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Abstract—Strict stability is the kind of stability that can give
us some information about the rate of decay of the solution.
There are some results about strict stability of functional
differential equations. In this paper, we shall extend strict
stability to Impulsive functional differential equations in which
the state variables on the impulses are related to time delay.
By using Lyapunov functions and Razumikhin technique, some
criteria for strict stability for functional differential equations,
in which the state variables on the impulses are related to
the time delay are provided, and we can see that impulses do
contribute to the system’s strict stability behavior.

Index Terms—Impulsive functional differential equation,
Strict stability, Lyapunov function, Razumikhin technique,
Time delay.

I. INTRODUCTION

Impulses can make unstable systems stable, so it has
been widely used in many fields such as physics, chemistry,
biology, population dynamics, industrial robotics and so
on. The impulsive differential equations represent a more
natural framework for mathematical modeling of many real
world phenomena than differential equations. In recent years,
significant progress has been made in the theory of impulsive
differential equations[3-10] and references therein. In addi-
tion to that, functional differential equations have a wide
application in our society. So it is important to study them.
There are some results on functional differential equations.
We can easily see that in the previous works about impulsive
functional differential equations the authors always suppose
that the state variables on the impulses are only related to the
present state. But in most cases, it is more applicable that the
state variables on the impulses the we add are also related to
the former state. But there are rare results about impulsive
functional differential equations in which state variable on
the impulses are related to the time delay.
Strict stability is analogous to Lyapunovs uniform asymptotic
stability. It gives us some information about the rate of decay
of the solutions. In[1], the authors have explored further the
definitions of strict stability of differential equations and have
gotten some results. In [9] authors have gotten some results
about the strict stability of impulsive functional differential
equations in which the state variables on the impulses are not
related to the time delay. In this paper, we will consider the
strict stability of impulsive functional differential equations
in which the state variables on the impulses are related to
the time delay.
This paper is organized as follows. In Section II, we intro-
duce some basic definitions and notations.
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In Section III, some criteria in the form of theorem for
strict stability of impulsive functional differential equations is
obtained in which state variables on the impulses are related
to the time delay. Finally, concluding remarks are given in
Section IV.

II. PRELIMINARIES

consider the following Impulsive functional differential
equation in which the state variables on the impulses are
related to time delay.

x
′
(t) = f(t, xt), t ≥ t0 t 6= τk

x(τk) = Ik(x(τ−k )) + Jk(x(τ−k − τ)), k = 1, 2, 3, ..., (1)

where x ∈ Rn, f∈ C[R+×D,Rn], Ik, Jk ∈ C[Rn, Rn], D
is an open set in PC([−τ, 0], Rn), where τ = constant >
0, PC([−τ, 0, Rn]) = {φ : [−τ, 0] → Rn, φ(t) is continu-
ous everywhere except a finite number of points t̂ at which
φ(t̂+) and φ(t̂−) exist and φ(t̂+) = φ(t̂−)}. f(t, 0) = 0, for
all t ∈ R, Ik(0) ≡ 0, Jk(0) ≡ 0, 0 = τ0 < τ1 < τ2 <
τ3 < ... < τk < ..., τk →∞, for k →∞ and x(t+) =
lims→t+ x(s) , x(t−) = lims→t− x(s).
For each t ≥ t0, xt ∈ D is defined by xt(s) = x(t +
s), − τ ≤ s ≤ 0. For φ ∈ PC([−τ, 0, Rn]), |φ|1
is defined by |φ|1 = sup−τ≤s≤0||φ||, |φ|2 is defined by
|φ|2 = inf−τ≤s≤0||φ||, where ||.|| denotes the norm of a
vector Rn. We can see that x(t) ≡ 0 is a solution of (1)
which we call the zero solution.
A function x(t) is called a solution of (1) with the initial
condition
xσ = ϕ
where ρ ≥ t0 and ϕ ∈ PC([−τ, 0, Rn]), the initial value
problem of equation (1) is

x
′
(t) = f(t, xt), t ≥ t0 t 6= τk

x(τk) = Ik(x(τ−k )) + Jk(x(τ−k − τ)), k = 1, 2, 3, ...,

xσ = ϕ (2)

Throughout this paper we let the following hypotheses hold.

