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Abstract—In this paper the delay Nicholson’s blowflies equa-
tion has been solved by the θ-mathod. The purpose is to analyse
stability of the numerical schemes using the linearisation
method. Our obtained results show sufficient conditions in
which the numerical solutions are stable. Moreover, we also
show some nonlinear stability in the case that θ = 1, and show
that it gives a well-defined discrete dynamical system on the
stability.

Index Terms—delay differential equation, Nicholson’s
blowflies equation, θ-methods, stability analysis.

I. INTRODUCTION

THE θ-method is an iterative numerical method widely
used to approximate solutions of ODEs. In this paper,

we use it to find numerical solutions of the delay differential
equation:

N ′(t) = −δN(t) + pN(t− τ)e−aN(t−τ), t > 0, (1)

where p > δ > 0, and study their numerical stability. Many
authors dealt with various kind of stability for numerical
methods for DDEs, only a few dealt specifically with the
θ-method for (1). We aim to analyse the numerical stability
and the long-term behaviour of the numerical solutions of the
θ-method for (1). First, we discuss the θ-method for ODEs
and how it can be applied to DDEs. Some previous results
on the stability analysis of the θ-method are also provided
in Section II. Next, in Section III, we apply the θ-method
to approximate solutions of (1). Our results are presented
in Section IV. The steady-states of the DDE and of the
θ-method are the same, but their stability can vary. Under
the condition p > δ > 0, we show in Theorem 1 that the
zero equilibrium is unstable for the θ-method, as it is for
the DDE. For the positive equilibrium, we provide sufficient
conditions for the numerical solutions to be asymptotically
stable in Theorem 2 and Corollary 3. We show that the purely
implicit method is asymptotically stable independently of the
numerical step-size h, unlike the Euler method. In addition,
Theorem 4 deals with the nonlinear stability analysis of the
implicit numerical scheme. Finally, in the last section, we
present numerical experiments to support our theorems.

II. THE θ-METHOD FOR DDES AND PREVIOUS RESULTS

We start here by recalling some properties of the θ-method
for ODEs. Consider the IVP:

y′(t) = f(t, y(t)), y(t0) = y0, t > t0. (2)
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The general θ-method solving (2) is in the form

yn+1 = yn + h[(1− θ)f(tn, yn) + θf(tn+1, yn+1)], (3)

where n = 0, 1, 2, . . . , and h is the numerical step-size
and θ ∈ [0, 1] is a parameter. Here, yn = y(tn) where
tn = t0 + nh. The cases θ = 0, θ = 1/2, and θ = 1 corre-
spond to the (explicit) Euler method, the Trapezoidal scheme
and the implicit Euler method, respectively. Moreover, the
cases θ = 0 and θ = 1 are called one-leg θ-methods, [1].
Throughout this paper, we call the explicit Euler method, the
Euler method. In general monograph on numerical analysis,
such as [2]-[3], it is shown that the θ-method is convergent
for every θ ∈ [0, 1]. In addition, the method is of order two
for θ = 1/2, otherwise it is of order one.

Next, consider the nonlinear DDE:

y′(t) = f(t, y(t), y(t− τ)), t > 0, (4)

with the initial data

y(t) = φ(t), − τ ≤ t ≤ 0, (5)

where f : [0,∞) × R × R → R, y : R → R, τ ≥ 0,
and φ(t) ∈ R is a given initial function. Let h > 0 be the
numerical step-size, and k be the smallest integer greater
than or equal to τ/h. So, the delay τ can be written as

τ = h(k − ξ), (6)

where 0 ≤ ξ < 1. Then (6) gives the relation

tn − τ = tn−k + ξh,

which is held for the points tn = t0 + nh, n ≥ k.
Approximating the delayed argument in (4) with a linear
interpolation, the θ-method for (4) is:

yn+1 = yn+h(1−θ)f(tn, yn, y
τ
n)+hθf(tn+1, yn+1, y

τ
n+1),

(7)
where 0 ≤ θ ≤ 1, yn = y(tn), and

yτn = (1− ξ)yn−k + ξyn−k+1 (8)

is an approximated value of y(tn − τ).
For the simplest case, we set ξ = 0. Then h = τ/k ∈ Z+,

where k ∈ Z+. Hence, yτn in (8) becomes yτn = yn−k. In
this case the θ-method (7) becomes

yn+1 = yn + h(1− θ)f(tn, yn, yn−k)

