
 

 
Abstract — The new approach proposed by the authors in 

this paper consists of implementing friction pendulums having 
the sliding surface profile based on a polynomial function of 
superior order. This seismic isolation system permits, for each 
surface, a greater flexibility in controlling the oscillations of the 
upper structure, in terms of displacements or dissipated 
energy, by using three parameters to control the force-
displacement relation.  

Index Terms—isolation system, dissipated energy, friction 
pendulum, finite element analysis 
 

I. INTRODUCTION 

 
or safety and integrity reasons against earthquakes, 
effective and reliable techniques are desired. The 
optimum solution against earthquake effects is to 

control and limit the transfer of energy from the ground to a 
superstructure that means to dissipate this energy [1]. 

For these reasons, the actual trend is represented by using 
the friction pendulum. This is a sturdy passive device, 
capable to sustain significant loads and to assure the control 
of oscillating structures [2].  

Friction pendulums can be classified, according to the 
number of sliding surfaces, in mono-armature or multi-
armature [3]. While classical friction pendulum bearings 
contain one or more cylindrical or spherical sliding surfaces, 
each having a radius of curvature R and friction coefficient 
µ, they provide just pairs of two parameters controlling the 
dynamic behaviour of a structure isolated by this kind of 
device. The friction pendulum system with one concave 
spherical shaped sliding surface is presented in [4] while the  
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double concave bearing was presented in [5]. 
A new base isolator, called a variable curvature friction 

pendulum system, was introduced by Tsai , Chiang and 
Chen in [6]. The difference between the variable curvature 
friction pendulum system and the friction pendulum system 
is that the isolator’s radii can be lengthened with the 
increase of the isolator displacement. Pranesh and Sinha 
introduced in [7] and [8] a variable curvature friction 
pendulum system with the sliding surface based on an 
ellipse.  The major axis of the ellipse can be lengthened with 
increase of sliding displacement. They have made analysis 
in terms of behaviour of the isolated structure, without being 
analyzed the behaviour of the friction pendulum itself. 

The new approach proposed by the authors in this paper 

consists of implementing friction pendulums having the 

sliding surface profile based on a polynomial function of 

superior order. This seismic isolation system permits, for 

each surface, a greater flexibility in controlling the 

oscillations of the upper structure, in terms of displacements 

or dissipated energy, by using three parameters to control 

the force-displacement relation. Namely, these parameters 

are the friction coefficient µ, and two characteristic values 

of the curve on which the sliding surface is constructed. 

Opposite to classical systems, where the contact between 

the slider and the sliding surface assured almost uniformly 

distributed contact stress even for metallic components, the 

new devices make use of an elastic element between the 

slider and the sliding surface. A quasi-uniform pressure 

distribution on the sliding surface can be obtained in this 

way. Static and dynamic analyses were performed using the 

finite element method confirming that the use of an 

elastomeric element is suitable for this purpose.  
 

II. MATHEMATICAL MODEL OF SIMPLE FRICTION 

PENDULUM WITH SLIDING SURFACES GENERATED BY 

POLYNOMIAL FUNCTIONS 

 
In the case of the simple friction pendulum, with 

cylindrical or spherical sliding surface, the control of the 
movement can be made with two parameters: the radius of 
the pendulum R and the friction coefficient  .  

The height variation h expressed in terms of   and then 
in terms of displacement u, is: 
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 1 cos 1 cos arcsin
u

h R R
R

        
 

          (1) 

The friction force value is  

 fF N sign u                    (2) 

The signum function is equal to -1 or +1 depending on 
whether u  is negative or positive, respectively. If we 
consider the motion in the positive direction of Ox axis, we 
can take   1sign u  , so Ff    expressed in terms of  is 

cosfF G  , where G is the vertical loading resulting 

from the structure.  
 

 

 
 

Fig. 1.  A simple friction pendulum scheme with the forces acting on 
circular sliding surface 

 
On the interval  max0,u  the dissipated energy due to 

friction is: 

 
max

0

u

d fE F u du               (3) 

or  
max max

0 0

cos cos
u u

dE G du G du      . 

By changing the variable sinu R   , one obtain  
cosdu R d  , and consequently the integral calculated 

on  max0,u  becomes an integral calculated on  max0, , 

hence the dissipated energy becomes: 
max

2 2

0

cosdE GR d


           (4) 

where 

max
max arcsin

u

R
             (5) 

Solving the integral from (4), we obtain: 

     max max max
1

sin cos
2dE GR         (6) 

The dissipated energy on the interval  max0,u , 

expressed in terms of maximum displacement maxu  is: 

2 2max max
max2

1
arcsin

2d
u u

E GR R u
R R


      

  
  (7) 

 
For the friction pendulum with the sliding surface 

generated by polynomial functions we consider the 
equation of the curve that generates the sliding surface as: 

by a u          (8) 

To simplify calculations, we consider further only the 
positive Ox axis, i.e. positive values of u, because the curve 
is symmetrical to the vertical Oz axis. 

