

Abstract— No-wait flowshop scheduling is a constrained

flow shop scheduling problem that exists widely in
manufacturing systems. This paper considers minimization of
makespan (total completion time) for n number of jobs to be
processed on m machines using a general purpose spreadsheet
based genetic algorithm (GA). The proposed approach solution
is compared with already published problems in the literature.
The proposed approach produces optimal solution for all cases.
Additionally it is also shown that any objective function can be
minimised using the same model without changing the logic of
the GA routine.

Index Terms—Genetic Algorithms, No-wait, Makespan,
Scheduling, Flowshop.

I. INTRODUCTION

Scheduling of manufacturing systems is an important
aspect for any enterprise to maintain a competitive position
in fast-changing markets, hence it is important to develop
effective, efficient advanced manufacturing & scheduling
technologies and approaches The goal of scheduling is to
maximize (or minimize) different criteria of a facility such
as makespan, flow time, total tardiness etc.

The flowshop scheduling problem is an important
scheduling problem which been extensively studied since it
was proposed in 1954 by Johnson [1]. A detailed review of
flowshop scheduling research is given by Stafford [2].

In this paper we present a spreadsheet based GA
approach to minimize the makespan for a no-wait flowshop
scheduling problem.

The rest of the paper is organised as follows: Section II
reviews the no-wait flowshop scheduling problem (FSSP),
followed by problem and assumptions in Section III.
Section IV gives the GA details as implemented in this
paper. Experimental results are given in Section 4. The last
section of the paper presents conclusions.

II. LITERATURE REVIEW

No-wait flow shop scheduling problems have been most
commonly studied with two optimization (minimization)
criteria: total flow time and makespan. According to the
research work by Garey and Johnson [3], the no-wait FSSP
is NP-hard even for the two machine case. Similarly Rock
[4] proved that no-wait FSSP with makespan criterion is
NP-hard. Due to its significance in various applications:
both theory and industry, the no-wait FSSP has attracted the

Manuscript received January 04, 2011.
I. A. Chaudhry (imran_chaudhry@yahoo.com) and S. Mahmood

(sultanrandhawa@hotmail.com) are with National University of Sciences &
Technology, Islamabad.

attention by many researchers.
In many flow shops, there may be a constraint that once

the processing of a job begins, subsequent processes of that
job must be carried out without any delay. If necessary, the
start of job processing can be delayed on the first machine
so that the job need not wait for processing on the
subsequent machines. Such a flow shop can be termed a
‘constrained flow shop’ or ‘no-wait flow shop’. Examples
of this type of shop occur in hot metal rolling industries. In
this process, a heated slab is rolled through a series of
rolling mills in which the slab thickness, or gauge, is
successively reduced to some final specification. In this kind
of processing, the slab must pass directly from one rolling
mill to the next rolling mill in the sequence without any
waiting, as such waiting would result in cooling the slab to
such a temperature that the metal could not be rolled easily.
Some other examples of this situation arise in chemical or
metal processing industries. The no-wait situation also
occurs in a production environment where there is a lack of
storage between the machines. This is the case in JIT
production lines where the flow of jobs is continuous with
no in process inventory.

Hall and Sriskandarajah [5] give a detailed survey of the
research and applications of no-wait flow shop scheduling
problem.

Makespan criterion can be defined as completion time at
which all jobs complete processing or equivalently as
maximum completion time of jobs. A review of flowshop
scheduling with makespan criterion has been given be
Hijazi and Shaghafian [6]. The no-wait flowshop problem
with makespan criterion has been considered by [7]-[23].

III. PROBLEM AND ASSUMPTIONS

The no-wait flow shop scheduling problem is described
as follows [24]: Each of n jobs from set J={1,2,....., n} will
be sequenced through m machines (k=1,2,..., m). Job j∈J
has a sequence of m operations (oj1, oj2,...., ojm). Operation
ojk corresponds to the processing of job j on machine k
during an un-interrupted process time of p(j, k). At any
given time, each machine can process at most one job and
each job can be processed on at most one machine. In order
to follow the no-wait restriction, the completion time of the
operation ojk must be equal to the earliest start time of the
operation oj,k+1 for k=1,2,....., m-1. In other words, there
must be no waiting time between processing of any
consecutive operations of each of n jobs. The problem is to
find a schedule such that the processing order of jobs is the
same on each machine and the maximum completion time
so called makespan is minimized.

