
 

 
Abstract—Extreme maximum temperature using 10 years of 

data is studied. Maximums of five different time periods 
(weekly, biweekly, monthly, quarterly and half yearly) are 
fitted to the Generalized Extreme Value (GEV) distribution. 
The results show that only weekly, biweekly, and monthly 
maximums are significant to be fitted to the GEV model and 
thus are used as our selection periods. Both the Augmented 
Dickey Fuller (ADF) and Kwiatkowski, Phillips, Schmidt and 
Shin (KPSS) stationarity tests detected no stochastic trends for 
maximum temperatures. However, the Mann-Kendall (MK) 
test shows that all three selection periods have a decreasing 
trend, suggesting that we ought to model for non-stationarity. 
Three models are considered and the model with a location 
parameter that increases with time is found to be the best for 
all selection periods. The Kolmogorov-Smirnov and Anderson-
Darling goodness of fit tests show that all three selection period 
maximums converge to the GEV distribution with the weekly 
maximums having the best convergence to the GEV 
distribution. Estimates of the return level show that the return 
temperature which exceeds the maximum temperature of the 
observation period (35.6) starts to appear in the return period 
of 100T   for monthly maximums, while for weekly and 
biweekly maximums, they are predicted to be more than 100.  
 

Index Terms—Extreme, Maximum, Generalized Extreme 
Value, Return Level 

 
 

I. INTRODUCTION 

XTREME Value Theory (EVT) differs from other 
typical statistical techniques in its objective to quantify 

the stochastic behaviour of a process at unusually large or 
small levels. It is based on the analysis of the maximum (or 
minimum) value in a selected time period. In general, EVT 
usually requires estimation of the probability of events that 
are more extreme than any that have already been observed.  

Extreme value theory has been widely used and studied 
by many researchers. The earliest recorded application of 
extreme value was by astronomers in rejecting outlying 

 
This work was supported in part by the Universiti Sains Malaysia under 

FRGS Grant 203/PMATHS/671123.  
H. B. Hasan is with the School of Mathematical Sciences, Universiti 

Sains Malaysia, 11800 USM, Penang, Malaysia  (phone: 604-653-3969; 
fax: 604-657-0910; e-mail: husna@ cs.usm.my, husna2h@yahoo.com).  

N. B. Ahmad Radi  is with Universiti Malaysia Pahang, Tun Razak 
Highway, 26300 Gambang, Pahang, Malaysia (e-mail: 
dila_radi21@yahoo.com). 

S. B. Kassim is with the School of Mathematical Sciences, Universiti 
Sains Malaysia, 11800 USM, Penang, Malaysia  (e-mail: ksuraya@ 
cs.usm.my).  

observations. Fuller [5] was probably the first to publish a 
paper that described an application of extreme values in 
flood flows. In 1920, Griffith applied extreme value theory 
to discuss the phenomena of rupture and flow in solids. 
Observations by Houghton et al. [12] show that daily 
minimum temperatures rise more significantly than daily 
maximum temperatures.  

A. Background of  Study 

Humans are naturally captivated (both physically and 
intellectually) by the weather; it is a main topic of everyday 
conversations, while unusual or extreme weather events are 
major concerns as they can have enormous economic or 
human impact. Temperature extremes, which are attributed 
to an increasing concentration of greenhouse gases, are 
natural phenomena that affect our socio-economic activities. 
For example, extremely high temperatures and prolonged 
heat waves can damage agricultural production, increase 
energy and water consumption and also badly affect human 
well-being, human health and even cause loss of human 
lives (Karl and Easterling, [13]; Kunkel et al., [15]; 
Easterling et al., [4]). Thus, understanding and preparing for 
extreme weather events are essential for our society [3]. 

