
 

 
Abstract—The paper analyzes the determination of 

tangential stress for two sections with is subject linear elastic 
torsion, with finite difference method. It discusses the constant 
and variable distance between the grid points.  

 
Index Terms – tangential stress, Finite Differences Method, 

grid point. 

I. INTRODUCTION 

Torsion of cylindrical shafts has been a topic in the 
classical theory of elasticity for a long time (Timoshenko 
and Goodier, 1970). The stiffness of a cylindrical shaft 
under torsional loading is often of interest in the study of 
torsion problems. Therefore, the uniform (St. Venant) and 
non-uniform torsion problem of structural components has 
long been the subject of theoretical and practical study in 
the field of solid mechanics (Chen et al., 2001). 

Structural elements with very different cross sectional 
shapes are widely used in various engineering structures. 
The exact solutions for torsion have been found for some 
simple cross-sectional shapes such as circles, ellipses, and 
triangles. However, in the theory of elasticity, it is difficult 
to obtain analytical solutions for complicated cross-sections. 

To solve general cross-sectional problems, numerical 
methods are usually necessary. For more complicated 
shapes, numerical methods are usually employed.  Examples 
include the finite difference method (Ely and Zienkiewicz, 
1960), the finite element method (Herrmann, 1965; 
Karayannis, 1995; Li at al., 2000), and the boundary 
element method (Jawson and Ponter, 1963; Friedman and 
Kosmatka, 2000; Sapountzakis, 2001; Sapountzakis and 
Mokos, 2001, 2003).The first two of these methods require 
the whole cross-section to be discretised into elements or 
grids.  

For a complicated section, the finite difference method 
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and the finite element method methods require a large 
number of elements or grids. The boundary element method 
requires discretisation at the boundary only, but in this 
method one has a singular integral on the boundary. 
Recently, mesh-free methods have developed fast as 
alternative solution methods (Di Paola et al., 2008). 

Membrane, electrical, and fluid flow analogies have also 
been used in explaining torsion problems (Zhen-Min and 
Kexue, 1986).  

They investigated the dependence of torsional properties 
for wall thickness. Using an approximated model and 
starting from Bredt’s formulas (valid only for thin-walled 
closed sections), Serra (1996) obtained a formulation for the 
calculation of the torsional problem of solid cross-sections. 
Wang (1998) introduced the method of eigen function 
expansion and matching to solve the torsion problem of 
arbitrary shaped tubes described by curved and straight 
pieces. Najera and Herrera (2005) presented a method to 
approximate the torsional rigidity of non-circular solid cross 
sections encountered in mechanisms and machines. 

Hematiyan and Doostfatemeh (2007) proposed a simple 
formulation for torsion analysis of moderately thick hollow 
tubes with polygonal shapes. 

II. ANALYTICAL APPROACH 

Consider a prismatic elastic bar with a constant cross 
section, and loaded with forces only in sections of the ends 
equivalent control torque. On side surface conditions are: 
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nz yz z
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and the end of the beam sections: 
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Assumptions considered by Saint-Venant [1,3] are the 
following: 

- cross-sections rotate with (x)  angle proportional to its 

distance from the origin, the contour section is unaltered, 
- the warping of the cross section is the same for all 
sections. 
If point A of a cross section is located at a distance x 

from the origin, with coordinates x, y, z, the position on the 
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deformed shape is x u, y v, z w    (Figure 1). The torsion 

angle of the section,  x , is proportional to the position of 

point A: 

 x x                     (3) 

where   is the specific twist angle. 

Assuming small deformations resulting displacement of 
point A as: 
u (y, z)

v r cos( ) r cos z

w r sin( ) r sin y

 
         
         

         (4) 

where  y,z  is cross-sectional warping function. 

