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Abstract—This paper develops a methodology to

generate a sequence of interval vectors (boxes), which

converges to a very small box of negligible volume

containing the minimum point a function of several

variable. Each point of that box is an approximate

solution. Interval extension of real valued function is

used to propose the method.
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1 Introduction

Interval analysis is used in optimization theory by
Robinson [5], Ichida and Fujii [3], Hansen [1], [2] and
others in various directions. Most of these algorithms
search the optimal solution of the optimization prob-
lem minx∈Rn f(x) by solving the system of nonlinear
equations ∇f = 0, using interval Newton’s method.
In this paper we consider an optimization problem
minx∈D f(x), where D is a rectangular parallelepiped in
Rn. In stead of solving ∇f = 0 by interval Newton’s
method we construct a sequence of interval vectors
(sequence of boxes) using inverse of interval matrices
and prove that this sequence converges to very small
box of negligible volume which contains the solution of
minx∈D f(x). For computation of inverse of an inter-
val matrix, we follow the concept developed by Rohn([6]).

Throughout this paper intervals and real numbers
are denoted by capital letters and small letters respec-
tively. In additions to these the following notations are
used.
I(R)= Set of intervals. (A ∈ I(R) is the set,
A = [a, a] = {x ∈ R|a ≤ x ≤ a}.)
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(I(R))k= Product space, I(R)× I(R)× ...× I(R)︸ ︷︷ ︸
k times

.

Â= Degenerate interval [a, a].
−→
A= Column vector whose elements are inter-
vals.

−→
A = (A1, A2, ..., An)T , Aj = [aj , aj ],

j = 1, 2, ..., n.(
−→
A ∈ (I(R))n)

m(A) = a+a
2 , w(A) = a− a, w(

−→
A ) = max1≤j≤n{w(Aj)}.

Two interval vectors of same dimension intersect if they
are not componentwise disjoint and their intersection
is computed componentwise. Let ∗ ∈ {+,−, ·, /} be
a binary operation on the set of real numbers. For
A,B ∈ I(R), the algebraic operations in I(R) is,
A~B = {a ∗ b : a ∈ A, b ∈ B}. In the case of division, it
is assumed that 0 /∈ B. The following pre requisites are
necessary to develop the methodology of this paper.

Definition 1.1 [4] For a given function f : Rn → R, the

set image of the interval vector ~X = (X1, X2, ..., Xn)T

under f is the set, f(X1, X2, ..., Xn) = {f(x1, x2, ..., xn) :
x1 ∈ X1, ..., xn ∈ Xn}.

Inverse of an interval matrix:
An interval matrix of order m×n is defined as a set of real
matrices of the form, AI = [A, A] = {A, A ≤ A ≤ A}
for some real matrices A and A of order m × n sat-
isfying A ≤ A. Matrix inequalities are to be under-
stood componentwise. We may write AI = (Aij), where
Aij = [aij , aij ], i = 1, 2, ...,m; j = 1, 2, ..., n; A = (aij),

A = (aij). The computation of inverse of an interval
matrix is introduced by Rohn [6].

Definition 1.2 ([6]) A square interval matrix AI is said
to be regular if each A ∈ AI is non singular.

Since the set {A−1 : A ∈ AI} need not be an interval
matrix, Rohn redefined inverse of interval matrix of AI

as the narrowest interval containing {A−1 : A ∈ AI}
which is an interval matrix BI = [B,B], where Bij =
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minA∈AI (A−1)ij and Bij = maxA∈AI (A−1)ij .

Definition 1.3 ([6],[7]) An interval square matrix AI is
said to be

1. inverse stable if it is regular and either (A−1)ij <
0 ∀ A ∈ AI or (A−1)ij > 0 ∀ A ∈ AI , for each i, j;

2. symmetric if both AI
c and ∆ are symmetric;

(Ac = (m(Aij)) and ∆ = 1
2 (w(Aij)) are real matri-

ces associated with the interval matrix AI . Then AI

can be expressed as AI = [Ac −∆, Ac + ∆].)

3. positive (semi) definite if each A ∈ AI is positive
(semi) definite.

Let Y = {y ∈ Rn : |yj | = 1, j = 1, 2, ....n}. For q ∈ Rn,
a diagonal matrix Tq is defined as

(Tq)ij =

{
qi, i = j;
0, i 6= j.

.

Define Ayz by Ayz = Ac − Ty∆Tz. Then

(Ayz)ij = (Ac)ij − yi(∆)ijzj =

{
aij , if yizj = 1;

aij , if yizj = −1.

