
 

 
Abstract— No-wait flowshop scheduling is a constrained 

flow shop scheduling problem that exists widely in 
manufacturing systems. This paper considers minimization of 
makespan (total completion time) for n number of jobs to be 
processed on m machines using a general purpose spreadsheet 
based genetic algorithm (GA). The proposed approach solution 
is compared with already published problems in the literature. 
The proposed approach produces optimal solution for all cases. 
Additionally it is also shown that any objective function can be 
minimised using the same model without changing the logic of 
the GA routine. 
 

Index Terms—Genetic Algorithms, No-wait, Makespan, 
Scheduling, Flowshop. 

I. INTRODUCTION 

Scheduling of manufacturing systems is an important 
aspect for any enterprise to maintain a competitive position 
in fast-changing markets, hence it is important to develop 
effective, efficient advanced manufacturing & scheduling 
technologies and approaches The goal of scheduling is to 
maximize (or minimize) different criteria of a facility such 
as makespan, flow time, total tardiness etc.  

The flowshop scheduling problem is an important 
scheduling problem which been extensively studied since it 
was proposed in 1954 by Johnson [1]. A detailed review of 
flowshop scheduling research is given by Stafford [2].  

In this paper we present a spreadsheet based GA 
approach to minimize the makespan for a no-wait flowshop 
scheduling problem. 

The rest of the paper is organised as follows: Section II 
reviews the no-wait flowshop scheduling problem (FSSP), 
followed by problem and assumptions in Section III. 
Section IV gives the GA details as implemented in this 
paper. Experimental results are given in Section 4. The last 
section of the paper presents conclusions. 

II. LITERATURE REVIEW 

No-wait flow shop scheduling problems have been most 
commonly studied with two optimization (minimization) 
criteria: total flow time and makespan. According to the 
research work by Garey and Johnson [3], the no-wait FSSP 
is NP-hard even for the two machine case. Similarly Rock 
[4] proved that no-wait FSSP with makespan criterion is 
NP-hard. Due to its significance in various applications: 
both theory and industry, the no-wait FSSP has attracted the 
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attention by many researchers. 
In many flow shops, there may be a constraint that once 

the processing of a job begins, subsequent processes of that 
job must be carried out without any delay. If necessary, the 
start of job processing can be delayed on the first machine 
so that the job need not wait for processing on the 
subsequent machines. Such a flow shop can be termed a 
‘constrained flow shop’ or ‘no-wait flow shop’. Examples 
of this type of shop occur in hot metal rolling industries. In 
this process, a heated slab is rolled through a series of 
rolling mills in which the slab thickness, or gauge, is 
successively reduced to some final specification. In this kind 
of processing, the slab must pass directly from one rolling 
mill to the next rolling mill in the sequence without any 
waiting, as such waiting would result in cooling the slab to 
such a temperature that the metal could not be rolled easily. 
Some other examples of this situation arise in chemical or 
metal processing industries. The no-wait situation also 
occurs in a production environment where there is a lack of 
storage between the machines. This is the case in JIT 
production lines where the flow of jobs is continuous with 
no in process inventory. 

Hall and Sriskandarajah [5] give a detailed survey of the 
research and applications of no-wait flow shop scheduling 
problem.  

Makespan criterion can be defined as completion time at 
which all jobs complete processing or equivalently as 
maximum completion time of jobs. A review of flowshop 
scheduling with makespan criterion has been given be 
Hijazi and Shaghafian [6]. The no-wait flowshop problem 
with makespan criterion has been considered by [7]-[23].  

III. PROBLEM AND ASSUMPTIONS 

The no-wait flow shop scheduling problem is described 
as follows [24]: Each of n jobs from set J={1,2,....., n} will 
be sequenced through m machines (k=1,2,..., m). Job j∈J 
has a sequence of m operations (oj1, oj2,...., ojm). Operation 
ojk corresponds to the processing of job j on machine k 
during an un-interrupted process time of p(j, k). At any 
given time, each machine can process at most one job and 
each job can be processed on at most one machine. In order 
to follow the no-wait restriction, the completion time of the 
operation ojk must be equal to the earliest start time of the 
operation oj,k+1 for k=1,2,....., m-1. In other words, there 
must be no waiting time between processing of any 
consecutive operations of each of n jobs. The problem is to 
find a schedule such that the processing order of jobs is the 
same on each machine and the maximum completion time 
so called makespan is minimized. 
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Some commonly used assumptions in the deterministic 
no-wait flow shop problem are (i) known and deterministic 
process times on all machines, (ii) no pre-emption allowed, 
and (iii) jobs follow the same technological order of 
machines without any interruption either on or between 
them for each job. 

