
 

 
Abstract—A novel family of explicit method is presented. 

Unlike conventional integration methods, the coefficients of the 
two difference equations are no longer constant but functions of 
the initial structural properties of the system analyzed and the 
size of integration time step. The most important properties of 
the proposed family method are the second-order accuracy, the 
possibility of unconditional stability and the explicitness of each 
time step. The possibility of unconditional stability in addition 
to the second-order accuracy will allow using a large time step 
for conducting the step-by-step integration; and the explicitness 
of each time step involves no iterative procedure. As a result, 
many computational efforts can be saved when compared to 
currently available integration methods. 
 

Index Terms—accuracy, explicit method, nonlinear systems, 
stability, step-by-step integration, structural dynamics 
 

I. INTRODUCTION 

WO difference equations are needed in establishing an 
integration method. One is for displacement increment 

and the other is for velocity increment [1-6]. In general, the 
coefficients of the two difference equations are some specific 
constants. Since the numerical properties of an integration 
method are highly dependent upon the structural properties 
of the system analyzed, a brand new concept was proposed 
by using coefficient matrices, which are functions of initial 
structural properties and step size. Apparently, an integration 
method of this type is structure-dependent. As a result, two 
family methods were developed by Chang [7-8]. In general, 
they are conditionally stable, second-order accurate, explicit, 
one-step methods, and have favorable numerical dissipation 
which can be continuously controlled and it is possible to 
achieve zero damping. Since they can only have conditional 
stability, their applications are very limited. Consequently, 
some unconditionally stable, explicit methods [9-12] which 
are also structure-dependent were developed to overcome 
this difficulty. The integration of the unconditional stability 
and second-order accuracy will allow using a large time step; 
and the explicitness of each time step leads to no nonlinear 
iteration. Thus, many computational efforts are saved when 
compared to the currently available integration methods. 

Only the difference equation for displacement increment is 
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structure-dependent while that for velocity increment still 
involves constant coefficients for the currently developed 
structure-dependent integration methods [9-12]. In this paper, 
a new family of explicit methods is proposed, whose two 
difference equations are both structure-dependent. This 
family method simplifies the equation for computing velocity 
after obtaining displacement and thus further computational 
efforts can be saved. Numerical properties of this family 
method will be analytically studied. Numerical examples will 
be used to examine analytical results and the computational 
efficiency of this proposed family method is also explored. 

II. PROPOSED FAMILY METHOD 

The equation of motion for a discretized, single degree of 
freedom system can be expressed as 
 

fkuucum    (1) 

 
where m , c , k  and f  represent the mass, viscous damping 

coefficient, stiffness and external force, respectively; and u , 
u  and u  denote the displacement, velocity and acceleration, 
respectively. The initial-value problem is to solve (1) to meet 
the given initial conditions. 

Although many integration methods can be employed to 
solve (1) a new family of explicit methods is proposed and it 
can be expressed as: 
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where  0 0
t    and mk /

00
  is the natural frequency 

of the system determined from the initial stiffness of 
0

k ; 

0 0
2c m , which is assumed that the viscous damping ratio 

is determined from the initial structural properties. Unlike a 
general integration method, it is interesting to find that the 
coefficient   is no longer a given constant but depends on 

the initial structural properties and step size. Noticed that   

is proposed to be invariant in a whole step-by-step integration 
procedure. The parameters   and   generally control the 

numerical properties of the proposed family method. 
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III. NUMERICAL PROPERTIES 

To assess the numerical properties of the proposed family 
method, its computing sequence within a single time step 
must be reflected in the analysis. The stiffness in the first line 
of (2) may vary not only from step to step but also within a 
time step for nonlinear systems. Hence, this characteristic 
must be considered in the basic analysis. For this purpose, the 
symbol i

r  is introduced to represent the restoring force at the 

end of the thi )(  time step and is expressed as iii
dkr  , 

where i
k  is the stiffness at the end of the thi )(  time step.  

The actual computing sequence of the thi )(  time step for 

the proposed family method can be written in a recursive 
matrix form as: 
 

1111   iiiii fLXAX  (4) 

 
where     T
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iiii
atvtdX ; and 

1iA  and 
1iL  are the 

amplification matrix and the load vector for the thi  )1(  

time step, respectively. The computing sequences of 
1i

d  , 
1i

v   

and 
1i

a   for the thi  )1(  time step can be explicitly obtained. 