(H1) For t ∈ [σ − τ, σ], the solution x(t;σ, ϕ) coincides
with the function ϕ(t− σ)
(H2) For each function x(s) : [σ − τ,∞] → Rn, which
is continuous everywhere except at the point {τk} at
which x(τ+k ), x(τ−k ) exist and x(τ+k ) = x(τk), f(t, xt) is
continuous for almost all t ∈ [σ,∞) and at the discontinuous
points f is right continuous.
(H3) f(t, φ) is Lipschitzian in φ in each compact set in
PC([−τ, 0], Rn).
(H4) The functions Ik, Jk, k = 1, 2, ..., are such that if
x ∈ D, Ik 6= 0 and Jk 6= 0 , then Ik(x)+Jk(x(t−τ)) ∈ D.
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Under the hypothesis (H1) − (H4) , there is a unique
solution of problem(2) throughout (σ, ϕ).
we using the following notation:
S(ρ) = {x ∈ Rn : ||x|| < ρ},
K = {a ∈ C[R+, R+] : a(t) is monotone strictly increasing
and a(0) = 0},
K1 = {w ∈ C[R+, R+] : w(t) ∈ K and
0 < w(s) < s, s > 0},
PC1(ρ) = {φ ∈ PC([−τ, 0], Rn) : |φ|1 < ρ},
PC2(θ) = {φ ∈ PC([−τ, 0], Rn) : |φ|2 > θ}.
We have the following definitions.
Definition 2.1. The trivial solution of (1) is said to be
(1) strictly stable, if for any σ ≥ t0 and ε1 > 0 , there
exist a δ1 = δ1(σ, ε1) such that ϕ ∈ PC1(δ1) implies
||x(t;σ, ϕ)|| < ε1 for t ≥ σ, and for every 0 < δ2 ≤ δ1 ,
there exist an 0 < ε2 < δ2 such that ϕ ∈ PC2(δ2) implies
ε2 < ||x(t;σ, ϕ)||, t ≥ ϕ.
(2) strictly uniformly stable, if δ1, δ2 and ε2 in (SS) are
independent of σ.
Definition 2.2. The function V (x) : [t0,∞] × S(ρ) → R+

belongs to class V0 if:
(1) the function V is continuous on each of the sets
[τk−1, τk)× S(ρ) and for all t ≥ t0, V (t, 0) ≡ 0;
(2)V (t, x) is locally Lipschitzian in x ∈ S(ρ);
(3) For each k = 1, 2, ..., there exist finite limits
lim(t,y)→(τ−

k
) V (t, y) = V (τ−k , x)

lim(t,y)→(τ+
k
) V (t, y) = V (τ+k , x)

with V (τ+k , x) = V (t, x) satisfied.
Definition 2.3 Let V ∈ V0, for (t, x) ∈
[τk−1, τk)× S(ρ), D+V is defined as
D+V (t, x(t)) = limx→δsup

1
δ {V (t + δ, x(t + δ)) −

V (t, x(t))}

III. MAIN RESULT

Now we consider the strict stability of the impulsive
functional differential equation (1). We have the following
results.
Theorem 3.1: Assume that
(i) There exist a1, b1 ∈ K,V1 ∈ V0 such that
b1(||x||) ≤ V1(t, x) ≤ a1(||x||),
for all (t, x) ∈ [t0 − τ,∞)× S(ρ);
(ii) For any solution x(t) of (2) , V1(t + s, x(t + s)) ∈
V1(t, x(t)) for s ∈ [−τ, 0], implies that D+V1(t, x(t)) ≤ 0.
(iii) For k ∈ Z+ and x ∈ S(ρ),
V1(τk, Ik(x(τ−k ))+Jk(x(τ−k −τ))) ≤ 1+bk

2 [V1(τ−k , x(τ−k ))+
V1(τ−k − τ, x(τ−k − τ))], where dk ≥ 0 and

∑∞
k=1 dk <∞.