+hθf(tn+1, yn+1, yn−k+1), (9)

which is the the general θ-method for a DDEs with
constant delay. Calvo and Grande [4] proved that the order
properties for ODEs extend to the case of DDEs with con-
stant delays. So the θ-method (9) has order two if θ = 1/2,
otherwise it is order one. Moreover it is also convergent for
every θ ∈ [0, 1].
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The stability analysis of the θ-method for DDEs has
been investigated by many authors. Barwell [5] studied the
numerical method for the linear DDE:

y′(t) = αy(t) + βy(t− τ), t > 0, (10)

where α and β are complex numbers. He also introduced
the concepts of P -stability and GP -stability for DDEs,
linked to the concept of A-stability in ODEs, to explain the
asymptotically stability regions for the numerical methods.
Later, papers on the stability of the θ-method for (10) have
been published, for examples [1], [4], [6], [7], dealing with
its linear stability. In addition, Torelli [8] has introduced the
PN -stability and GPN -stability for the test equation:

y′(t) = α(t)y(t) + β(t)y(t− τ), t > t0, (11)

which is a linear nonautonomous equation. His results in [8]
and [9] give sufficient conditions for the θ-method to be
PN and GPN -stable and provided the definitions of RN -
stability and GRN -stability in [8] for the general nonlinear
DDE:

y′(t) = f(t, y(t), y(t− τ)), t > t0, y(t) = φ(t), t ≤ t0,
(12)

Tian [10] also studied the RN -stability and GRN -stability
of the θ-method for a class of (12).

III. GENERAL CONCEPTS OF θ-METHODS FOR THE
NICHOLSON’S BLOWFLIES EQUATION

According to (9), the θ-method for the blowflies equation
(1) is

Nn+1 = Nn+h(1−θ)f(Nn, Nn−k)+hθf(Nn+1, Nn−k+1),
(13)

where θ ∈ [0, 1] and f(u, v) = −δu + pve−av . Then, after
rearranging, the numerical scheme for (1) can be written in
explicit form as

Nn+1 =
1− δh(1− θ)

1 + δhθ
Nn +

hp(1− θ)

1 + δhθ
Nn−ke

−aNn−k

+
hpθ

1 + δhθ
Nn−k+1e

−aNn−k+1 . (14)

The implicit numerical scheme is actually an explicit
difference equation. In case θ = 0, (14) is the Euler method:

Nn+1 = Nn + hpNn−ke
−aNn−k . (15)

The Euler method (15) is sometimes called the purely explicit
method for the blowflies equation. Next, if θ = 1/2, (14) is
the Trapezoidal scheme:

Nn+1 = Nn +
h

2

(
−δNn + pNn−ke

−aNn−k
)

+
h

2

(
−δNn+1 + pNn−k+1e

−aNn−k+1
)
.(16)

Finally, if θ = 1, (14) gives the (implicit) Euler method:

Nn+1 = Nn + h(−δNn+1 + pe−aNn−k+1Nn−k+1), (17)

or, the so called, the purely implicit method for the blowflies
equation [1].

Note that, after rearranging, (16) and (17) are actually
explicit schemes

Nn+1 =
1− δh/2

1 + δh/2
Nn +

hp/2

1 + δh/2
Nn−ke

−aNn−k

+
hp/2

1 + δh/2
Nn−k+1e

−aNn−k+1

and

Nn+1 =
1

1 + δh
Nn +

hp

1 + δh
Nn−k+1e

−aNn−k+1 ,

respectively.

IV. STABILITY ANALYSIS OF THE θ-METHOD FOR THE
NICHOLSON’S BLOWFLIES EQUATION

This section contains our main contributions on the anal-
ysis of the stability of the θ-method for the blowflies model
(1). We analyse the asymptotic stability of the numerical
scheme (14) when p > δ > 0. Our main results provide
sufficient conditions for the equilibria of (14) to be asymptot-
ically stable using the linearisation method. In addition, the
second part in this section, we give a proof for the nonlinear
stability analysis of the implicit Euler scheme (17).

A. Asymptotic stability of the θ-method

Consider the nonlinear DDE:

y′(t) = f(t, y(t), y(t− τ)), t > t0, y(t) = φ(t), t ≤ t0,
(18)

where f : [0,∞) × R+ × R+ → R+ and satisfies the
conditions

Re⟨f(t, y1, u)− f(t, y2, u), y1 − y2⟩ ≤ σ(t) |y1 − y2|2,
|f(t, y, u1)− f(t, y, u2)| ≤ γ(t) |u1 − u2|.