 

 
 
 

Fig. 2.  A friction pendulum scheme with polynomial sliding surface 

 

Norms limit the value of the angle to max 36   ; for the 

polynomial functions having 2, 2,5b b   and 4b   we 

calculated the maximum displacements maxu  and the 

maximum heights maxh  calculated for different values of 

a , presented in the table below.  
 

        TABLE I 

   b a maxu

 
maxh

 

   2 

0,242 1,50
1 

0,5
45 

0,23 1,57 0,5
66 

0,3 1,81 0,9
82 

2,5 

0,275 1,03
7 

0,3
01 

0,3 0,97
9 

0,2
60 

0,25 1,1 0,3
48 

4

0,18 1,00
5 

0,1
83 

0,2 0,96
8 

0,1
75 

0,15 1,06 0,1
89 

      
For a circular sliding surface with the radius 5R  , for 

max 36    we have determined the values of maxu =2,93 

and max 0,948h  .  
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Fig. 3.  Graphical representation of different curves 

that generates the sliding surface 

 
In Fig. 3 we have shown the graphical representation of a 

circular arc with the radius 5R   (with dotted line) and the 

arcs of equations 20,242y u (with dashed line), 

2,50, 275y u (with solid line) and 40,18y u (with dash-

dot  line). 
The dissipated energy is: 

 
max

0

u

d fE F u du           (9) 

where  fF N sign u    is the friction force.  

If we consider the motion in the positive direction of Ox 
axis, we can take   1sign u  , thus cosfF G   . 

Hence, the dissipated energy is: 
max max

0 0

cos cos
u u

dE G du G du             (10) 

At the point A we have 1btg h a b u     . The 

instantaneous displacement in terms of  is:  
1

11 b
u tg

a b
     

          (11) 

and consequently 

 
1

1
1

1

1
2

1 1 1

1 cos

bb
du tg d

a b b
 




     

 

The integral on [0,umax] becomes an integral on 
[ max0, ], where  max  is: 

 1

max max
b

arctg a b u


            (12) 

so: 

 

2
21

max 1

0

1 1 1

1 cos

bb
b

dE G tg d
a b b


  




         (13) 

If we denote  
2

1

b
d

b





and  

2

11 1

1
bc

a b b
     

 we have:  

 for the case that  2b   : 
        

2
2 1 max

max

1 2 1
, , ,cos

2 2 2 cos

d

d
c d d d

E G F
d

 


            
 

1
1

2 2 2

d d



              



       (14) 

where  

 

 

2 11 11
2 22

2

2
2 1 max

1

2
0 max

1 2
, , ,cos

2 2 2

2
12

1 2
1 cos2 2

d dd

d

d d d
F

d
t t

dt
d d

b t





   



     
    

             


 

 
 for 2b  we have: 

max max

max max

cos sin1 2 2ln
2 cos sin

2 2

dE G
a

 


 

      
    

 

  (15) 

  
In Fig. 4 we have represented the dissipated energies for 

the different sliding surfaces generated by the curves 
represented in Fig. 3. One can observe that for higher values 
of u there are significant changes in the dissipated energy 
for the analysed cases.  

 

 
Fig. 4. The dissipated energies for the different sliding surfaces  

 
The kinetic energy of the structure of mass m is given by  

       
2

2k
mv

E   

where v  is the velocity.  
We denote by 

maxpE the maximum potential energy, given 

by: 
        

max maxpE mgh  

So, if friction is not considered 

maxk p pE E E                   (16) 

2

max2

mv
mgh mgh   

and thus the maximum velocity, attended for 0u   is 

 max2v g h h              (17) 
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Fig. 5.  The evolution of velocities and the heights 

 
In Fig. 5 we have presented the evolution of velocities 

and the heights while the structure moves from the point of 
maximum vertical displacement to point O ( with 0u  ), 
for different types of sliding surfaces generated by 

20, 242y u (with dashed line), 2,50, 275y u  (with solid 

line),  40,18y u  (with dash-dot line)  and  a circular arc 

with the radius 5R  (with dotted line).   
 If we consider friction, the velocity in point O is given by  
 

 max
2

2 dE
v g h h

m
           (18) 

where dE  is the dissipated energy due to friction when the 

structure slides from point A to point O (see Fig. 2). 
In the next pictures (Fig. 6, Fig. 7, Fig. 8 and Fig. 9) we 

have presented the evolution of velocities, first for the 
sliding without friction (with dash-dot line), next for the 
sliding with energy dissipation due to friction (with solid 
line), for the sliding surfaces generated by a circular arc 

with the radius 5R   (Fig. 6), 2,50, 275y u  (Fig. 7),   

20, 242y u (Fig. 8) and for 40,18y u  (Fig. 9).  Note that 

due to friction the structure no longer climbs to the same 
height it would climb if it were frictionless.  