No-wait Flowshop Scheduling Using Genetic
Algorithm

Imran Ali Chaudhry Member, IAENG, Sultan Mahmood

Proceedings of the World Congress on Engineering 2012 Vol III
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-2-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

Some commonly used assumptions in the deterministic
no-wait flow shop problem are (i) known and deterministic
process times on all machines, (ii) no pre-emption allowed,
and (iii) jobs follow the same technological order of
machines without any interruption either on or between
them for each job.

IV. GENETIC ALGORITHMS

Genetic algorithm is a bio-inspired method that is
applicable in continuous as well as discrete optimization and
has shown excellent performance in various scheduling
problems. Unlike other metaheuristics, in a GA a set of
solutions is kept during the optimization process. This set is
called population and each individual in the set represents
an solution to the problem. The population is then evaluated
and all individuals are assigned a fitness value with the idea
that a higher fitness value should be assigned to better
individuals. As in natural evaluation of species, the
population undergoes a series of operations. Individuals in
the population evolve during generations until some
stopping criterion is met. In a particular generation, firstly
individuals from the current population are selected by a
selection mechanism. Thus, fitter individuals have a more
chance of being selected. Selected individuals then undergo
crossover process where they mate, thus producing new
individuals. Crossover operator generates better solutions
that are biased by the good solutions represented by the
parents. In order to create diversity in population, the newly
produced individuals mutate in an effort to include a
possibility of visiting any possible solution in the search
space. After each generation, new individuals are recreated
and the new population is again evaluated. The whole
process is then repeated.

A detailed introduction to Gas is given in Goldberg [25].
The earliest application of GA has been reported by Davis
[26]. For a recent review of GA application in scheduling is
given in Chaudhry and Drake [27] and Chaudhry [28].

In this paper we use a commercial GA package
EVOLVER™ [29], which functions as an add-in to
Microsoft Excel™. The model for no-wait FSSP is built in
Microsoft Excel using the spreadsheet’s built in functions.
Within the familiar spreadsheet environment, Evolver
generates a number of trial solutions and uses genetic
algorithms to continually improve results of each trial. Each
possible solution then becomes an independent "organism"
that can "breed" with other organisms. The spreadsheet
model acts as an environment for this population of
solutions, determining which are "fit" enough to survive
based on their results. The objective function, variables, and
the constraints are readily specified by highlighting the
corresponding spreadsheet cells. Fig. 1 illustrates the
Evolver-spreadsheet integration.

The advantage of the proposed method is that the
program runs in the background freeing the user to work in
the foreground. Moreover, the familiar layout of the
spreadsheet software makes it easier for the user to use the
software and the presentation of data in tables makes it
easier for the user to carry out what-if analysis.

GA Component
as an "add-in"
in spreadsheet

Schedule
Evaluation

Spreadsheet Model
with scheduling rules

& constraints etc.

Objective Function

Value passed to
GA Component Schedule Evaluation as

a single cell value

Sequencing

Fig. 1: Evolver- spreadsheet Integration

A. Chromosome Representation

For no-wait FSSP, we use permutation representation
where each job represents each gene. For example, in a flow
shop with five jobs i.e. A-B-C-D-E, one chromosome
according to permutation representation could be A-C-B-E-
D, while another could be E-D-C-B-A.

B. Reproduction/Selection

Evolver uses a steady state approach. The steady-state
method selects two chromosomes according to the selection
procedure, performing crossover to obtain one child,
perhaps applying mutation as well, and installs the result
back into that population; the least fit of the population is
destroyed.

As far as parent selection is concerned, in Evolver,
parents are chosen using a rank-based mechanism. In this
method, rather than absolute fitness, the selection
probabilities are based on a chromosome’s relative rank or
position in the population. In rank-based fitness, population
is sorted according to the objective values. The fitness
assigned to each individual depends only on its position in
the individual rank and not on the actual objective value.