(19)
Note that when f satisfies the conditions (19), and σ(t), γ(t)
satisfy the conditions

σ(t) ≤ −β < 0, γ(t) ≤ −qσ(t), 0 ≤ q < 1, (20)

then any two solutions y1 = u(t) and y2 = v(t) of (18) with
different initial functions satisfy

lim
t→∞

∥u(t)− v(t)∥ = 0.

We expect that the numerical method has a similar behaviour.
A numerical method for DDEs is called an asymptotically

stable method if, when applied to (18) satisfying (19) and
(20), any two numerical solutions {un}∞n=1 and {vn}∞n=1

satisfy
lim
n→∞

∥un − vn∥ = 0,

where tn = nh, kh = τ, τ > 0 is a constant delay, and
k ∈ Z+.

In this part, we focus instead on the asymptotic stability
of the numerical solutions for the Nicholson’s blowflies
equation using the linearisation methods. Our results give
sufficient conditions for the numerical solutions to be asymp-
totically stable.

Consider the numerical scheme (14):

Nn+1 =
1− δh(1− θ)

1 + δhθ
Nn +

hpθ

1 + δhθ
Nn−k+1e

−aNn−k+1

+
hp(1− θ)

1 + δhθ
yn−ke

−aNn−k .
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It is not difficult to see that if p > δ, there exist two
equilibria: the zero equilibrium N̄0 = 0, and the positive
equilibrium N̄+ = 1

a ln p
δ . Next, we investigate the asymp-

totic stability of the equilibria of (14). Let us first consider
the linearisation of (14) about an equilibrium N̄ . We get the
linearised equation

xn+1 =
1− δh(1− θ)

1 + δhθ
xn +

hpθ(1− aN̄)e−aN̄

1 + δhθ
xn−k+1

+
hp(1− θ)(1− aN̄)

1 + δhθ
xn−k. (21)

We start with the stability analysis of the zero equilibrium
N̄0.

Theorem 1. Assume that p > δ > 0, then N̄0 = 0 is unstable
for all h > 0.

Proof: At the zero equilibrium N̄0 = 0, (21) becomes

xn+1 =
1− δh(1− θ)

1 + δhθ
xn +

hpθ

1 + δhθ
xn−k+1 +

hp(1− θ)

1 + δhθ
xn−k.

(22)
Its characteristic equation is

λk+1 − 1− δh(1− θ)

1 + δhθ
λk − hpθ

1 + δhθ
λ− hp(1− θ)

1 + δhθ
= 0. (23)

When λ = 1, the left-hand side of (23) is negative, equal
to h(δ−p)

1+δhθ . Because the left-hand side blows-up as λ → ∞,
there is a real root larger than 1. Hence the zero equilibrium
N̄0 is unstable.

Next, we consider the stability properties of the positive
equilibrium N̄+.

Theorem 2. Let p, δ, a > 0, and 1 < p/δ ≤ e2.
1) If θ ̸= 1 and h is sufficiently small, i.e.

hδ(1− θ) ≤ 1, (24)

the positive equilibrium N̄+ of (14) is asymptotically
stable.

2) If 1/2 ≤ θ ≤ 1 and the condition

hδ(1− θ)
∣∣∣1− ln

p

δ

∣∣∣ ≤ 1 (25)

holds, the positive equilibrium N̄+ of (14) is asymp-
totically stable.

Proof: At the positive equilibrium N̄+ = 1
a ln(p/δ), the

linearised equation of (21) is

xn+1 =
1− δh(1− θ)

1 + δhθ
xn +

δhθ(1− ln(p/δ))

1 + δhθ
xn−k+1

+
hδ(1− θ)(1− ln(p/δ))

1 + δhθ
xn−k.

The characteristic equation is

λk+1 − 1− δh(1− θ)

1 + δhθ
λk − δhθ(1− ln(p/δ))

1 + δhθ
λ

−hδ(1− θ)(1− ln(p/δ))

1 + δhθ
= 0.