Theorem 1.1 ([6]) Let AI be regular. Then for each
A ∈ AI there exists non negative diagonal matrices
Lyz, y, z ∈ Y satisfying

∑
y,z∈Y Lyz = E such that A−1 =∑

yz A
−1
yz Lyz holds, where E = eeT , e = (1, 1, ..., 1)T .

For a vector x ∈ Rn, its sign vector sgn x is,

(sgn x)i =

{
1, xi ≥ 0;
−1, xi < 0.

.

For an inverse stable interval matrix AI , we denote y(i)
as the sign vector of i-th row of Ac

−1 and z(j) as the sign
vector of j-th column vector of Ac

−1 .

Theorem 1.2 ([6]) If AI is inverse stable then Bij =

(A−1−y(i),z(j))ij and Bij = (A−1y(i),z(j))ij for all i, j =
1, 2, ..., n.

2 Generating a converging sequence of
interval vectors

Theorem 2.1 Let f be a convex function on a rectangu-
lar parallelepiped D in Rn. (A rectangular parallelepiped

in Rn can be treated as an interval vector.) Then the

sequence of interval vectors { ~Xk} in I(R)n, k=0,1,2,...,
generated by the formula,

~X0 = D, ~Xk+1 = ~Xk
⋂(

~̂Xk − (∇f( ~̂Xk))T (AkI)−1
)
,

where ~̂Xk is the degenerate interval [xk, xk] for any

xk ∈ ~Xk and AkI = (∇2f)( ~Xk) is the set image of ~Xk

under (∇2f)x)(See Definition 1.1) contains the solution
of (P ) : minx∈D f(x) for each k.

Proof: Let ξ be the solution of (P ). We need to show

that ξ ∈ ~Xk for each k. This may be done by method
of induction. ξ ∈ ~X0 is true. Suppose ξ ∈ ~Xk. For
xk ∈ ~Xk, f(xk) ' f(ξ) + (xk − ξ)T∇f(ξ) + 1

2 (xk −
ξ)T∇2f(ξ + θ(xk − ξ))(xk − ξ), θ ∈ (0, 1). Since
∇f(ξ) = 0, so xk is the approximate solution of (P )
if xk − ξ = (∇f(xk))T (∇2f(ξ + θ(xk − ξ))−1. Since

f is convex on D, so it is convex on each set ~Xk.

AkI = (∇2f)( ~Xk) = {A : A = ∇2f(xk), xk ∈ Xk} is the

set image of ~Xk under ∇2f . Since f is convex on ~Xk so

∇2f(xk) is non-singular, for every xk ∈ ~Xk. Hence AkI

is regular by Definition 1.2. (AkI)−1 exists.

So for any xk ∈ ~Xk, xk − ξ ∈ (∇f(xk))T (AI
k)−1. If

~̂Xk denotes the degenerate interval vector [xk, xk], then

ξ ∈ ~̂Xk − (∇f( ~̂Xk))T (AI
k)−1.

This implies ξ ∈ ~Xk+1. �

From the above result we conclude that ξ ∈ ∩k ~Xk. ∩k ~Xk

may be a large box. To obtain the approximate solution

we need to show that ∩k ~Xk is a box of negligible vol-

ume. Denote N(Xk) = ~̂Xk − (∇f( ~̂Xk))T (∇2f( ~Xk))−1,
~Xk = (Xk

1 , X
k
2 , ..., X

k
n)T , (AkI)−1 = BkI = ([bij

k, bkij ]),

vj = ( ∂f
∂xj

)x=xk j = 1, 2, ..., n.

Theorem 2.2 If Xk 6⊆ N(Xk) for all k then w( ~Xk)→ 0
as k →∞.

Proof: Let ith component of N(Xk) be N(Xk
i ). Then

N(Xk
i ) = [xki − mk

i , x
k
i − mk

i ], where mk
i =

∑n
i=1 cijvj

and mk
i =

∑n
i=1 dijvj with

cij =

{
bij , if vj ≥ 0;

bij , if vj < 0
, and dij =

{
bij , if vj ≥ 0;
bij , if vj < 0.
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Xk+1
i = Xk

i ∩N(Xk
i ) = [xk+1

i , xk+1
i ] where,

xi
k+1 =

{
max{xik, xki −mk

i }, if mk
i ≥ 0

xki −mk
i , if mk

i < 0,

xi
k+1 =

{
xki −mk

i , if mk
i ≥ 0

min{xki , xki −mk
i }, if mk

i < 0.

