
On Dynamic Cumulative Residual Inaccuracy
Measure

HC Taneja and Vikas Kumar ∗

Abstract—An alternate measure of entropy based
on distribution function rather than the density func-
tion of a random variable X, called the cumulative
residual entropy (CRE) was proposed by Rao et al.
(2004). In this communication the concept of CRE
has been extended to cumulative residual inaccuracy
(CRI) and then to a dynamic version of it. A char-
acterization problem for the proposed dynamic inac-
curacy measure has been studied under proportional
hazard model. Three specific lifetime distributions
exponential, Pareto and the finite range have been
characterized using the proposed dynamic inaccuracy
measure.
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1 Introduction

Let X and Y be two non-negative random variables
representing time to failure of two systems with p.d.f.
respectively f(x) and g(x). Let F (x) = P (X ≤ x)
and G(Y ) = P (Y ≤ y) be failure distributions, and
F̄ (x) = 1− F (x), Ḡ(x) = 1−G(x) be survival functions
of X and Y respectively . Shannon’s (1948) measure of
uncertainty associated with the random variable X and
Kerridge measure of inaccuracy (1961) are given by

H(f) = −
∫ ∞

0

f(x) log f(x)dx . (1)

and

H(f ; g) = −
∫ ∞

0

f(x) log g(x)dx . (2)

respectively. In case g(x) = f(x), then (2) reduces to (1).

The measures (1) and (2) are not applicable to a
system which has survived for some unit of time.
Ebrahimi (1996) considered the entropy of the residual
lifetime Xt = [X − t|X > t] as a dynamic measure of
uncertainty given by

H(f ; t) = −
∫ ∞

t

f(x)

F̄ (t)
log

f(x)

F̄ (t)
dx . (3)
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Extending the dynamic measure of information, a dy-
namic measure of inaccuracy, refer to Taneja et al. (2009)
is given as

H(f, g; t) = −
∫ ∞

t

f(x)

F̄ (t)
log

g(x)

Ḡ(t)
dx . (4)

Rao et al. (2004) introduced an alternate measure of en-
tropy called cumulative residual entropy(CRE) of a ran-
dom variable X defined as

ξ(F ) = −
∫ ∞

0

F̄ (x) log F̄ (x)dx , (5)

where F̄ (x) = 1− F (x) is the survival function.

This measure is based on cumulative distribution
function (CDF) rather than probability density function,
and is thus, in general more stable since the distribution
function is more regular because it is defined in an
integral form unlike the density function which is defined
as the derivative of the distribution. Some general
results regarding this measure have been studied by
Rao (2005), Drissi et al. (2008) and Navarro et al. (2009).

Asadi and Zohrevand (2007) have defined the dy-
namic cumulative residual entropy (DCRE) as the
cumulative residual entropy of the residual lifetime
Xt = [X − t|X > t]. This is given by

ξ(F ; t) = −
∫ ∞

t

F̄ (x)

F̄ (t)
log

F̄ (x)

F̄ (t)
dx . (6)

In this communication in Section 2, we define a cu-
mulative residual inaccuracy measure. In Section 3,
we propose a dynamic cumulative residual inaccuracy
measure. In Section 4, we prove that dynamic measure
determines the lifetime distribution functions uniquely,
and characterize three specific lifetime distributions in
this context.

2 Cumulative Residual Inaccuracy

If F̄ (x) and Ḡ(x) are survival functions of lifetime ran-
dom variables X and Y respectively, then the cumulative
residual inaccuracy (CRI) is defined as

ξ(F ;G) = −
∫ ∞

0

F̄ (x) log Ḡ(x)dx . (7)
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When these two distributions coincide, the measure (7)
reduces to the cumulative residual entropy (5).

If the two random variables X and Y satisfy the
proportional hazard model (PHM), refer to Cox (1959)
and Efron (1981), that is, if λG(x) = βλF (x), or
equivalently

Ḡ(x) = [F̄ (x)]β , (8)

for some constant β > 0, then obviously the cumulative
residual inaccuracy (7) reduces to a constant multiple of
the cumulative residual entropy (5).

Example 2.1 Let X be a non-negative random
variable with p.d.f.

fX(x) =

{
2x ; if 0 ≤ x < 1
0 ; otherwise

and survival function F̄ (x) = 1 − F (x) = (1 − x2), and
let the random variable Y be uniformly distributed over
(0, 1), then its density and survival functions are respec-
tively given by

gY (x) = 1 and ḠY (x) = 1− x , 0 < x < 1.

Substituting these in (7) , we obtain the cumulative resid-
ual inaccuracy as

ξ(F,G) =
7

18
.