When ∣∣∣∣1− δh(1− θ)

1 + δhθ

∣∣∣∣+ ∣∣∣∣δhθ(1− ln(p/δ))

1 + δhθ

∣∣∣∣
+

∣∣∣∣hδ(1− θ)(1− ln(p/δ))

1 + δhθ

∣∣∣∣ ≤ 1, (26)

the numerical method (14) is stable. We will next consider
the conditions in which (26) holds. The condition 0 < p/δ ≤
e2 is equivalent to the inequality |1 − ln(p/δ)| ≤ 1. We
discuss (26) by breaking it into two cases: δh(1 − θ) > 1
and 0 ≤ δh(1− θ) ≤ 1.

Case I: δh(1− θ) > 1.
From (26), it yields∣∣∣∣1− δh(1− θ)

1 + δhθ

∣∣∣∣+∣∣∣∣δhθ(1− ln(p/δ))

1 + δhθ

∣∣∣∣+∣∣∣∣hδ(1− θ)(1− ln(p/δ))

1 + δhθ

∣∣∣∣
=

1− δh(1− θ) + (δhθ + hδ(1− θ)) |1− ln(p/δ)|
1 + δhθ

≤ 1− δh(1− θ) + δhθ + δh(1− θ)

1 + δhθ
= 1.

So it can be seen that when h is sufficiently small, i.e.
hδ ≤ 1/(1−θ), the numerical method (14) is asymptotically
stable. The proof of the statement (1) is now complete.

Case II: 0 ≤ δh(1− θ) ≤ 1.
We assume that

1

2
≤ θ ≤ 1 and δh(1− θ)

∣∣∣1− ln
p

δ

∣∣∣ ≤ 1.

Then we have∣∣∣∣1− δh(1− θ)

1 + δhθ

∣∣∣∣+∣∣∣∣δhθ(1− ln(p/δ))

1 + δhθ

∣∣∣∣+∣∣∣∣hδ(1− θ)(1− ln(p/δ))

1 + δhθ

∣∣∣∣
=

−1 + δh(1− θ) + δh|1− ln(p/δ)|
1 + δhθ

=
δh+ δh|1− ln(p/δ)|

1 + δhθ
− 1 ≤ 1. (27)

We will next prove that (27) holds under the condition
(25). Let 1/2 ≤ θ ≤ 1, and consider the inequality
δh|1− ln(p/δ)|(1− θ) ≤ 1, so

δh
∣∣∣1− ln

p

δ

∣∣∣ (2− 2θ) ≤ 2,

then

δh
∣∣∣1− ln

p

δ

∣∣∣ ≤ 2 + (2θ − 1)δh
∣∣∣1− ln

p

δ

∣∣∣ .
For θ ≥ 1/2, and |1− ln(p/δ)| ≤ 1, we have

δh
∣∣∣1− ln

p

δ

∣∣∣ ≤ 2 + (2θ − 1)δh.

Thus, it is easy to verify that

δh+ δh |1− ln(p/δ)|
1 + δhθ

≤ 2.

As a result, we can conclude that if 0 ≤ p/δ ≤ e2 and (25)
also holds, then (27) holds. This finishes the proof of the
statement (2).

Clearly, (25) is an improvement of (24), because |1 −
ln(p/δ)| < 1 when 1 < p/δ < e2 for 1/2 ≤ θ < 1.
In addition, in Theorem 2, it can be seen that if θ = 1,
(25) obviously holds independently from the step-size h.
Therefore we can conclude about the stability of the implicit
Euler method.

Corollary 3. If 1 < p/δ ≤ e2, then the numerical solution
of the implicit Euler method (17) is asymptotically stable for
all h > 0.

Note that Corollary 3 means that when 1 < p/δ ≤ e2,
the positive equilibrium N̄+ attracts all numerical solutions
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even though the step-size h is big. On the contrary, from
Theorem 2, the other methods (0 ≤ θ < 1) have a
limitation on the numerical step-size h. For example, a
sufficient condition of h for the Euler method (θ = 0) to be
asymptotically stable is that h < 1/δ. For the Trapezoidal
method (θ = 1/2), a sufficient condition is h < 2/δ. Hence,
when θ is bigger, the value of the step-size h for stability is
also bigger. However, in practice, since we use the numerical
step size h = τ/k, for k ∈ Z+, the maximum value of h for
the numerical simulation is τ (k = 1).