Here arises three cases.
CASE-1:

let mk
i > 0. Then xk+1

i = max{xik, xki −mk
i } and xk+1

i =

xki −mk
i . Since mk

i > 0, there exist real numbers ci > 0

and di > 0 such that mk
i = ci

∑n
j=1 |vj | and mk

i =

di
∑n

j=1 |vj |. mk
i > mk

i implies di > ci.

If xki ≥ xki −mk
i , that is

∑n
j=1 |vj | ≥ 1/di(x

k
i − xki ), then

w(Xk+1
i ) = xki −mk

i − xki = xki − xki − ci
n∑

j=1

|vj |

≤ (1− ci
di

)w(Xk
i ).

Similarly if xki < xki −mk
i , then

w(Xk+1
i ) < (1− ci

di
)w(Xk

i )

CASE-2:

Let mk
i < 0. Then xk+1

i = xki − mk
i and xk+1

i =

min{xki , xki − mk
i }. Since mk

i < 0, so mk
i < 0. Hence

there exist positive real numbers gi and hi such that

mk
i = −gi

∑n
j=1 |vj | and mk

i = −hi
∑n

j=1 |vj |. Fur-

ther gi > hi since mk
i < mk

i .

If xki < xki − mk
i then xki − xki < gi

∑n
j=1 |vj |. So∑n

i=1 |vi| > 1/gi (xki − xki ). If xki ≥ xki − mk
i , that is

(xki −xki ) ≥ gi
∑n

j=1 |vj | then
∑n

j=1 |vj | ≤ 1/gi (xki −xki ).
Proceeding as in Case 1, we get

w(Xk+1
i ) ≤ (1− hi

gi
)w(Xk

i ).

Case -3

Let mk
i ≤ 0 ≤ mk

i . Then Xk+1
i = [xk+1

i , xk+1
i ] =

[max{xik, xki −mk
i },min{xki , xki −mk

i }. If xki −mk
i > xki

and xki −mk
i < xki , then w(Xk+1

i ) = xki −mk
i < xki −xki =

w(Xk
i ). If xki − mk

i > xki and xki − mk
i ≥ xki then

w(Xk+1
i ) = (xki −mk

i )− (xki −mk
i ) < xki − xki = w(Xk

i ).

If xki − mk
i ≤ xki and xki − mk

i < xki then w(Xk+1
i ) =

xki −mk
i − xki < xki − xki = w(Xk

i ).

In case xki − mk
i ≤ xki and xki − mk

i ≥ xki we get

Xk
i ⊆ N(Xk

i ), which is not possible since Xk
i 6⊆ N(Xk

i )
for all i = 1, 2, ..., n.
From the above derivations we conclude that w(Xk+1

i ) ≤
γi w(Xk

i ) for some γi < 1 and for all i = 1, 2, ..., n.
So w(Xk+1

i ) ≤ γ w(Xk
i ), where γ = max{γi : i =

1, 2, ..., n} < 1. Hence maxiw(Xk+1
i ) ≤ γ.maxiw(Xk

i ).

That is w( ~Xk+1) ≤ γ.w( ~Xk) with γ < 1. Proceeding in

this manner we get w( ~Xk) ≤ γkw( ~X0) → 0 as k → ∞,
since γ < 1. �

Remark 2.1 1. If ~Xk ⊆ N( ~Xk) for some k, then

w( ~Xk+1) = w( ~Xk). So the process terminates. In

this situation we may select another xk
′ ∈ ~Xk with

xk
′ 6= xk so that ~Xk 6⊆ N( ~Xk) and continue the

process.

2. For each k if xk ∈ ~Xk is replaced by xk = m( ~Xk)

then ...w( ~Xk+1) < 1
2w( ~Xk) < 1

22w( ~Xk−1) < ...

Hence { ~Xk} converges more rapidly to ξ. For each k,

the degenerate interval ~̂Xk is [xk, xk] for any selected

point xk of ~Xk. Hence without loss of generality we

may select xk as m( ~Xk) to write a computer pro-
gram.

3. In general (AkI)−1 can be found following Theorem

1.1 which needs 2n number of computations. If AkI

is inverse stable then its inverse can be found follow-
ing Theorem 1.2 which needs 2n2 computations.

We summarize the results of the above two theorems in
the following algorithm.