C. Crossover Operator

The crossover operator is the most important in GA.
Traditionally, crossover is a process yielding recombination
of bit strings via an exchange of segments between pairs of
chromosomes. For the no-wait FSSP, we needed to handle
permutation representation; the “Order Solving Method” of
Evolver was used. This method applies order crossover
operator [26]. An offspring is built by choosing a
subsequence from one parent and preserving the relative
order of jobs from the other. . For example, the two parents

[P1] = (5 7 | 2 1 9 3 | 6 8 4) and
[P2] = (8 6 | 3 7 1 5 | 4 2 9)

First, the segments between cut points are copied into

offspring
[O1] = (_ _ 2 1 9 3 _ _ _) and
[O2] = (_ _ 3 7 1 5 _ _ _)

Next, starting from the second cut point of [P1] parent,

the jobs from the other parent are copied, except which are
already in offspring [O1], we get 4-8-6-7-5. This sequence

Proceedings of the World Congress on Engineering 2012 Vol III
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-2-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

is placed in the first offspring.
[O1] = (7 5 2 1 9 3 4 8 6).

Similarly we get the other offspring: [O2] = (2 9 3 7 1 5 6

8 4).

D. Mutation Operator

With crossover, the search is constrained to alleles which
exist in the initial population. The mutation operator can
overcome this by simply randomly selecting any bit position
in a string and changing it. This is useful since crossover
may not be able to produce new alleles if they do not appear
in the initial generation. To preserve all the original values,
the “Order Solving Method” performs order-based
mutation. In this type of mutation, two positions are selected
randomly, and two characters (genes) in these positions are
interchanged. For example, in a parent [1 2 3 4 5 6 7 8 9],
with selected positions 2 and 5, the resultant child would be
[1 5 3 4 2 6 7 8 9]. The number of swaps increase or
decrease proportionately to the increase and decrease of the
mutation rate setting (from 0 to 1).

V. EXPERIMENTAL RESULTS

A. Implementation Details

Consider the 5/3/F/Cmax example given in Table 1.

Table 1: Job Data for example no-wait FSSP

Job
Processing Time on Machine

1 2 3
1 3 2 4
2 4 5 3
3 1 4 5
4 1 3 2
5 4 3 7

A Gantt chart for the sequence of jobs 5-3-2-1-4

produced with wait times between the jobs is shown in
Figure 1.

Machine 1

Machine 3

Machine 2

5 15 2520 3010

5 3 2 1 4

5

5

3

3

2

2

1

1

4

4

Periods of Wait
Job 3

Job 2

Job 1

Job 4

2 3

2 3

4 4

4 5

Time

Fig. 2: Gantt chart showing job sequence 5-3-2-1-4 and the
periods of wait for the jobs

The ‘no-wait’ spreadsheet model works in two stages. In

the first stage the delay in the start of the job p after q is
calculated. In the second stage the job is delayed by that
many units as calculated in stage one to produce a valid no-

wait schedule. The delay of starting job q after p is
calculated by the equation given by Reddi and
Ramamoorthy [8]. Let D(p, q) be the minimum delay time
between the completion of job Jp and the initiation of Jq,
then D(p, q) is given by:

D(p,q) = max(tp,2-tq,1, tp,2+tp,3-(tq,1+tq,2),........,
tp,2+tp,3+tp,4+.........+tp,m-
(tq,1+tq,2+..........+tq,m-1),0)

 = max ,, ,
k

p i q ii

k

i

k
t t

 0
1

1

2
,

 2 k m
where

tp,i = process time for job p on machine i
m = number of machines

After delaying the start of job q after job p by duration

D(p, q), the schedule in Figure 1 would be a no-wait
schedule and is as given in Figure 2.