B. Nonlinear Stability of the Implicit Euler Method

Consider the following IVP:

y′(t) = f(t, y(t), y(t− τ)), t > 0, y(t) = φ(t), t ≤ 0,
(28)

where f satisfies the conditions (19). Here, σ(t) and γ(t)
satisfy

σ(t) ≤ 0, γ(t) ≤ −σ(t), (29)

for all t ≥ 0. Suppose that y(t) and z(t) are solutions of (28)
with different initial functions φ1(t) and φ2(t), respectively.
If the conditions (19) and (29) hold, then y(t) and z(t) satisfy

∥y(t)− z(t)∥ ≤ max
t≤0

∥φ1(t)− φ2(t)∥.

Here, we expect that any two numerical solutions have a
similar bound, i.e.

∥yn − zn∥ ≤ max
t≤0

∥φ1(t)− φ2(t)∥, (30)

which is the concept of RN -stability and GRN -stability.
The condition (30) makes the numerical solution preserve
the contractivity properties of the analytical solution. In other
word, we can say that, if the condition (30) is satisfied, the
numerical solution is bounded and does not move away from
its analytical solutions. In Jiaoxun and Yuhao [3], pp 193, it is
stated that the θ-method for DDEs is GRN -stable (and hence
RN -stable) if and only if θ = 1. Here, we show that the
implicit Euler method (θ = 1) for the Nicholson’s blowflies
equation (1)

Nn+1 = Nn + h(−δNn+1 + pe−aNn−k+1Nn−k+1) (31)

satisfies the condition (30) by using similar techniques than
in [3].

Theorem 4. Let p > δ > 0. Assume that {yn}∞n=1 and
{zn}∞n=1 are two solutions of the implicit Euler method (31)
with different initial functions φ1(t) and φ2(t), respectively.
Then, for all h > 0,

∥yn − zn∥ ≤ max
t≤0

∥φ1(t)− φ2(t)∥.

Proof: Here, we use similar techniques as in [3] to prove
the result. Consider the two difference equations

yn+1 = yn + (−hδyn+1 + hpe−ayn−k+1yn−k+1),(32)
zn+1 = zn + (−hδzn+1 + hpe−azn−k+1zn−k+1).(33)

Let εn = yn − zn, then, from (32) and (33), we have

εn+1 = εn + (−hδεn+1 + hp∆g), (34)

where

∆g = e−ayn−k+1yn−k+1 − e−azn−k+1zn−k+1.

Take norms both sides of (34), we have

∥εn+1∥2 = ∥εn + (−hδεn+1 + hp∆g)∥2

= ∥εn∥2 + 2Re ⟨εn,−hδεn+1 + hp∆g⟩
+h2p2∥ − hδεn+1 + hp∆g∥2.(35)

From (34), εn = εn+1 +hδεn+1 −hp∆g, then (35) leads to
the inequality

∥εn+1∥2 ≤ ∥εn∥2 + 2h∥εn+1∥ (p∥∆g∥ − δ∥εn+1∥) .

For p > δ, we have

∥εn+1∥2 ≤ ∥εn∥2 + 2hp∥εn+1∥ (∥∆g∥ − ∥εn+1∥) . (36)

We shall prove that

∥εn∥ ≤ S, where S = max
t≤0

∥φ1(t)− φ2(t)∥.

Suppose that for any n ≤ j (j ≥ 0), ∥εn∥ ≤ S.
Case I: if ∥εj+1∥ ≤ ∥εj∥, then ∥εj+1∥ ≤ S.
Case II: if ∥εj+1∥ > ∥εj∥, then (36) produces

0 < ∥εj+1∥2 − ∥εj∥2 ≤ 2hp∥εj+1∥ (∥∆g∥ − ∥εj+1∥) .
(37)

Consider ∥∆g∥ and use the mean-value theorem. We have

∥∆g∥ = |g′(ξ)|∥yj−k+1 − zj−k+1∥ = |g′(ξ)|∥εj−k+1∥,

where ξ is a point between yj−k+1 and zj−k+1. Now, (37)
can be rewritten as

0 < ∥εj+1∥2−∥εj∥2 ≤ 2hpQ∥εj+1∥ (∥εj−k+1∥ − ∥εj+1∥) ,

where
Q = max{1, |g′(ξ)|}.

Because 2hpQ > 0, then ∥εj−k+1∥ − ∥εj+1∥ > 0. So, we
have

∥εj+1∥ < ∥εj−k+1∥ ≤ S,

for k ≥ 1. Now we can conclude that ∥εn∥ ≤ S, i.e.