2.1 Algorithm :

1. Input f(x), ~X0 and ε, where ~X0 is initial interval
vector and ε is tolerance limit.

2. Compute ∇f(x) and ∇2f(x), set k=0.

3. Compute interval matrix Ak as set image of ~Xk un-
der ∇2f .

4. Compute N( ~Xk) = ~̂Xk − [∇f( ~̂Xk)]TBkI where

BkI = (AkI)−1, xk = m( ~Xk).

5. Compute ~Xk+1 = ~Xk
⋂
N( ~Xk).
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6. If ~Xk+1 = ~Xk then the process terminates. While

computing N( ~Xk) in stead of taking m( ~Xk) take any

other point xk ∈ ~Xk and continue the process.

7. If w( ~Xk+1) ≥ ε, set k = k + 1 then goto step 3.

8. If w( ~Xk+1) < ε then ~Xk+1 gives the final result.

Any point in ~Xk+1 can be considered as a solution
of the given problem.

This algorithm may be explained in the following exam-
ples.

Example 2.1 Let f(x1, x2) = x41 + 12x21 − x1x2 +

x42 + 6x22 − x1 − x2 and ~X(0) =

(
[-2,6]
[-2,6]

)
.

∇2f(x) =

(
12x21 + 24 −1
−1 12x22 + 12

)
,

A0I = ∇2f( ~X0) =

(
[24,456] [-1,-1]
[-1,-1] [12,444]

)
.

Any element of A0I is A0 =

(
p −1
−1 q

)
∈ A0I , where

24 ≤ p ≤ 456,12 ≤ q ≤ 444. det(A0) = pq − 1 ≥ 287.

By Definition 1.2, A0I is regular.

A0−1 =

( q
pq−1

1
pq−1

1
pq−1

p
pq−1

)
, where q

pq−1 > 0, p
pq−1 > 0.

So by Definition 1.3, A0I is inverse stable. Now
we determine its inverse by Theorem 1.2.

A0
c =

(
240 −1
−1 228

)
, A0

c
−1

= 1
54719

(
228 1
1 240

)
and

∆0 =

(
216 0
0 216

)
.

Also y(1) = y(2) = z(1) = z(2) =

(
1
1

)
.

A0
−y(1)z(1) = A0

c − T−y(1)∆0Tz(1) =

(
456 −1
−1 444

)
.

So B0
11 = (A0

−y(1)z(1)
−1

)11 = .002193.

Similarly B0
12 , B0

21 , B0
22 can be calculated.

We see that B0 =

(
.002193 .000004
.000004 .0837

)
.

A0
−y(1)z(1) = A0

c − T−y(1)∆0Tz(1) =

(
24 −1
−1 12

)
.

So B0
11 = (A0

y(1)z(1)

−1
)11 = .0418.

Similarly B0
12 , B0

21, B0
22 can be calculated. We see

that B0 =

(
.0418 .0035
.0035 .0837

)
.

Using Definition 1.1, we can calculate

(A0I)−1 = B0I =(
[0.002193 ,0.0418] [0.000004 ,0.0035]
[0.000004 ,0.0035] [0.002252 ,0.0837]

)
and

∇f(m( ~X0)) =

(
77
53

)
.

So N( ~X0) =

(
[-1.4042 , 1.83088]
[-2.7004 , 1.88025]

)
and ~X1 = ~X0

⋂
N( ~X0) =

(
[-1.4042 , 1.83088]

[-2 , 1.88025]

)
.

Proceeding as above we find

~X2 = ~X1
⋂
N( ~X1) =

(
[0.0374 , 0.1544]
[-0.0424 , 0.1007]

)
.

The sequence { ~Xk} can be generated in a similar way.
Using the above algorithm, we generate this sequence
through a MATLAB program (See Appendix for MAT-

LAB program) with initial box ~X0 =

(
[-100,1000]
[-100,1000]

)
,

tolerance limit ε = 10−7 and xk = m( ~Xk) for each k and
get it’s solution,

~X∗ =

(
[ 0.045271507, 0.045271508]
[0.086887301, 0.086887324]

)
.

Total number of iterations is 11, execution
time is 0.09877717 seconds. Using Newton’s
Method with same tolerance limit, the solution is
x1 = 0.0452715, x2 = 0.0868873.

Total number of iterations is 18 and execution time is
0.00041 seconds. In this example our algorithm searches
four vertices in stead of a single point as in Newton’s
method. For this reason more time to execute the
program. But this has an advantage that, any point
in the box ~X∗ is an approximate solution. Once this
is established the user has the choice for selecting a
convenient point in this box as solution.