 In this paper, our study focuses on extreme temperatures 
in Penang, an island off peninsular Malaysia. A study on 
extreme rainfalls has been done in [10].  Malaysia has an 
equatorial climate which means abundant sunshine, 
generally high heat, high humidity and high rainfall all year 
round. However, cloud cover cuts off a substantial amount 
of sunshine and on the average, Malaysia receives about 6 
hours of sunshine per day. There are, however, seasonal and 
spatial variations in the amount of sunshine received. Being 
an island, the climate in Penang is very much influenced by 
the surrounding sea and the wind system. An increasing 
trend in the average surface temperature has been observed 
for Malaysia over the years. The western part of Malaysia 
where Penang island is located, was reported to experience 
more significant rise in temperature when compared to other 
regions in Malaysia and the months September-October-
November recorded the highest temperature increase.  

B. Objective of the study 

Studies on extreme temperatures are beneficial to human 
understanding of extreme events. Decision-makers, risk 
management and researchers in climatology will benefit 
from knowledge about the behaviour of extreme 
temperatures, as appropriate policies and plans can be 
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drawn to prepare the general public for changes due to 
extreme temperatures.  

The objective of this study is to quantify and describe the 
behaviour of extreme temperature in Penang, Malaysia. In 
particular, we aim to model the extreme temperatures  by 
using the Generalized Extreme Value (GEV) distribution. In 
the modeling process, we test for stationarity over different 
selection periods, namely, the weekly, biweekly, monthly, 
quarterly and half yearly periods. Next, we determine the 
best selection periods that are suitable for modeling with the 
GEV distribution by comparing their convergence to the 
GEV distribution. Lastly, we attempt to obtain the return 
level period that is expected to be exceeded. 

C. Description of Data 

The data which consists of daily temperatures measured 
(in Celcius) at the Bayan Lepas, Penang weather station, is 
obtained from the Malaysian Meteorological Department. 
The Bayan Lepas Regional Meteorological Office is the 
primary weather forecast facility for northern Peninsular 
Malaysia [22]. We consider the years 2000 to 2009 because 
this is the longest available period that is provided by the 
Malaysian Meteorological Services.  

II. RESEARCH METHODOOGY 

We consider Generalized Extreme value distributions 
having distribution functions of the form 

    1

max ( ) exp  [1 ] ;G y y 


        1 0y                           

where max ( ) Pr( )nG y Y y  , 

max( ) / ( )n n n nY M G y     with nM
 

being the 

maximum selected among n values, as n  , and is 

reduced with a location parameter n and a scale parameter, 

n , and   is a shape parameter. This is the GEV family of 

distributions with the Frechet class of extreme value 
distribution corresponding respectively to the cases 0  , 

while the Weibull distribution corresponds to 0   and the 

Gumbel distribution corresponds to 0   [1].  

A. Selection Period 

The GEV function provides a model for the distribution 
of block maxima. Its application consists of partitioning a 
data set into blocks of equal length, and fitting the GEV 
distribution to the set of block maxima. In implementing this 
model, the choice of block size has to be chosen so that 
individual block maxima has a common distribution. 
Temperature data are likely to have the same distribution as 
time increases. Inferences that fail to take this homogeneity 
into account would be likely to give inaccurate results. 
Normal considerations often lead to the adoption of blocks 
of length of one year. If a one year block is used, this study 
will only have 10 annual maximum temperature or 10 data 
points for the purpose of modeling, since we are using a 10-
year data set; this is too few for any meaningful modeling. 
Thus, different selection periods are considered and 
compared; they are the weekly, biweekly, monthly, 
quarterly and half yearly block lengths. 

B. Stationary Test 

In order to fulfill the stationarity assumption of the 
generalized extreme value family of distributions, the 
Augmented Dickey Fuller (ADF) and Kwiatkowski, 
Phillips, Schmidt and Shin (KPSS) stationarity tests are 
performed on the data. The purpose of performing these two 
tests is to look for trends over different selection periods.  