As a result, the explicit expression of the amplification matrix 
is found to be: 
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The characteristic equation of this matrix can be computed 

by using 0
1

 IA 
i

. As a result, it is found to be 
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/
11    is defined. It is implied by 

1
1

i
    that 

the instantaneous stiffness at the end of the thi  )1(  time 

step is equal to the initial stiffness. Whereas, 
1

1
i

    is used to 

denote a case of instantaneous stiffness hardening at the end 
of the thi  )1(  time step, where the instantaneous stiffness 

1i
k   is larger than the initial stiffness 

0
k , and a case of 

instantaneous stiffness softening can be denoted by 
1

1
i

   , 

where the instantaneous stiffness 
1i

k   is less than the initial 

stiffness 
0

k  . 

A. Stability 

In the following stability analysis, a zero viscous damping 
ratio is assumed since it is complicated to obtain an analytical 
expression of the stability limit for nonzero viscous damping. 
It is advisable to satisfy the stability conditions by restricting 
the two eigenvalues of 

1iA  to be complex conjugate in 

addition to 1)(
1
iA , where )(

1iA  is the spectral radius of 

1iA  at the end of the thi  )1(  time step. 

As a result, the stability conditions for the proposed family 
method are found to be: 
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where  

0

u  is referred to be the upper stability limit. It is clear 

that the proposed family method is unconditionally stable as 
1
4 1i

    while it becomes conditionally stable as 1
4 1i

   . 

Some members of this family method are of great interest and 
will be studied next. The symbols of PFM1, PFM2 and PFM3 
are used to represent the members of the proposed family 
method with 0  , 1/4 and 1/2, respectively, in addition to 

1 / 2  . 

Fig. 1 shows the variations of spectral radii with 
0

/t T  for 

different values of 
1i

  . In each plot of Fig. 1, a unit spectral 

radius is generally found in each curve although the curve 
may have an abrupt change of slope, where instability occurs 
since its spectral radius becomes greater than 1. Fig. 1-a 
shows that PFM1 is only conditionally stable for any value of 

1i
   while PFM2 and PFM3 are unconditionally stable in 

correspondence to the cases of 1 1i    and 1 2i    as shown 

in Figs. 1-b and 1-c. The curve with 1 1i    is the result for a 

linear elastic system in each plot of Fig. 1. 

 
Fig. 1.  Variations of spectral radius with 0/t T  for different members of the 

proposed family method  

B. Accuracy 

Variations of relative period errors with 
0

/t T  are shown 

in Fig. 2. It is found that the absolute relative period error, in 
general, increases with the increase of 

0
/t T  as 

1i
   and   

are given in each plot. In addition, the relative period error of 
each integration method is relatively very small and shows 
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insignificant difference as 
0

/ 0.05t T  . This implies that 

each integration method can provide a reliable solution with 
comparable accuracy, if 

0
/ 0.05t T   is met for the modes of 

interest. The results for a linear elastic system are shown in 
Fig. 2-c since the case of 

1
1

i
    is considered in this plot. In 

general, PFM1 will lead to period shrinkage while period 
elongation is found for PFM2 and PFM3. It is also found that 
period distortion increases with the increase of   for a given 

value of 
0

/t T . 

 
Fig. 2.  Variations of relative period errors with 0/t T  for different 1i  , 

where 0T  is the natural period determined from initial structural properties. 

 
It is found that there is no numerical dissipation [11-12, 

17-18] for the proposed family method for a zero viscous 
damping ratio since 1

2
A  which is manifested from the 

second line of (7). 

IV. IMPLEMENTATION FOR MULTIPLE DEGREE OF FREEDOM 

SYSTEM 

After obtaining the numerical properties of the proposed 
family method, it is of great interest to confirm the analytical 
results and study computational efficiency. For this purpose, 
an implementation of the proposed family method is 
sketched, and it can be written as: 
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where Ψ  is a coefficient matrix for a multiple degree of 
freedom system in correspondence to   for a single degree 

of freedom system and is: 
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where 

0
C  is the damping matrix, determined from the initial 

structural properties, and 
0

K  is the initial stiffness matrix. 

0
C  and 

0
K  will remain invariant for a complete integration 

procedure. A constant damping matrix is often assumed, i.e., 

0
C C , while the stiffness matrix K  is, in general, different 

from the initial stiffness 
0

K  for a nonlinear system.  