Next, we consider another example where the process ter-
minates after some iterations.

Example 2.2 For f(x1, x2) = −12x2+x31+3x22−6x1x2,

if we start with ~X(0) =

(
[2,98]

[-10,110]

)
, ε = 10−7 and

xk = m( ~Xk), we see that the process terminates after

Proceedings of the World Congress on Engineering 2012 Vol I 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19251-3-8 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



44 iterations with solution X1 = [2, 11.92249939] and
X2 = [−10, 13.92249939]. Following Remark 2.1, if we

change xk = m( ~Xk) to xki = (3xki + xki )/4 then we get
the final solution as X1 = [3.23606798, 3.23606798] and
X2 = [5.23606798, 5.23606798] with total number of iter-
ations as 15, total execution time as 0.12130 seconds.

3 Conclusion

In this paper we have addressed an unconstrained mini-
mization problem on a rectangular parallelepiped in n di-
mension and developed an algorithm to find it’s solution.
In place of reaching at one solution by existing methods,
we reach at a very small box of negligible volume, whose
points are approximate solutions of the problem. So there
is a flexibility for the decision maker to select a suitable
solution. Our algorithm can be modified to generate a
sequence for minimizing a function over a hyper-sphere.

4 Appendix:(Programming in MAT-
LAB)

% Matlab programming for min f(x)=x(1).^4+

12*x(1)^2-x(1)*x(2)-x(1)+x(2).^4

+6*x(2)^2-x(2) ,

int i;int j;int n;int iter;

double X0l;double X0u;

single eps;

%define types of variables

%getting input

n=input(’supply order’);

eps=input(’supply error of tolerance’);

X0l=input(’supply lower’);

X0u=input(’supplyupper’);

tic

xk=[(X0l(1)+X0u(1))/2,(X0l(2)+X0u(2))/2];

iter=0;

wx=max(X0u-X0l);

while wx>=eps

xk=[(X0l(1)+X0u(1))/2,(X0l(2)+X0u(2))/2];

%taking inclusion isotonic extension

% of grad^2 f

Al=[12*min(intvsquar([X0l(1),X0u(1)]))+24,-1;

-1,12*min(intvsquar([X0l(2),X0u(2)]))+12];

Au=[12*max(intvsquar([X0l(1),X0u(1)]))+24,-1;

-1,12*max(intvsquar([X0l(2),X0u(2)]))+12];

%computing inverse of an interval matrix

Ac=(Al+Au)/2;del=(Au-Al)/2;A=inv(Ac);

for i=1:n

for j=1:n

if A(i,j)>=0 B(i,j)=1;

else B(i,j)=-1;

end

end

end

for i=1:1:n

for j=1:n

C=diag (B(i,:));E=diag(B(:,j));

F=Ac+C*del*E;G=Ac-C*del*E;

H=inv(F);invl(i,j)=H(i,j);

K=inv(G);invu(i,j)=K(i,j);

end

end

%[invl,invu] is the invrse matrix

gradf=[4*(xk(1)).^3+24*xk(1)-xk(2)-1,

4*(xk(2)).^3+12*xk(2)-xk(1)-1];

%computing N(X)

for i=1:n

suml(i)=0;sumu(i)=0;

for j=1:n

suml(i)=suml(i)+min(intvmult([gradf(j),gradf(j)],

[invl(j,i),invu(j,i)]));

sumu(i)=sumu(i)+max(intvmult([gradf(j),gradf(j)],

[invl(j,i),invu(j,i)]));

end

nxu(i)=xk(i)-suml(i);nxl(i)=xk(i)-sumu(i);

end

%taking intersection

for i=1:n

Xnewl(i)=max([X0l(i),nxl(i)]);

Xnewu(i)=min([X0u(i),nxu(i)]);

if Xnewl(i)>Xnewu(i)

disp(sprintf(’ No solution’));

break;

end

end

wxnew=max(Xnewu-Xnewl);

if wxnew==wx

disp(sprintf(’the process terminates’))

break

else

iter=iter+1;

% modify the value

X0l=Xnewl;X0u=Xnewu;wx=wxnew;

end

end

%printing final result

for i=1:n

disp(sprintf(’X(%d)=

[%12.9f,%12.9f]’,i,X0l(i),X0u(i)));

end

disp(sprintf(’No.of iterations=%d’,iter));
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disp(sprintf(’time taken=%10.8f seconds’,toc));
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