

Abstract—The classical method for buckling analysis of frames
derives the geometric stiffness from the governing equation of
the second order for bending with axial force, resulting in so-
called stability functions that yield the exact solution for
constant flexural stiffness and constant axial force. The
approach to buckling used in the present work is one in which
load is incremented and the determinant of the system matrix,
is monitored. The nonlinear equilibrium equations are solved
using Newton-Raphson method for which number of examples
is given. Consequently fewer elements with the present
formulation (with curvature correction) are needed to yield
results of comparable accuracy. This is demonstrated with the
analysis of several simple example structures by comparing the
results of these examples and the so-called stability functions
(the exact solution).

Index Terms — Beam, frame, buckling, stability functions,
Newton-Raphson method.

I. INTRODUCTION

here are a number of practical phenomena in structures
which simply cannot be described using a linear
formulation. Among these are buckling, the behavior of

cable nets and fabric structures, the formation of plastic
hinges, and the nonlinear material behavior of concrete,
structural collapse.

Elementary theory is a strange mix in which behavior is
described in the '' undeformed configuration '' fig 2. That is,
in elementary theory the effect of deformations even though
they are computed – are neglected when writing the
equations of equilibrium and motion. Biot [1] has used the
structure of fig 1 to characterize these ''geometric''
difficulties which inherent in elementary theory. This
structure is said to be ''geometrically'' unstable.

Real structures are in equilibrium in deformed
configuration fig 3, not their undeformed configuration as
implied by elementary theory. Using the deformed
configuration implies nonlinear analysis in the present study
which will typically involve applying Newton's method.
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In this study the formulation of frame elements for
buckling analysis is based on appropriate interpolation
function for the transverse and axial displacements of the
member (displacement formulation) in which corrections for
the effects of large displacements upon extensional and
flexural stresses are taken into account.

II. SOLUTION TO NONLINEAR EQUILIBRIUM
EQUATION

A structure must satisfy the conditions of equilibrium
(deformed equilibrium in the nonlinear case).

A typical step of this analysis can be described as follows.
Given a fixed joint load {P} matrix and a starting
configuration which is not in equilibrium with this joint load
matrix (if it were there would be no analysis to perform), the
following sequence of actions must be taken:

▪ Compute the unbalanced load {P'}. Since the member
forces {F} are not in equilibrium with the given load {P},
the unbalanced load can be computed as:

{P'} = {P}-[T]T{F} (1)
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Where [T] is the transformation matrix
▪ Solve for the incremental displacements {}. Under the

unbalanced load {P'}. This computation involves solve the
system (2):

[KE + KG]{} = {P'} (2)

Where [KE] and [KG]; are the usual element stiffness and
element geometric stiffness respectively.

▪ Compute new member forces {F} as:

{d}= [T]T{} (3)

{F} = [ke]-1{d} (4)

▪ Repeat this sequence of calculations. Computation
stops when the unbalanced load {P'} satisfies a given
convergence criteria.

For both users and developers of nonlinear finite element
programs, an understanding of the fundamental concepts of
nonlinear finite element analysis is essential, so that the
reader should consult references [2, 3, and 4] for complete
details.

III. NUMERICAL EXAMPLES

In this section, three numerical examples are given to
demonstrate the accuracy, and effect of curvature correction.
In all examples the details of the deflections are provided.
The first one involves an analysis for large deflections on a
cantilever beam whereas the last two involve frame
buckling.

A. Cantilever Beam (figure 5)

The first problem considered is a cantilever beam; load
and properties are shown in Figure 5.

The total moment M of 105 KN.cm was applied in (n)
equal increments as shown in the table I.

For each increment, equilibrium iteration where
performed until the convergence tolerances were satisfied.
Table I shows the horizontal deflection (u), vertical
deflection (v), and rotation (z). From the results presented
in the table I , we observe that Lagrangian formulation
produces satisfactory results. We also note that Eulerian and
Lagrangian with curvature corrections produce quite

accurate results for different load increments.

TABLE I DIPLACEMENTS AT A

Type   of
Method

Load
steps

Total
cycles

N.
elements

V(cm) U(cm) 
(RAD)

Eulerian * 10 40 10 40.22 -11.11 0.77
Eulerian ** 10 10 50 45.80 -15.86 0.98

Lagrangian  ** 1 6 1 46.05 -15.73 1.0
Exact  solution 1 6 1 45.97 -15.85 1.0
Linear solution 1 1 1 50.0 0.0 1.0

B. Plane Frame (figure 6)

The second problem is a plane frame subjected to
concentrated load (P) at nodes 1, and 2, plane frame
properties are shown in Figure 6.

The first load step is in this case specified to be 220,000
KN. Note that fictitious bars with I=0. And 1

insh length has been added to model the pinned supports.
Also large areas have been used in some members to
simulate Timoshenko’s neglect of member length change.
By scanning the output file it's found that negative term
appears on the diagonal of the system matrix during the 9th
load step. The buckling load lies, therefore between the 8th
and 9th load step. This implies that the buckling load occurs

between 





  22000

10

10
22000

10

9
means between (198000

and 220000) which agree with Timoshenko’s result [5]:

Pcr EI
L2

82.1
 =2.04 x 106KN

TABLE II DISPLACEMENTS (LOAD STEP 8 – ITERATION 4
AND BUCKLING LOAD)

Nodes U(cm) V(cm)  (RAD)
1 0.594D-2 -.990D-1 -0.127D-4
2 0.594D-2 -.990D-1 -0.127D-4
3 -0.152D-6 -.683D-3 -0.568D-4
4 -0.152D-6 -.683D-3 -0.568D-4

Buckling  Load (present study)  =2.07 106 KN
Buckling  Load – Timoshenko [5] = 2.04 106 KN

* Without curvature correction, ** with curvature correction
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C. Plane Frame (figure 9)

The third problem is a plane frame whose details are
given in figure 9 has been used in the finite element
literature.

TABLE III PLANE FRAME PROPERTIES

Element Length( cm ) Area ( cm2 ) Inertia( cm4 )
2-1 144 0.387 E+01 0.125 E+01
3-2 120 0.424 E+01 0.150 E+01
2-4 96 0.335 E+01 0.937 E+01

This example which is described in Figure 9 is taken from
the test problems that appear in the ANSYS (1987, example
12) manual. Ten load steps with four iterations per load are
used to solve the problem, with starting load of 30000KN.
The results of the last iteration of the last converged load
step (load step 8, iteration 4). The buckling load is bounded
between ( ) that means between (27000
and 30000). This result agrees with the result of [6]

TABLE IV DISPLACEMENTS (LOAD STEP 8 - ITERATION 4)
AND BUKLING LOAD

Nodes U(cm) V(cm) (rad)

1 -0.900E-7 -0.337E-12 -0.317E-3
2 -0.335E-1 -0.740E-05 0.321E-3
3 -0.590E-1 -0.173E-04 -0.217E-3

Buckling Load (present study) =28000 KN
Buckling  Load [6]=27789 KN

IV. CONCLUSION

The main objective of this study is to make use of the
correction for the effect of large displacement upon
extensional and a flexural stresses. The residual load method
with only the extensional correction gives poor results. Note
that for this Lagrangian method only a single element and a
single load step was used and yet the results are satisfactory.
Much of this greater economy is due to the use of four

freedoms and cubic interpolation to interpolate the
extensional displacement u.
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