 The displacement vector is computed by using the second 
line of (8) and then the restoring force vector corresponding 
to this displacement vector is determined from an assumed 
force-displacement model. Thus, 

1ir  is used to replace 
1iKd  

to reflect the force-displacement relationship for a nonlinear 
system. The use of the second line of (8) to determine 

1id  

can be alternatively written and it is numerically equivalent to 
solve the equation of: 
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Although the proposed family method can have an explicit 
implementation it requires solving this equation to yield the 
next step displacement vector for each time step. At first 
glance, it seems to consume more computational efforts when 
compared to a general explicit method since a triangulation 
and a substitution are needed if a direct elimination method is 
used. However, the triangulation of    2

0 0t t    M C K  is 

needed to be conducted only once since it remains unchanged 
for a complete integration procedure if t  is a constant in 
addition to the invariant of 

0
C  and 

0
K . 

 It is computationally efficient if 
1iv  does not obtain from 

the third line of (8) since it involves a substitution for each 
time step. Alternatively, the 

1iv  can be determined by using 

the following equation: 
 

1
1

i i
i t





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
d d

v  (11) 

 
This relationship is simply derived from the second and third 
lines of (8) and it involves no substitution for each time step. 
Finally, the first line of (8) can be used to compute 

1ia  after 

determining 
1id  and 

1iv .  

V. NUMERICAL ILLUSTRATIONS 

To verify the numerical properties of the proposed family 
method, some numerical examples are examined. On the 
other hand, in order to emphasize the advantages of involving 
no nonlinear iterations and the possibility of unconditional 
stability, the computational efficiency of the proposed family 
method is also studied through recorded CPU time in contrast 
to NEM and the well-known constant average acceleration 
method (AAM). 

A. Example 1 

A two-story shear building is considered. The floor beams 
and slabs of the structure are assumed to be flexurally rigid. 
The lumped masses are taken as 4

1
10m  kg  and 5

2
10m  kg  

for the bottom and top floors, respectively. To simulate 
different stiffness properties, the stiffness of each story is 
taken to be in the following form: 
 

0 1k k u      (12) 

 
where 

0
k  is the initial stiffness and u  is a story drift. The 

nonlinearity arises from the story drift by choosing 0  . In 
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general, the initial stiffness is taken as 8

0
10k  N/m  for the 

bottom story while for the top story it is taken as 6

0
10k   

N/m . The natural frequencies of the structure are 3.15 and 
100.50 rad/sec  based on the initial stiffness matrix. Notice 
that the system is intended to have a relatively high second 
mode so that the unconditional stability can be illustrated. To 
simulate a linear elastic system, an instantaneous stiffness 
softening system and an instantaneous stiffness hardening 
system, three different values of 

1
  and 

2
  are taken for the 

nonlinear terms for the bottom and top stories. 
 
S1 1 2 0    linear elastic  

S2 1 2 0.5     instantaneous stiffness softening 

S3 1 2 0.5    instantaneous stiffness hardening 

 
The three systems are excited by an acceleration of 10sin(5 )t  

at the base. The results obtained from NEM with 0.001t   
sec  are considered as reference solutions for comparison. 
Meanwhile, numerical results are also obtained from NEM 
with 0.03t  sec , and PFM3 with 0.06t   sec .  

 
Fig.3.  Displacement response to base acceleration of 10sin(5 )t  for S1 

 
Numerical results for S1 are shown in Fig. 3. The solutions 

obtained from NEM with 0.03t  sec  become unstable in 
the very early response while those obtained from PFM3 with 

0.06t  sec  are reliable. It is clear that instability is due to 
the violation of upper stability limit 2 if using NEM while 
unconditional stability is indicated by the solutions obtained 
from PFM3 since it remains stable for the value of  2

0
  as 

large as 6.03 for the second mode. The response contribution 
from the second mode to the total response is insignificant 
since reliable solutions can be achieved for PFM3, where the 
first mode is accurately integrated while a significant period 
distortion is found in the second mode. 

The displacement responses for S2 are shown in Fig. 4. In 
addition, the response time histories of relative period error, 
instantaneous degree of nonlinearity and upper stability limit 
are plotted in Fig. 5. Reliable solutions are obtained from 
PFM3 with 0.06t  sec  since the relative period error is 
small for the first mode, as shown in Fig. 5-a although the 
second mode shows significant period distortion as indicated 
in Fig. 5-b. Figs. 5-c and 5-d reveal that the instantaneous 
degree of nonlinearity of both modes are always less than or 

equal to 1. Therefore, a stable computation can be achieved 
for PFM3 since they can have unconditional stability for an 
instantaneous stiffness softening system. Fig. 5-f reveals that 
the upper stability limit of the second mode is violated, where 

   2 2~

0 0
3.02 u     is found if using NEM with the time step of 

0.03t  sec . Hence, instability occurs. It is worth noting 
that no curves for PFM3 in Figs. 5-e and 5-f are because that 
the upper stability limit is infinite for an instantaneous 
stiffness softening system if using PFM3. 