Machine 1

Machine 3

Machine 2

5 15 2520 3010

5 3 2 1 4

5

5

3

3

2

2

1

1

4

4

Time

Fig. 3: Gantt chart showing job sequence 5-3-2-1-4 for no
intermediate storage

B. Computational Analysis

In order to check the effectiveness of the proposed
spreadsheet based GA approach we took problems from
already published literature. The problems have been
simulated on a Dual Core 2.88 GHz computer having 512
MB RAM. By conducting repeated tests, we found that the
best values to be set for the number of population, the
crossover rate, and the mutation rate are 60, 0.65, and 0.09,
respectively. Therefore, for each of the run, same set of
parameter setting as described previously have been used,
which correspond to 1 min 20 s on a Dual Core 2.88 GHz
computer having 512 MB RAM.

Five example problems with different objective function
were taken from the literature to demonstrate this approach.
A summary of the results is given in Table 2.

Prob Reference Objective

Function
Approach Result GA

Result
1 Wismer [9] Makespan Branch and Bound 42 42
2 Van Deman &

Baker[10]
Average
flow time

Branch and Bound 28 28

3 Szwarc [13] Makespan Gilmore-Gomory
Algorithm [30]

88 88

4 Rajendran &
Chaudhri [14]

Total flow
time

Heuristic approach 503 5011

5 Rajendran [16] Makespan Heuristic approach 20 20

1 This is shown to be an optimal solution given by Rajendran and

Chaudhri [14].

Proceedings of the World Congress on Engineering 2012 Vol III
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-2-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

VI. CONCLUSION

In this paper, we considered the problem of scheduling
jobs in a no-wait flowshop. The problem is known to be
NP-hard. A spreadsheet based general purpose GA solution
methodology was presented. The spreadsheet GA
implementation has been found to be easy to implement
catering for the peculiarities of any environment. Moreover,
the spreadsheet environment makes it very suitable to carry
out what if analysis. The spreadsheet model can be easily
customized to include additional jobs, machines or workers
without actually changing the logic of the GA routine thus
making it a general purpose scheduling approach. We also
demonstrate that any objective function can be used without
changing the logic of the GA routine.

The proposed approach was able to find optimal solution
for all the problems with different objective function thus
demonstrating the robustness of the proposed approach.

REFERENCES
[1] S. M. Johnson, “Optimal two-and three-stage production schedules

with setup times included”, Naval Research Logistics Quarterly, vol.
1, 1954, pp. 61-68.

[2] J. N. D. Gupta, E. F. Stafford Jr., “Flowshop scheduling research after
five decades”, European Journal of Operational Research, vol.
169(3), 2006, pp. 699-711.

[3] M. R. Garey and D. S. Johnson, Computers and Intractability: A
guide to the Theory of NP-Completeness, Freeman, San Francisco,
CA, 1979.

[4] H. Rock, “The three-machine no-wait flowshop problem is NP-
complete”, Journal of the Association for Computing Machinery, vol.
31(2), 1984, pp. 336-345.

[5] N. G. Hall, C. Sriskandarajah, “A survey of machine scheduling
problems with blocking and no-wait in process”, Operations
Research, vol. 44(3), 1996, pp. 510-525.

[6] S. R. Hejazi, S. Saghafian, “Flowshop-scheduling problems with
makespan criterion: a review”, International Journal of Production
Research, vol. 43(14), 2005, pp. 2895-2929.

[7] J. Piehler, Ein Beitrag Zum Reinhenfolgeproblem,
Unternehmensforschung, vol. 4, 1960, pp. 138-142.

[8] S.S. Reddi, C.V. Ramamoorthy, “On the flowshop sequencing
problem with no-wait in process”, Operational Research Quarterly,
vol. 23, 1972, pp. 323–331.

[9] D. A. Wismer, “Solution of the flowshop-scheduling problem with no
intermediate queues”, Operations Research, vol. 20(3), 1972, pp. 689-
697.

[10] J. M. Van Deman, K. R. Baker, “Minimizing mean flowtime in the
flow shop with no intermediate queues”, AIIE Transactions, vol. 6(1),
1974, pp. 28-34.