 

 
 

Fig. 6.  The evolution of velocities for the circular sliding surface, for the 
sliding with and without friction 

 
 

 
 

Fig. 7.  The evolution of velocities for the sliding surface generated by 

2,50, 275y u , for the sliding with and without friction 

 

 
 

Fig. 8.  The evolution of velocities for the  sliding surface generated by 
20,242y u , for the sliding with and without friction 

        
 

 
 

Fig. 9.  The evolution of velocities for the  sliding surface generated by 
40,18y u , for the sliding with and without friction 
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III. FINITE ELEMENT STUDY AND RESULTS 

 
Earthquake isolation systems are devices located at the 

base of overhead structures, which have the aim to reduce 
the structure oscillating period during an earthquake and 
decrease the transmitted energy using frictional dissipation. 

Classical isolation systems, with cylindrical or spherical 
sliding surfaces have the parts made of stainless steel, which 
provides durability. During earthquake, the slider and the 
concave surface of the lower plate maintain contact and 
consequently a relative uniform stress distribution is 
assured. For other types of sliding surfaces, limited contact 
occurs.  

To prevent this kind of inconvenience, namely to obtain a 
continuum contact between the slider and the concave plate, 
it is necessary to insert an elastomeric layer between the 
slider and the sole, as presented in Fig. 10. This layer is 
similar to that used in elastomeric base isolation systems, 
assuring high portability [9]. So we can avoid incomplete 
contact (spotted or linear) and obtaining a controlled 
deformation for fit the concave shape of stationary plate. 

 
 

 

 
Fig. 10.  Friction pendulum with polynomial generated surface  

 
The finite element analysis was made taking into account 

the real-scale model of an earthquake isolation system and 
transposing the whole loads, contacts and supports to virtual 
model using advanced nonlinear analysis software.  

Five curvature cases were analysed, one cylindrical and 
four based on surfaces generated by polynomials, like that 
presented in Fig. 11.  

 
 

Fig. 11.  Different types of sliding surfaces 

 
For all cases, during the first second a vertical increasing 

load was applied, until it reaches the weight of 
superstructure. Afterwards, until the end of the considered 
time interval of 2 seconds, a predetermined course 
(simulating horizontal oscillation during an earthquake) was 
imposed. 
  

TABLE II 

Case 
Pressure  

max. [MPa] 
Contact pressure shape 

2[s] (sole) 

Arc 
 

0.55427 
 

Curve 1 0.22301 

 

Curve 2 0.22059 

Curve 3 0.21550 

Curve 4 0.21313 

 
 
Three main types of contacts were used for seismic 

isolation system components: frictionless contact between 
first concave plate and slider, frictional contact (µ=0.15) 
between second concave plate and sole, bounded contact 
between elastomeric layer and sole, elastomeric layer and 
slider respectively. 

Immediately after applying the vertical load, the sole is 
elastically deformed and in the contact area a contact patch 
is formed due to the pressure exerted by the elastomeric 
layer on the opposite side. This patch can be quantitatively 
evaluated using the contact pressure parameter. After 2 
seconds, during the time period in which the horizontal 
displacement is imposed because the gliding assembly has 
been displaced, the contact patch becomes irregular with a 
slight increase of the pressure value in the rear of the sole, 
as we can see in Table II. 

The normal stress distribution for entire assembly 
together with its maximum value, at the end of the analysed 
period, is presented in the Table III. 
  
 

TABLE III 

Case 
 

Stress  
max.[MP] 

Normal stress 2[s] 
(Assembly) 

Curve 1 0.21997 

Curve 2 0.20032 

Arc 0.19300 

Curve 3 0.17180 

Curve 4 0.17413 

Curve 2 0.20032 

 
From the entire sets of results obtained using finite 

element analysis (FEA) we chose to present the variation of 
the contact pressure between the upper concave plate and 
the slider for all analysed cases, determined after 1 and 2 
seconds respectively. 
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Fig. 12.  Contact pressure between the upper concave plate and the slider 
determined after 1 and 2 seconds respectively 

 
This diagram was obtained evaluating the contact region 

between upper concave plate and slider after the first time 
interval of 1[s] when the load is vertical and pressing the 
assembly and then at the end of the second time interval of 
2[s] when the load is combined (horizontal and vertical). 
 

IV. CONCLUSION 

For classical earthquake isolation systems the dynamic 
response control is limited due to the reduced number of 
control parameters. In order to avoid this deficiency, this 
study shows the optimal way to improve the adjustment of 
elastic characteristics for a large exciter frequency spectrum 
of the earthquake. 

The use of plates with concave surfaces generated by 
polynomials, for the case of friction, ensures higher speed 
near the equilibrium position, thus better conditions to 
restore the position prior to the earthquake. 
 Profile curves generated by polynomial functions show 
the possibilities to achieve the goal of superior, controlled 
energy dissipation.  
 While for the spherical surface the slider has the same 
shape with the concavity of the plate, for the sliding 
surfaces generated by other curves we must  interpose,  
between the slider and lower armature, an elastomeric 
element able to follow the changes of the curvature. Finite 
element analysis proved that the normal stress values are 
reduced in case of use this kind of earthquake isolation 
system; all values for stress magnitude fall in the allowable 
range. 
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