 
Fig.4.  Displacement response to base acceleration of 10sin(5 )t  for S2 

 

 
Fig.5.  Response time histories to base acceleration of 10sin(5 )t  for S2 

 
 Fig. 6 shows the displacement responses for S3 and the 
corresponding response time histories of relative period 
error, instantaneous degree of nonlinearity and upper 
stability limit are plotted in Fig. 7. It seems that PFM3 with 

0.06t  sec  gives acceptable solutions. This is because 
that the relative period error is small for the dominant first 
mode, as shown in Fig. 7-a, although a very large relative 
period error is found in the second mode, as shown in Fig. 
7-b. However, the most important aspects are that PFM3 is 
unconditionally stable as 

1
2

i
    and both Figs. 7-c and 7-d 

show that  1

i
  and  2

i
  are less than about 1.8. Since  1

i
  and 

 2

i
  are less than 2 there is no upper stability limit for PFM3 

as shown in Figs. 7-e and 7-f. Since Figs. 7-c and 7-d show 
that  1 1

i
   and  2 1

i
   for the two modes, the upper stability 

limit for each mode for NEM is shrunk. As a result, the use of 
0.03t  sec  leads to instability in the early response 

because    2 2~

0 0
3.02 u     as shown in Fig. 7-f. This example 
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illustrates the superiority of PFM3 in the step-by-step 
solution of a nonlinear system since it can have unconditional 
stability for a certain instantaneous stiffness hardening 
systems in addition to a linear elastic system and an 
instantaneous stiffness softening system. 

 
Fig.6.  Displacement response to base acceleration of 10sin(5 )t  for S3 

 

 
Fig.7.  Response time histories to base acceleration of 10sin(5 )t  for S3 

 

 
Fig. 8.  Displacement responses to TCU075 and corresponding hysteretic 
loops for PFM3 

 

B. Example 2 

A single degree of freedom system with an elastoplastic 
behavior is considered in this example. The lumped mass and 
the stiffness for the system are taken to be 44 10  kg  and 

62.56 10  N/m , respectively. The initial natural frequency is 
found to be 8 rad/sec . The yielding strength is assumed to be 

46 10 N  for both tension and compression. The system is 
subjected to the ground acceleration record of TCU075 with 
a peak ground acceleration of 0.5g. TCU075 is a near-fault 
ground motion record and was collected by the Central 
Weather Bureau during the Chi-Chi earthquake.  

Numerical results are shown in Fig. 8. Numerical solutions 
obtained from NEM with a time step of 0.005t  sec  are 
considered as reference solutions for comparisons. Both 
NEM and PFM3 with the time step of 0.03t  sec , which 
corresponds to 

0
/ 0.04t T  , are used. In Fig. 8-a, the 

displacement responses obtained from NEM and PFM3 are 
very close to the reference solutions. A slight difference 
between the results obtained from NEM and PFM3 and the 
reference solutions might be due to the fact that the yielding 
point is not exactly captured. It is apparent that the pulse-like 
wave has significant influence on the seismic response of the 
structure, because it imposes high seismic energy on the 
structure. 

C. Example 3 

To study the computational efficiency of the proposed 
family method, a n -degree-of-freedom spring-mass system 
as shown in Fig. 9 is considered.  

 
Fig. 9.  A n-degree of freedom spring-mass system 
 
The structural properties of the system are selected to be 

210  kg
i

m   and  27

110 1  N/mi i ik u u 
      for 1, ,i n  . 