Example 2.2 Let a non-negative random variable X be
uniformly distributed over (a, b), a < b, with density and
distribution functions respectively given by

f(x) =
1

b− a
and F (x) =

x− a

b− a
, a < x < b.

If the random variables X and Y satisfy the proportional
hazard model (PHM), then the distribution function of
the random variable Y is

Ḡ(x) = [F̄ (x)]β =

[
b− x

b− a

]β
a < x < b, β > 0.

Substituting these in (7) and simplifying we obtain the
cumulative inaccuracy measure as

ξ(F ;G) =
β(b− a)

4
. (9)

3 Dynamic Cumulative Residual Inaccu-
racy

In life-testing experiments normally the experimenter has
information about the current age of the system under
consideration. Obviously the CRI measure (7) defined
above is not suitable in such a situation and should be
modified to take into account the current age also. Fur-
ther, if X is the lifetime of a component, which has al-
ready survived upto time t, then the random variable

Xt = [X − t|X > t] called the residual lifetime random
variable has the survival function

F̄t(x) =

{
F̄ (x)

F (t)
; if x > t

1 ; otherwise

and similarly for Ḡt(x). Thus the cumulative inaccuracy
measure for the residual lifetime distribution is given by

ξ(F,G; t) = −
∫ ∞

t

F̄t(x) log Ḡt(x)dx (10)

= −
∫ ∞

t

F̄ (x)

F (t)
log

Ḡ(x)

G(t)
dx . (11)

Obviously when t = 0, then (11) becomes (7).

Example 3.1 Let X be a non-negative random
variable with p.d.f.

fX(x) =

{
2x ; if 0 ≤ x < 1
0 ; otherwise

and the survival function F̄ (x) = 1 − F (x) = (1 − x2),
and let the random variable Y be uniformly distributed
over (0, 1) with density and survival functions given re-
spectively by

gY (x) = 1 and ḠY (x) = 1− x , 0 < x < 1.

Substituting these values in (11) , we obtain the dynamic
cumulative residual inaccuracy measure as

ξ(F,G; t) =

(
9(1− t)− 2(1− t)2

18(1 + t)

)
.

Example 3.2 Let X and Y be two non-negative random
variables with survival functions F̄ (x) = (x+1)e−x, x >
0 and Ḡ(x) = e−2x, x > 0. Substituting these values in
(11), we obtain

ξ(F,G; t) =

(
6 + 2t

t+ 1

)
.

Taking limit as t → 0, we obtain

lim
t→0

ξ(F,G; t) = ξ(F,G) = 6.

4 Characterization Problem

The general characterization problem is to determine
when the proposed dynamic inaccuracy measure (11)
characterizes the distribution function uniquely. It is

known that the hazard rate λF (t) =
f(t)
F̄ (t)

and the mean

residual life function mF (t) =

∫ ∞

t
F (x)dx

F (t)
characterize the

distribution and the relation between the two is given by

λF (t) =
1 +m′

F (t)

mF (t)
. (12)
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We study the characterization problem under the pro-
portional hazard model (8).

Theorem 4.1 Let X and Y be two non negative
random variables with survival functions F̄ (x) and
Ḡ(x) satisfying the proportional hazard model (8). Let
ξ(F,G; t) < ∞,∀ t ≥ 0 be an increasing function of t,
then ξ(F,G; t) uniquely determines the survival function
F̄ (x) of the variable X.
Proof. Rewriting (11) as

ξ(F,G; t) = − 1

F (t)

∫ ∞

t

F̄ (x) log Ḡ(x)dx+mF (t) log Ḡ(t) ,

(13)
where mF (t) is the mean residual life function. Substi-
tuting (8) into (13) gives

ξ(F,G; t) = − β

F (t)

∫ ∞

t

F̄ (x) log F̄ (x)dx+βmF (t) log F̄ (t) .

Differentiating this w.r.t. t both sides, we obtain

ξ′(F,G; t) = β log F̄ (t)[1 +m′
F (t)]− βλF (t)mF (t)

−βλF (t)

∫ ∞

t

F̄ (x)

F (t)
log F̄ (x)dx , (14)

where λF (t) is hazard rate function. Substituting (12)
and (13) in (14) we obtain

ξ′(F,G; t) = λF (t){ξ(F,G; t)− βmF (t)} . (15)

Let F1, G1 and F2, G2 be two sets of the probability
distribution functions satisfying the proportional haz-
ard model, that is, λG1(x) = βλF1(x), and λG2(x) =
βλF2(x), and let