Using the relationship between displacement and strain 
specific results: 

x y z 0                      (5) 
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From the balance equations of elasticity theory in the 
absence of mass forces, while the x y z yz 0         

xy xz

xy

xz

0;
y z

0;
x

0
x

 
 

 









              (7) 

hence shear stresses are of the form: 
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xz

G
z
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,                (8) 

the constant product G being introduced to obtain simple 
relations. 

Function  y, z    is called stress function or function 

of Prandtl stress. It shows that: 
2 2

2 2
2

y z

   
    

 
              (9) 

and 
0  .                   (10) 

where  is the warp function. 

Provided that total of tension tangential to the contour 
tangent section, that function is constant tension on the 
contour: 

 y, z 0                   (11) 

Using the conditions on sections of heads, resulting: 

 t
A

M 2 G y,z dydz                (12) 

Integral  t
A

I 2 y, z dydz    is the conventional 

torsion moment of inertia of the bar.  

III. NUMERICAL DETERMINATIONS WITH FINITE 

DIFFERENCES METHOD, USING CONSTANT DISTANCE BETWEEN 

POINT 

Applying the finite difference method for stress function 
equation (9), we obtain: 

i 1, j i, j i 1, j i, j 1 i, j i, j 1
2 2
y z
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h h

2
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 

 

  (13) 

this was considered a network of points on the section so 
that the index “i” varies as y coordinate and the index  “j” 
varies as z coordinate. Considering the equal division 
points: 

y zh h h                   (14) 

resulting: 
2

i 1, j i 1, j i, j 1 i, j 1 i, j4 2 h            .   (15) 

From equation (11), it follows that at a point determined 
by the indices “i” and “j” located on the perimeter section 
stress function is 0. For the “L” section the grid point how 
lies outside of the section domain, the stress function is 
considered also zero. 

Using Gaussian reduction, the solution for the system for 
all the points of grade is: 
A b  ,  
where A is the coefficient matrix and “b” is the free terms 
vector. 
 For the iterative method Gauss-Seidel the (15) is written 
as: 

 2
i, j i 1, j i 1, j i, j 1 i, j 1

1
2 h

4               (16) 

and the algorithm is a two step process 

   int 2
i 1, j i 1, j i, j 1 i, j 1i, j

1
2 h
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       new old int
i, j i, j i, j1     .        (18) 

 
Figure 1 Displacement of point A 

 
 

Figure 2 Dimensions of sections 
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In the first step of (17), we calculate an intermediate 
update for i, j  . Then the true update of i, j  is computed 

in (18). This true update is a weighted combination of the 
intermediate update and the old value of i, j . 

We considered two sections (Figure 2), Oy axis is 
horizontal and vertical Oz, bars and the steel 

5 2E 2,1 10 N mm   and 0,3  . Both beams are subject 

to 10000 Nmm torque. 

Solving the system leads to the following representation 
for the unknown stress function in two cases (Figure 3). 

Using relation (12) is computed the value of the specific 
twist angle, using the Simpson formula 

   
n 1m 1

t
i 1 i j 1 j i, j

i 1 j 1

M
y y z z

2 G
 

 

 
 

  
   ,    (19) 

where “n” is the number of points in the Oy direction, “m” 
is the number of points in Oz direction and 

 
i, j i 1, j i, j 1 i 1, j 1

i, j 4

   
      

 . 

Stress function is known, using relations (8) is 
determined tangential stress, and a vectorial representation 
is shown in Figure 4. Figures 5 and 6 are presented and 
tangential stress variation for the two cases considered.  

For interior points, the tangential stress is computed using  
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 For boundary points 
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           (21) 

If the point located by (i,j) laying on boundary and the 
section domain is in right (for xz ), or down (for xy ), 

i, j i 1, j
i, j

i, j i, j 1
i, j

xz G ,
h
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h

 
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 
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


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
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           (22) 

If the point is laying on boundary the section domain is in 
left (for xz ), or up (for xy ) 

     
Figure 4 Tangential stresses in the vector 

representation 

 

 
Figure 3 Stress function graph for the two sections 

 
Figure 5 Variation of shear stress for rectangular section 

 
Figure 6 Variation of shear stress for “L” section 
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Table I presents the tangential stress variations and 

specific twist angle depending on the grid step for 
rectangular section. 