IV. GENETIC ALGORITHMS 

Genetic algorithm is a bio-inspired method that is 
applicable in continuous as well as discrete optimization and 
has shown excellent performance in various scheduling 
problems. Unlike other metaheuristics, in a GA a set of 
solutions is kept during the optimization process. This set is 
called population and each individual in the set represents 
an solution to the problem. The population is then evaluated 
and all individuals are assigned a fitness value with the idea 
that a higher fitness value should be assigned to better 
individuals. As in natural evaluation of species, the 
population undergoes a series of operations. Individuals in 
the population evolve during generations until some 
stopping criterion is met. In a particular generation, firstly 
individuals from the current population are selected by a 
selection mechanism. Thus, fitter individuals have a more 
chance of being selected. Selected individuals then undergo 
crossover process where they mate, thus producing new 
individuals. Crossover operator generates better solutions 
that are biased by the good solutions represented by the 
parents. In order to create diversity in population, the newly 
produced individuals mutate in an effort to include a 
possibility of visiting any possible solution in the search 
space. After each generation, new individuals are recreated 
and the new population is again evaluated. The whole 
process is then repeated. 

A detailed introduction to Gas is given in Goldberg [25]. 
The earliest application of GA has been reported by Davis 
[26]. For a recent review of GA application in scheduling is 
given in Chaudhry and Drake [27] and Chaudhry [28]. 

In this paper we use a commercial GA package 
EVOLVER™ [29], which functions as an add-in to 
Microsoft Excel™. The model for no-wait FSSP is built in 
Microsoft Excel using the spreadsheet’s built in functions. 
Within the familiar spreadsheet environment, Evolver 
generates a number of trial solutions and uses genetic 
algorithms to continually improve results of each trial. Each 
possible solution then becomes an independent "organism" 
that can "breed" with other organisms. The spreadsheet 
model acts as an environment for this population of 
solutions, determining which are "fit" enough to survive 
based on their results. The objective function, variables, and 
the constraints are readily specified by highlighting the 
corresponding spreadsheet cells. Fig. 1 illustrates the 
Evolver-spreadsheet integration. 

The advantage of the proposed method is that the 
program runs in the background freeing the user to work in 
the foreground. Moreover, the familiar layout of the 
spreadsheet software makes it easier for the user to use the 
software and the presentation of data in tables makes it 
easier for the user to carry out what-if analysis. 
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as an "add-in" 
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Fig. 1: Evolver- spreadsheet Integration 

 

A. Chromosome Representation 

For no-wait FSSP, we use permutation representation 
where each job represents each gene. For example, in a flow 
shop with five jobs i.e. A-B-C-D-E, one chromosome 
according to permutation representation could be A-C-B-E-
D, while another could be E-D-C-B-A. 

 

B. Reproduction/Selection 

Evolver uses a steady state approach. The steady-state 
method selects two chromosomes according to the selection 
procedure, performing crossover to obtain one child, 
perhaps applying mutation as well, and installs the result 
back into that population; the least fit of the population is 
destroyed. 

As far as parent selection is concerned, in Evolver, 
parents are chosen using a rank-based mechanism. In this 
method, rather than absolute fitness, the selection 
probabilities are based on a chromosome’s relative rank or 
position in the population. In rank-based fitness, population 
is sorted according to the objective values. The fitness 
assigned to each individual depends only on its position in 
the individual rank and not on the actual objective value. 

 

C. Crossover Operator 

The crossover operator is the most important in GA. 
Traditionally, crossover is a process yielding recombination 
of bit strings via an exchange of segments between pairs of 
chromosomes. For the no-wait FSSP, we needed to handle 
permutation representation; the “Order Solving Method” of 
Evolver was used. This method applies order crossover 
operator [26]. An offspring is built by choosing a 
subsequence from one parent and preserving the relative 
order of jobs from the other. . For example, the two parents 

[P1] = ( 5 7 | 2 1 9 3 | 6 8 4 ) and 
[P2] = ( 8 6 | 3 7 1 5 | 4 2 9 ) 
 
First, the segments between cut points are copied into 

offspring 
[O1] = ( _ _ 2 1 9 3 _ _ _ ) and 
[O2] = ( _ _ 3 7 1 5 _ _ _ ) 
 
Next, starting from the second cut point of [P1] parent, 

the jobs from the other parent are copied, except which are 
already in offspring [O1], we get 4-8-6-7-5. This sequence 
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is placed in the first offspring. 
[O1] = (7 5 2 1 9 3 4 8 6).  
 