ξ(F1, G1; t) = ξ(F2, G2; t) ∀ t ≥ 0 . (16)

Differentiating it both sides w.r.t. t, and using (15), we
obtain

λF1(t){ξ(F1, G1; t)−βmF1(t)} = λF2(t){ξ(F2, G2; t)−βmF2(t)}.
(17)

If for all t ≥ 0, λF1(t) = λF2(t), then F̄1(t) = F̄2(t) and
the proof will be over, otherwise, let

A = {t : t ≥ 0, and λF1(t) ̸= λF2(t)} (18)

and assume the set A to be non empty . Thus for some
t0 ∈ A, λF1(t0) ̸= λF2(t0). Without loss of generality
suppose that λF2(t0) > λF1(t0). Using this, (17) for t = t0
gives

ξ(F1, G1; t0)− βmF1(t0) > ξ(F2, G2; t0)− βmF2(t0),

which implies that

mF1(t0) < mF2(t0),

a contradiction. Thus the set A is empty set and this
concludes the proof.

Next, we give the characterization theorem.

Theorem 4.2 Let X and Y be two non-negative
continuous random variables satisfying the PHM (8). If
X is with mean residual life mF (t), then the dynamic
cumulative residual inaccuracy measure

ξ(F,G; t) = c mF (t), c > 0 (19)

if, and only if
(i) X follows the exponential distribution for c = β,
(ii) X follows the Pareto distribution for c > β,
(iii) X follows the finite range distribution for 0 < c < β.

Proof. First we prove the ’if’ part.
(i) If X has exponential distribution with survival func-
tion F̄ (x) = exp(−θx), θ > 0, then the mean residual life
function mF (t) = 1

θ . The dynamic cumulative residual
inaccuracy measure (11) under PHM is given as

ξ(F,G; t) =
β

θ
= cmF (t),

for c = β.

(ii) If X follows Pareto distribution with p.d.f.

f(x) =
aba

(x+ b)a+1
, a > 1, b > 0,

then the survival function is

F̄ (x) = 1− F (x) =
(
1 +

x

b

)−a

=
ba

(x+ b)a
,

and the mean residual life is

mF (t) =

∫∞
t

F̄ (x)dx

F̄ (t)
=

t+ b

a− 1
. (20)

The dynamic cumulative inaccuracy measure (11), under
PHM is given by

ξ(F,G; t) =
βa(t+ b)

(a− 1)2
= cmF (t) ,

for c = βa
a−1 > β.

(iii) In case X follows finite range distribution with
p.d.f.

f(x) = a(1− x)a−1, a > 1, 0 ≤ x ≤ 1,

then the survival function is

F̄ (x) = 1− F (x) = (1− x)a,

and the mean residual life is

mF (t) =
1− t

a+ 1
.
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The inaccuracy measure (11) under PHM is given by

ξ(F,G; t) =
βa(1− t)

(a+ 1)2
= cmF (t) ,

for c = βa
a+1 < β.

This proves the ’if’ part.

To prove the only if part, consider (19) to be valid.
Using (13) under PHM, it gives

− β

F (t)

∫ ∞

t

F̄ (x) log F̄ (x)dx+βmF (t) log F̄ (t) = cmF (t) .

Differentiating it both sides w.r.t. t, we obtain

c

β
m′

F (t) = m′
F (t) log F̄ (t)− λF (t)mF (t) + log F̄ (t)

−λF (t)
1

F̄ (t)

∫ ∞

t

F̄ (x) log F̄ (x)dx,

= m′
F (t) log F̄ (t)− λF (t)mF (t) + log F̄ (t)

+λF (t)[
c

β
mF (t)−mF (t) log F̄ (t)] .

From (12) put m′
F (t) = λF (t)mF (t)− 1 and simplify, we

obtain
λF (t)mF (t) =

c

β
,

which implies

m′
F (t) =

c

β
− 1 .

Integrating both sides of this w.r.t. t over (0, x) yields

mF (x) = (
c

β
− 1)x+mF (0). (21)

The mean residual life function mF (x) of a continuous
non-negative random variable X is linear of the form
(21) if, and only if the underlying distribution is expo-
nential for c = β, Pareto for c > β, or finite range
for 0 < c < β, refer to Hall and Wellner (1981). This
completes the theorem.

Conclusion By considering the concept of cumula-
tive residual inaccuracy and extending it to its dynamic
version, we have characterized certain specific life-time
distributions functions like exponential, Pareto and
the finite range distributions which play a vital role in
reliability modeling. Also the results reported generalize
the existing results in context with cumulative residual
entropy.
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