Although a zero damping ratio is assumed in this example a 
viscous damping matrix is included in the equations of 
motion for completeness. The system is excited by harmonic 
load of sin( )t  at the free end. The n  values of 500, 1000 

and 2000 are chosen so that the systems with 500-DOF, 
1000-DOF and 2000-DOF are simulated. The lowest natural 
frequency is 3.14 rad/sec  for the 500-DOF system before the 
system deforms. Similarly, it is found to be 1.57 and 0.785 
rad/sec  for the 1000-DOF and 2000-DOF systems. The 
highest natural frequency is found to be 2000.00 rad/sec  for 
all the three systems. NEM, AAM and PFM3 are applied to 
compute the displacement responses. Since the highest 
natural frequency is as large as 2000.00 rad/sec  the time step 
of 0.001t  sec  is chosen to be used by NEM so that the 
stability condition can be satisfied. The numerical solution 
obtained from this time step can be considered as a reference 
solution since the time step is much smaller than that required 
by accuracy consideration. 

The displacements of the largest degree of freedom for the 
500-DOF, 1000-DOF and 2000- DOF systems are shown in 
Fig. 10. AAM and PFM3 give accurate solutions for the 
500-DOF system if 0.05t  sec  is used. Meanwhile, they 
also lead to reliable results for the 1000-DOF system if using 

0.10t  sec  and for the 2000-DOF system if 0.15t   
sec is used. It is clear that PFM3 can have unconditional 
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stability for instantaneous stiffness softening systems since 
the product of the time step and the highest natural frequency 
is as large as 100 for the 500-DOF system, 200 for the 
1000-DOF system and 300 for the 2000-DOF system. 

 
Fig. 10.  Displacement responses for 500-DOF, 1000-DOF and 2000-DOF 
spring-mass systems 
 
 The CPU time consumed in each dynamic analysis for 
using NEM, AAM and PFM3 is recorded. As a result, Table I 
summarizes the recorded CPU time for all the analyses. For 
brevity, the CPU time consumed by NEM with 0.001t   
sec  is denoted by (NEM)CPU . On the other hand, the symbols 
of (AAM)CPU  and (PFM3)CPU  are introduced to denote the CPU 
time consumed for using AAM and PFM3, respectively. It 
seems that the time step of 0.05 sec  is the largest allowable 
time step to yield reliable solutions for the 500-DOF system 
while those of 0.10 sec  and 0.15 sec  are for the 1000-DOf 
system and 2000-DOF system, respectively.  

TABLE I. COMPARISON OF CPU TIME 

 
 

The 4th column of Table I reveals that the CPU time 
consumed by PFM3 for each system is much smaller than 
that for NEM or AAM, which is shown in the 2nd and 3rd 
columns. NEM is computationally inefficient to solve this 
type of problems since it can only have conditional stability 
and thus the upper stability limit is a very stringent limitation 
in selecting an appropriate time step for the high frequency of 
2000 rad/sec . In fact, a time step of 0.001t  sec  is needed 
to meet the upper stability limit for the three different systems 
if using NEM. Although AAM has unconditional stability 
and a large time step can be selected based on accuracy 
consideration it still consumes many computational efforts. 
This is because an iteration procedure is generally needed in 
each time step for an implicit method and it is very time 
consuming for a matrix of large order.  

The explicitness of each time step and the unconditional 
stability explain why PFM3 can save many computational 
efforts. The explicitness of each time step allows PFM3 
involve no nonlinear iterations and the unconditional stability 
allow it select an appropriate time step without considering 
the upper stability limit. 

 Columns 5 and 6 reveal that the ratio of the CPU time 
consumed by PFM3 over that consumed by NEM or AAM 
decreases with the increase of the total number of the degree 
of freedom. This implies that the computational efficiency of 
PFM3 becomes more significant for a system with a large 
number of the degree of freedom when compared to NEM 
and AAM. Both the 5th and 6th columns show that the ratio of 
the CPU time is smaller than 1% and consequently the saving 
of computational efforts is very significant for PFM3.  

VI. CONCLUSIONS 

A novel family of structure-dependent explicit methods is 
presented. It can have unconditional stability if 1

4 1i
    is 

chosen. Whereas, it becomes conditional stable as 1
4 1i

    is 

used. In general, the proposed family method is second-order 
accurate and has no numerical dissipation for 1 / 2  . For 

the proposed family method, it is very promising to choose 
PFM3 for practical applications since it has second-order 
accuracy and the possibility of unconditional stability for 
nonlinear systems. PFM3 seems very competitive with other 
integration methods for solving a general structural dynamic 
problem, whose responses are dominated by low frequency 
modes. This is because it can integrate the unconditional 
stability and the explicitness of each time step. Hence, it can 
save many computational efforts when compared to a 
conditionally stable explicit method, where the step size is 
limited, and an implicit method, where an iterative procedure 
is often needed. 
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