Table I Tangential stress variations  
h 

(mm) maxxy  
maxxz    

1 8,298 11,3729 51,5911 10  

0,5 8,8087 11,8847 51,5736 10  

0,333 8,9965 12,0719 51,5705 10  

0,25 9,0942 12,1689 51,5696 10  

0,2 9,1542 12,2282 51,5693 10  

0,1667 9,1949 12,2682 51,5692 10  

0,1429 9,2244 12,2969 51,5692 10  

0,125 9,2468 12,3186 51,5692 10  
 

Maximum stress values determined using trigonometric 
series for solution of stress function for rectangular section 
(analytical solution), lead to solutions, in the middle of large 
side: 

 maxxz 2 2 2
n 1,3,5,...

2

Mt 8 1 1
1

cosh n h 2bhb n

12,4844 N mm





 
          




   

where 

5 5
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1 192 b 1 n h
1 tanh

3 h 2bn










         
 . 

In the middle of small side 
max

2
xy 9,4007 N mm  , and  

the specific twist angle 5 rad
1,5692 10

mm
   . 

Conventional torsion moment of inertia of the section is 

 t
A

I 2 y, z dydz   , and calculated  4
tI 3944,02 mm  

for rectangular section and 4
tI 786,5 mm  for “L”  

section. 
Analyzing the variation of 

maxxz from Figure 8 we see 

that the process converge, but it is a difference between the 
calculated value and the analytical solution. 

The value of 
maxxz  depends by the distance between the 

point laying on boundary and the neighbor point inside the 
section domain. Smaller value lead to better estimation of 

maxxz and an increased size of unknowns system. 

IV. NUMERICAL DETERMINATIONS WITH FINITE 

DIFFERENCES METHOD, USING VARIABLE DISTANCE BETWEEN 

POINTS 

Utilizing variable distance between mesh points leads to a 
more accurate estimate of 

maxxz using a small number of 

grid points - 11 21 231   points (figure 9). 

 
The points in positive Oyz space, figure 19, generate the 

distance between points function by a geometrical 
progression with ry ratio for Oy axis and rz ratio for Oz 
axis. Appling symmetry generates the rest of points: 

 

 
Figure 9 a) Equal distance grid points; b) Variable distance 

grid points with a same number of points to case a)

 
Figure 7 Variation of resultant shear stress for the two sections  

Figure 8 Variation of 
maxxz  with number of points 

 
Figure 10 Grid of points with variable distance 
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 Selecting the number of interval for each semi axe (ny, 
nz) and the ratio (ry, rz), the length of first interval is 

 
ny

b 1 ry
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2 1 ry


 


, 

nz

h 1 rz
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2 1 rz


 


.      (24)

  Using central finite difference scheme for obtaining the 
general relation, we can write: 

 i 1 2 j i 1, j i, j

i 1 i

y , z
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 Similarly,  

 
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i, j 1 i, j i, j i, j 1
2

i j i 1 i i i 1
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y , z z z z z
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 Solving the problem for various value of ratio, it 
observed that for some value of ratio the value of maximal 
tangential stress match the analytical solution, but the 
process is not convergent, figure 11. In fact, for lower value 
of ratio the error is increasing because the numerical 
determination of the integral of conventional torsion 
moment of inertia. 

V. CONCLUSIONS 

Accelerating convergence results can be made using a 
grid with variable distance between grid points, with higher 
density points to the frontier section and a low density at the 
interior. Thus a smaller number of points (less time of 
calculation) can achieve good results. The finite difference 
method allows the study of stress distribution for sections in 
which an analytical approach is difficult. However, there are 
sections for which that method poses difficulties, such as 
curved boundary domains. 
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Figure 11 Variation of 

maxxz  with ratio number 
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