(iv) There exist a2, b2 ∈ K, V2 ∈ V0 such that
b2(||x||) ≤ V2(t, x) ≤ a2(||x||),
for all (t, x) ∈ [t0 − τ,∞)× S(ρ);
(v) For any solution x(t) of (2) , V2(t + s, x(t + s)) ∈
V2(t, x(t)) for s ∈ [−τ, 0], implies that D+V2(t, x(t)) ≤ 0.
(vi) For k ∈ Z+ and x ∈ S(ρ),
V2(τk, Ik(x(τ−k ))+Jk(x(τ−k −τ))) ≥ 1−ck

2 [V2(τ−k , x(τ−k ))+
V2(τ−k − τ, x(τ−k − τ))], where 0 ≤ ck < 1 and∑∞
k=1 ck <∞.

Then the trivial solution of (2) is strictly uniformly
stable.
Proof : Since

∑∞
k=1 dk <∞,

∑∞
k=1 ck <∞

it follows that
∏∞
k=1(1 + dk) = M and

∏∞
k=1(1− ck) = N,

obviously 1 ≤M <∞, 0 < N ≤ 1.
Let 0 < ε1 < ρ and σ ≥ t0 be given and σ ∈ [τk+1, τk)
for some k ∈ Z+. Choose δ1 = δ1(ε1) > 0 such that
Ma1(δ1) < b1(ε1)
Then we claim that ϕ ∈ PC1(δ1) implies
||x(t)|| < ε1, t ≥ σ
Obviously for any t ∈ [σ − τ, σ], there exists a θ ∈ [−τ, 0]
such that
V1(t, x(t)) = V1(σ + θ, x(σ + θ)) ≤ a1(||x(σ + θ)||) =
a1(||xσ(θ)||) = a1(||ϕ(θ)||) ≤ a1(δ1).
Then we claim that

V1(t, x(t)) ≤ a1(δ1), σ ≤ t < τk. (3)

If inequality (3) does not hold, then there is a t̂ ∈ (σ, τk)
such that

V1(t̂, x(t̂)) > a1(δ1) ≥ V1(σ, x(σ)) (4)

which implies that there is a ť ∈ (σ, t̂] such that

D+V1(ť, x(ť)) > 0 (5)

and

V1(ť+ s, x(ť+ s)) ≤ V1(ť, x(ť)), s ∈ [−τ, 0].
By condition (ii) , which implies that D+V1(ť, x(ť)) ≤ 0.
This contradicts inequality(5), so inequality (3) holds.
In view of inequality (3) and condition (iii) , we have
V1(τk, x(τk) = V1(τk, Ik(x(τ−k )) + Jk(x(τ−k − τ))) ≤
1+bk

2 [V1(τ−k , x(τ−k )) + V1(τ−k − τ, x(τ−k − τ))] ≤
(1 + bk)a1(δ1)
Next we prove that

V1(τ, x(τ) ≤ (1 + bk)a1(δ1), τk ≤ t < τk+1 (6)

If inequality (6) does not hold, then there is an ŝ ∈ (τk, τk+1)
such that
V1(ŝ, x(ŝ)) > (1 + bk)a1(δ1) ≥ V1(τk, x(τk))
which implies that there is an š ∈ (τk, ŝ) such that

D+V1(š, x(š)) > 0 (7)

and
V1(š+ s, x(š+ s)) ≤ V1(š, x(š), s ∈ [−τ, 0].
By condition (ii), which implies that D+V1(š, x(š)) ≤ 0.
This contradicts inequality (7), so inequality (6) holds.
In view of inequality (6) and condition (iii), we have
V1(τk+1, x(τk+1) = V1(τk+1, Ik+1(x(τ−k+1)) +

Jk+1(x(τ−k+1 − τ))) ≤ 1+bk+1

2 [V1(τ−k+1, x(τ−k+1)) +
V1(τ−k+1 − τ, x(τ−k+1 − τ))] ≤ (1 + bk+1)a1(δ1)