[11] M. C. Bonney, S. W. Gundry, “Solution to the constrained flowshop
sequencing problem”, Operations Research Quarterly, vol. 24, 1976,
pp. 869-883.

[12] J. R. King, A. S. Spachis, “Heuristics for flow-shop scheduling”.
International Journal of Production Research, vol. 18, 1980, pp. 345-
357.

[13] W. Szwarc, “Solvable cases of the flow-shop problem without
interruptions in job processing”, Naval Research Logistics Quarterly,
vol. 30, 1983, pp. 179-183.

[14] C. Rajendran, D. Chaudhuri, “Heuristic for continuous flow-shop
problem”, Naval Research Logistics, vol. 37, 1990, pp. 695-705.

[15] R. Gangadharan, C. Rajendran, “Heuristic algorithms for scheduling
in the no-wait flowshop”, International Journal of Production
Economics, vol. 32, 1993, pp. 285-290.

[16] C. Rajendran, “A no-wait flowshop scheduling heuristic to minimize
makespan”, Journal of the Operational Research Society, vol. 45(4),
1994, pp. 472-478.

[17] T. Aldowaisan, A. Allahverdi, “New heuristics for no-wait flowshops
to minimize makespan”, Computers & Operations Research, vol. 30,
2003, pp. 1219-1231.

[18] J. Grabowski, J. Pempera, “Some local search algorithms for no-wait
flow-shop problem with makespan criterion”, Computers &
Operations Research, vol. 32, 2005, pp. 2197-2212.

[19] P.J. Kalczynski, J. Kamburowski, “On no-wait and no-idle flow shops
with makespan criterion”, European Journal of Operational
Research, vol. 178, 2007, pp. 677-685.

[20] J. M. Framinana, M. S. Nagano, “Evaluating the performance for
makespan minimisation in no-wait flowshop sequencing, Journal of
Materials Processing Technology, vol. 197, 2008, pp. 1-9.

[21] Q-K. Pan, L. Wang, M. F. Tasgetiren, B-H. Zhao, “A hybrid discrete
particle swarm optimization algorithm for the no-wait flow shop
scheduling problem with makespan criterion”, International Journal
of Advanced Manufacturing Technology, vol. 38, 2008, pp. 337-347.

[22] Q-K. Pan, L. Wang, B-H. Zhao, “An improved iterated greedy
algorithm for the no-wait flow shop scheduling problem with
makespan criterion”, International Journal of Advanced
Manufacturing Technology, vol. 38, 2008, pp. 778-786.

[23] D. Laha, U. K. Chakraborty, “A constructive heuristic for minimizing
makespan in no-wait flow shop scheduling”, International Journal of
Advanced Manufacturing Technology, vol. 41, 2009, pp. 97-109.

[24] Q-K. Pan, L. Wang, B. Qian, “A novel differential evolution
algorithm for bi-criteria no-wait flow shop scheduling problems”,
Computers & Operations Research, vol. 36(8), 2009, pp. 2498-2511.

[25] D. E. Goldberg, Genetic algorithms in search, optimization and
machine learning, 1989, Addison-Wesley, Boston.

[26] L. Davis, Handbook of Genetic Algorithms, 1991, New York, Van
Nostrand Reinhold

[27] I. A. Chaudhry and P. R. Drake, “Minimizing total tardiness for the
machine scheduling and worker assignment problems in identical
parallel machines using genetic algorithms”, International Journal
of Advanced Manufacturing Technology, vol. 42, 2008, pp. 581-
594.

[28] I. A. Chaudhry, “Minimizing flow time for the worker assignment
problem in identical parallel machine models using GA”,
International Journal of Advanced Manufacturing Technology,
2009, vol. 48(5-8), 2010, pp. 747-760.

[29] Palisade Corporation, Evolver: the genetic algorithm super solver.
1998, New York, USA.

[30] P. C. Gilmore, R. E. Gomory, “Sequencing a one-state variable
machine : A solvable case for the travelling salesman problem”,
Operations Research, vol. 12, 1964, pp. 655-679.

Proceedings of the World Congress on Engineering 2012 Vol III
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-2-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

