matrices 0 < X , 0 <
Y, and scalar γ > 0 satisfying the following LMI




Πo Γ Πc

• −γ2I Φt

• • −I



 < 0 (25)

Πo = AX + XAt + BY + YtBt

Πc = XGt + YtDt (26)

Moreover, the controller gain is L = YX−1

Proof: With the aid of (15), we express inequality (24) in
the form

xt
s[PAs + At

sP]xs + [Csxs + Φw]t[Csxs + Φw] +

2xt
sPΓ − γ2wtw < 0 (27)

Inequality (27), by Schur complements, is equivalent to



PAs + At

sP PBs Ct
s

• −γ2I Dt
s

• • −I



 < 0 (28)

for any [xs, w] 6= 0. Applying the congruent transformation
diag[X I], X = P̂−1 to (28) and usingLX = Y, we
readily obtain LMI (25) subject to (26 ), which concludes
the proof.

C. Mixed H2-H∞ synthesis

Considering system (1), the mixedH2-H∞ synthesis
problem deals with the problem of finding the state-feedback
controller which minimizes theH2 norm of the transfer
function Tzw(s) and subject to theH∞-norm constrained
by the boundγ.

V. LQGR DESIGN

In this case, we represent the TDE system by the model

ẋ(t) = Ax(t) + Bu(t) + Γd(t)

z(t) = Gx(t) + Du(t)

y(t) = Cx(t) + n(t) (29)

where d and n are zero-mean Gaussian noise processes
(uncorrelated from each other) with power spectrumsQ, R,
respectively. Building on the LQR design, we consider that
the state-feedback controlleru = Lx is available and proceed
to construct an LQG estimator of the form

˙̂x(t) = [A − KC]x̂(t) + Bu(t) + Ky (30)

whereK is the Kalman estimator gain. In terms of the error
e(t) = x(t) − x̂(t), we have

ė = Ae + Γd − Kn (31)

The optimal gain matrixK is given byK = SCtR−1 where
0 < S = St is the solution to the following Algebraic Riccati
Equation (ARE)

AS + SAt + ΓQΓt − SCtR−1CS = 0 (32)
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VI. SIMULATION RESULTS

In terms of the data

A =

[
A1 A2

A3 A4

]

A1 =




−0.4125 −0.0248 0.0741
101.5873 −7.2651 2.7608
0.0704 0.0085 −0.0741





A2 =




0.0089 0 0
2.8608 0 0
−0.0089 0 0.0200





A3 =




0.0878 0.2672 0
−1.8414 0.0990 0

0 0 0





A4 =




−0.3674 0.0044 0.3962

0 −0.0343 −0.0330
−359 187.5364 −87.0316





B =





−0.0042 0.0064
−1.0360 1.5894
0.0042 0
0.1261 0

0 −0.0168
0 0





C =

[
0 0 0 0 0 3.6
0 0 0 1 0 0

]

Numerical simulation of the controll designs using the linear-
quadratic regulator (LQR), linear-quadratic Gaussian regula-
tor (LQGR),H2, H∞, and mixedH2/H∞, are summarized
in terms of the feedback gains and the associated bounds:

Lℓqr =

[
−0.8195 −0.1731 −0.1973 1.1521 −0.9907 −0.0028

5.14277 0.3250 0.3654 0.7437 0.1943 0.0025

]
,

||Lℓqr|| = 5.2748, γ+ = 6.3472

L2 =

[
−1.6713 −0.5447 −0.3060 3.7550 −2.8728 −0.0109

13.59667 1.0298 0.6755 2.3428 0.2124 0.0076

]
,

L2 = 13.9038, ν = 9.1428

L∞ =

[
−0.6200 −0.1231 −0.1584 0.8140 −0.7184 −0.0019

3.7531 0.23097 0.28567 0.5287 0.1598 0.0018

]
,

||L∞|| = 3.8540, γ = 2.3814

L2−∞ =

[
−0.1796 −0.0317 −0.0526 0.2068 −0.1942 −0.0005

1.0156 0.0594 0.0900 0.1362 0.0550 0.0005

]
,

||L2−∞|| = 1.0463, ν = 2.3619, γ = 0.9327

Lℓqgr =

[
−0.341 −0.0628 −0.0950 0.4114 −0.3772 −0.0009

1.9763 0.1176 0.1655 0.2696 0.0982 0.0009

]
,

||Lℓqgr|| = 2.0334, γ+ = 6.3472

The numerical clearly suggests that the control design
based on the mixedH2/H∞ yields the best compromize.
However, it requires, exessive computations compared with
LQR , H2 andH∞. The corresponding state trajectories are
plotted in Figs. 2-7.

Figure 2: Response of state 1

Figure 3: Response of state 2

Figure 4: Response of state 3

Figure 5: Response of state 4

Figure 6: Response of state 5
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Figure 7: Response of state 6
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VII. C ONCLUSIONS

This paper has
• presented a linear turbocharged diesel engine model and

explained its control requirements.
• provided control design methods based on the theories

of LQR, LQGR, H2, H∞, and mixedH2/H∞. The
methods are cast into convenient computing forms.

• made a comparison among the designed controllers
based on Matlab simulation of the closed-loop system
results.

Judged by how much the exhaust mass and exhaust pressure
is reduced to reduce the emission from the engine, it has been
concluded that mixedH2/H∞ yields the best performance
as it has the least norm of the gain matrix. This tends to
maximize the pressure at the intake which in turn gives the
boost to the engine.
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