By simple induction, we can prove in general, that for
k = 0, 1, 2, ...,
V1(t, x(t)) ≤ (1 + bm+k)...(1 + bk)a1(δ1), τm+k ≤ t <
τm+k+1.
V1(τm+k+1, x(τm+k+1)) ≤ (1 + bm+k+1)(1 + bm+k)...(1 +
bk)a1(δ1).
This together with inequality (3) yields
V1(t, x(t)) ≤Ma1(δ1)
From this and condition (i) we have
b1(||x(t)||) ≤ V1(t, x(t)) ≤Ma1(δ1) < b1(ε1), t ≥ σ
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Thus, we have
||x(t)|| < ε1, t ≥ σ.
Now, Let 0 < δ2 ≤ δ1 and choose 0 < ε2 < δ2 such that
a2(ε2) < Nb2(δ2).
Next we claim that ϕ ∈ PC2(δ2) implies ||x|| > ε2, t ≥ σ.
If this holds. ϕ ∈ PC1(δ1) ∩ PC2(δ2) implies
ε2 < ||x||ε1, t ≥ σ.
Obviously for any t ∈ [σ − τ, σ], there exists a θ ∈ [−τ, 0]
such that
V2(t, x(t)) = V2(σ + θ, x(σ + θ)) ≥ b2(||x(σ + θ)||) =
b2(||xσ(θ)||) = b2(||ϕ(θ)||) ≥ b2(δ2).
Then we claim that

V2(t, x(t)) ≥ b2(δ2), σ ≤ t < τk. (8)

If inequality (8) does not hold, then there is a t̄ ∈ (σ, τk)
such that

V2(t̄, x(t̄)) < b2(δ2) ≤ V2(σ, x(σ)) (9)

which implies that there is a t1 ∈ (σ, t̄]such that

D+V2(t1, x(t1)) < 0 (10)

and
V2(t1 + s, x(t1 + s)) ≥ V2(t1, x(t1)), s ∈ [−τ, 0].
By condition (v), this implies that D+V2(t1, x(t1)) ≥ 0.
This contradicts inequality (10), so inequality (9) holds.
In view of inequality (3) and condition (iii) , we have
V2(τk, x(τk) = V2(τk, Ik(x(τ−k )) + Jk(x(τ−k − τ))) ≥
1−ck

2 [V2(τ−k , x(τ−k )) + V2(τ−k − τ, x(τ−k − τ))] ≥
(1− ck)b2(δ2)
Next we prove that

V2(t, x(t)) ≥ (1− ck)b2(δ2), τk ≤ t < τk+1 (11)

If inequality (11) does not hold, then there is an
ŝ ∈ (τk, τk+1) such that
V2(r̂, x(r̂)) < (1− ck)b2(δ2) ≤ V2(τk, x(τk))
which implies that there is an ř ∈ (τk, r̂) such that

D+V2(ř, x(ř)) < 0 (12)

and
V2(ř + s, x(ř + s)) ≥ V2(ř, x(ř), s ∈ [−τ, 0].
By condition (v), which implies that D+V2(ř, x(ř)) ≥ 0.
This contradicts inequality (12), so inequality (11) holds.
In view of inequality (8) and condition (vi), we have
V2(τk+1, x(τk+1) = V2(τk+1, Ik+1(x(τ−k+1)) +

Jk+1(x(τ−k+1 − τ))) ≥ 1−ck+1

2 [V2(τ−k+1, x(τ−k+1)) +
V2(τ−k+1 − τ, x(τ−k+1 − τ))] ≥ (1− ck+1)b2(δ2)
By simple induction, we can prove in general, that for
k = 0, 1, 2, ...,
V2(t, x(t)) ≥ (1 − cm+k)...(1 − ck)b2(δ2), τm+k ≥ t <
τm+k+1.
V2(τm+k+1, x(τm+k+1)) ≥ (1− cm+k+1)(1− cm+k)...(1−
ck)b2(δ2).
This together with inequality (9) yields
V2(t, x(t)) ≥Mb2(δ2)
From this and condition (iv) we have
a2(||x(t)||) ≥ V2(t, x(t)) ≥ Nb2(δ2) > a2(ε1), t ≥ σ
Thus, we have
||x(t)|| > ε2, t ≥ σ.

Thus , the zero solution of (2) is strictly uniformly stable.
The proof of Theorem is complete.

IV. CONCLUSION

In this paper, the strict stability of impulsive functional
differential equations in which the state variables on the
impulses are related to the time delay is considered. By using
Lyapunov functions and Razumikhin technique, we have
obtained some results for the strict stability. Strict stability
theorem for impulsive functional differential equation has
been extended to impulsive functional differential equations
in which the state variables on the impulses are related
to the time delay. We can see that impulses do contribute
to a systems of strict stability behavior. Viewing its scope
in future, we will do some further research on impulsive
functional differential equations in which the state variables
on the impulse are related to the time delay.
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