∥εn∥ = ∥yn − zn∥ ≤ S,

for all n ≥ 1. Thus it follows that the implicit Euler method
(31) is bounded by S = maxt≤0 ∥φ(t)− φ(t)∥, for all h >
0.

Note that Theorem 4 shows that the implicit Euler method
is contractive for all numerical step-size h > 0, i.e. the
numerical solutions will not move away as time tends to
infinity. In other word, we can say that the implicit Euler
method is bounded by the initial conditions and its stability
is independent on the step-size h.

V. NUMERICAL EXAMPLES

In this section we present some numerical examples per-
formed using the θ-method. The examples given here are
mainly focused on three methods: the explicit Euler method
(θ = 0), the Trapezoidal scheme (θ = 0.5) and the implicit
Euler method (θ = 1).

First, Figures 1 and 2 compare the numerical solutions
from the Euler method, the Trapezoidal scheme, and the
implicit Euler method with a small numerical step-size
(h = 0.01). Here, the step-size h satisfies the conditions on
Theorem 1 and Theorem 2. In Figure 1 we use p = 2.0, δ =
1.1, a = 2.0, τ = 1.0, and the initial data φ(t) = 0.5, t ≤ 0.
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The results show that the numerical solutions for all methods
are similar. They are monotone decreasing and converge
to the equilibrium N̄ = 0.2989. In Figure 2, we use
different parameter values p = e2, δ = 1.1, a = 2.0 and
τ = 3.5. The initial function is the same as in Figure 1,
i.e. φ(t) = 0.5, t ≤ 0. Again, the numerical solutions
from all methods are similar but their behaviour is different.
They oscillate at the beginning before they converge to the
equilibrium N̄ = 0.9523. The differences here are caused
by the ratio p/δ. In Figure 1, the ratio 1 < p/δ < e, so the
solutions are monotone. In contrast, the ratio in Figure 2 is
close to but less than e2, so the solutions oscillate about the
equilibrium and they are asymptotically stable.

0 5 10 15 20 25 30 35 40
0.25

0.3

0.35

0.4

0.45

0.5

 time (t) 

  
N

(t
)

Fig. 1. Numerical examples of the θ-methods for the Nicholson’s blowflies
equation (1) when p = 2.0, δ = 1.1, a = 2.0, τ = 1.0 and h = 0.01.

Next, we increase the numerical step-size to h = 3.5.
In this case, h does not satisfy the condition in Theorem 2
for the Euler method, but it satisfies it for the Trapezoidal
scheme and the implicit Euler method. As the result, the
numerical solutions from the Euler method cannot be per-
formed when h is too large. Figure 3 illustrates the difference
on the numerical solutions between the Trapezoidal scheme
(Figure 3(a)) and the implicit Euler method (Figure 3(b))
with the same parameter values as in Figure 2. Here, we
can see that both solutions are asymptotically stable and
converge to the equilibrium N̄ = 0.9523 as t tends to
infinity. However, when we compare the results with the
smaller h in Figure 2, the Trapezoidal scheme approximates
the exact solution better than the implicit Euler method.
This is because the Trapezoidal scheme is order two on the
approximation, while the implicit Euler method is only of
order one.

Finally, Figure 4 and Figure 5 represent the numerical
solutions obtained from the implicit Euler method. From
Theorem 4, we know that all numerical solutions from the
implicit Euler method are bounded by the initial conditions.
In addition, Corollary 3 states that if 1 < p/δ < e2, all
solutions of the implicit Euler method are asymptotically
stable. The results in both Figure 4 and Figure 5 support
Corollary 3 and Theorem 4. However, like with general
numerical approximations, when the step-size h is bigger,
the numerical approximations are less accurate.
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Fig. 3. Numerical examples of the θ-methods for the Nicholson’s blowflies
equation (1) when p = e2, δ = 1.1, a = 2.0 and h = τ = 3.5; where (a)
θ = 0.5 and (b) θ = 1.
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Fig. 4. Numerical examples of the θ-methods for the Nicholson’s blowflies
equation (1) when p = 300, δ = 50, a = 2.0 and τ = 1.0; where (a)
h = 0.01, (b) h = 1.0.
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Fig. 5. Numerical examples from the implicit Euler method for(1) with
different values of h when p = e2, δ = 1.2, a = 2.0, τ = 10; where (a)
h = 0.01, (b) h = 0.1, (c) h = 1 and (d) h = 10.
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