Similarly we get the other offspring: [O2] = (2 9 3 7 1 5 6 

8 4).  
 

D. Mutation Operator 

With crossover, the search is constrained to alleles which 
exist in the initial population. The mutation operator can 
overcome this by simply randomly selecting any bit position 
in a string and changing it. This is useful since crossover 
may not be able to produce new alleles if they do not appear 
in the initial generation. To preserve all the original values, 
the “Order Solving Method” performs order-based 
mutation. In this type of mutation, two positions are selected 
randomly, and two characters (genes) in these positions are 
interchanged. For example, in a parent [1 2 3 4 5 6 7 8 9], 
with selected positions 2 and 5, the resultant child would be 
[1 5 3 4 2 6 7 8 9]. The number of swaps increase or 
decrease proportionately to the increase and decrease of the 
mutation rate setting (from 0 to 1). 

 

V. EXPERIMENTAL RESULTS 

A. Implementation Details 

Consider the 5/3/F/Cmax example given in Table 1. 
 

Table 1: Job Data for example no-wait FSSP 

Job 
Processing Time on Machine 

1 2 3 
1 3 2 4 
2 4 5 3 
3 1 4 5 
4 1 3 2 
5 4 3 7 

 
A Gantt chart for the sequence of jobs 5-3-2-1-4 

produced with wait times between the jobs is shown in 
Figure 1. 
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Fig. 2: Gantt chart showing job sequence 5-3-2-1-4 and the 
periods of wait for the jobs 

 
The ‘no-wait’ spreadsheet model works in two stages. In 

the first stage the delay in the start of the job p after q is 
calculated. In the second stage the job is delayed by that 
many units as calculated in stage one to produce a valid no-

wait schedule. The delay of starting job q after p is 
calculated by the equation given by Reddi and 
Ramamoorthy [8]. Let D(p, q) be the minimum delay time 
between the completion of job Jp and the initiation of Jq, 
then D(p, q) is given by: 
 

D(p,q) = max(tp,2-tq,1, tp,2+tp,3-(tq,1+tq,2),........, 
tp,2+tp,3+tp,4+.........+tp,m-
(tq,1+tq,2+..........+tq,m-1),0) 

 

           =  max ,, ,
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where 

tp,i = process time for job p on machine i 
m = number of machines 

 
After delaying the start of job q after job p by duration 

D(p, q), the schedule in Figure 1 would be a no-wait 
schedule and is as given in Figure 2. 
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Fig. 3: Gantt chart showing job sequence 5-3-2-1-4 for no 
intermediate storage 

 

B. Computational Analysis 

In order to check the effectiveness of the proposed 
spreadsheet based GA approach we took problems from 
already published literature. The problems have been 
simulated on a Dual Core 2.88 GHz computer having 512 
MB RAM. By conducting repeated tests, we found that the 
best values to be set for the number of population, the 
crossover rate, and the mutation rate are 60, 0.65, and 0.09, 
respectively. Therefore, for each of the run, same set of 
parameter setting as described previously have been used, 
which correspond to 1 min 20 s on a Dual Core 2.88 GHz 
computer having 512 MB RAM.  

Five example problems with different objective function 
were taken from the literature to demonstrate this approach. 
A summary of the results is given in Table 2. 
 
Prob Reference Objective 

Function
Approach Result GA 

Result
1 Wismer [9] Makespan Branch and Bound 42 42 
2 Van Deman & 

Baker[10] 
Average 
flow time 

Branch and Bound 28 28 

3 Szwarc [13] Makespan Gilmore-Gomory 
Algorithm [30] 

88 88 

4 Rajendran & 
Chaudhri [14] 

Total flow 
time 

Heuristic approach 503 5011 

5 Rajendran [16] Makespan Heuristic approach 20 20 

 

 
1 This is shown to be an optimal solution given by Rajendran and 

Chaudhri [14]. 
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VI. CONCLUSION 

In this paper, we considered the problem of scheduling 
jobs in a no-wait flowshop. The problem is known to be 
NP-hard. A spreadsheet based general purpose GA solution 
methodology was presented. The spreadsheet GA 
implementation has been found to be easy to implement 
catering for the peculiarities of any environment. Moreover, 
the spreadsheet environment makes it very suitable to carry 
out what if analysis. The spreadsheet model can be easily 
customized to include additional jobs, machines or workers 
without actually changing the logic of the GA routine thus 
making it a general purpose scheduling approach. We also 
demonstrate that any objective function can be used without 
changing the logic of the GA routine. 

The proposed approach was able to find optimal solution 
for all the problems with different objective function thus 
demonstrating the robustness of the proposed approach. 
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