 For the ADF test, the null hypothesis states difference 
stationarity while the alternative states stationarity. The null 
hypothesis of the KPSS test says that the distribution is 
stationary while the alternative says it is difference-
stationary. The Mann-Kendall (MK) test which does not 
require normally distributed data and is well suited for 
analyzing datasets that have missing or tied data [6], is 
performed to detect the presence of monotonic trend (either 
increasing or decreasing). The null hypothesis states that no 
trend is present while the alternative states that there is a 
trend [19].  

C. Model Choices and Parameter estimates 

We look for the simplest model possible that explains as 
much of the variation in the data as possible. We consider 
three models; Model 1 is a basic model with constants µ, σ, 
and ξ, each referring to the location parameter, scale 
parameter and shape parameter, respectively. Model 2 is a 
four parameter model with µ being allowed to vary linearly 
with time, while other parameters are constants. Model 3 is 
a model where σ is an exponential function of time and 
other parameters are constants. The models are as follows: 

Model 1:  ,  , and   constants 

Model 2: 0 1( )t t    ,      ,   are constants 

Model 3: 0 1( ) exp( )t t    ,   ,   are constants 

where the t’s are week units for weekly selection period, 2-
weeks units for biweekly selection period, month units for 
monthly selection period, quarter units for quarterly 
selection period and half year units for half yearly selection 
period. For all models, the shape parameter,   , is always a 

constant as this parameter is difficult to estimate with 
precision and it is usually unrealistic to try modeling   as a 

smooth function of time. 
The L-moments method (LMOM) is chosen as the 

parameter estimation technique for Model 1. The L-
moments are expectations of certain linear combinations of 
order statistics and is a summary statistic for probability 
distributions and data samples. It is analogous to ordinary 
moments that provide measures of location, dispersion, 
skewness, kurtosis and other aspects of the shape of 
probability distributions or data samples. However, this 
method can only be used to estimate a stationary process; 
therefore, it is used to initialize the MLE routine for Model 
1. This approach is not suitable for Models 2 and 3 because 
their parameters are functions of time; instead, the 
maximum likelihood estimation (MLE) method is used for 
Model 2 and  Model 3. 

D. Likelihood Ratio (LR) Test and Model Diagnostics 

Model 1 is compared to Model 2. Let 0L  and 1L be the 

maximum likelihoods for the three-parameter Model 1 and 
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the four-parameter Model 2, respectively. The LR test 
statistic is defined as 

    0

1

2log
L

L


 
   

 
 

and distributed as a chi-square distribution with one degree 
of freedom (corresponding to the difference in the number 
of parameters; in this case, 1). The three-parameter model is 
chosen if  

    2
1,0.95 3.8415.    

Otherwise, the model with four parameters is preferred. 
Model 2 and Model 3 cannot be directly compared since 
they have the same number of parameters. Therefore, the 
result of Model 1 versus Model 2 will be compared with 
Model 3 since three models are considered in this study. 

Various plots, such as the probability plot, quantile plot, 
return level plot and density plot are employed for 
diagnostics purposes. A quantile plot compares a model’s 
quantiles against the data (empirical) quantiles. A quantile 
plot that deviates greatly from a straight line suggests that 
the model assumptions may be invalid for the data plotted. 
The return level plot shows the return period against the 
return level, with an estimated 95% confidence interval. As 
useful as they are, graphical tests are not very accurate as 
compared to strong statistical tests, as pointed out by 
Lincoln [17]. Graphical tests are used more as a 
complement to the statistical analysis. 

E. Kolmogorov-Smirnov and Anderson-Darling of Fit 
tests 

The Kolmogorov-Smirnov and Anderson-Darling 
goodness of fit tests are used to assess the quality of 
convergence of the GEV distribution. The Kolmogorov-
Smirnov test which is based on the empirical cumulative 
distribution function and the largest vertical difference 
between the theoretical and the empirical cumulative 
distribution function, is used to decide if a sample comes 
from a hypothesized continuous distribution. The Anderson-
Darling procedure is a general test to compare the fit of an 
observed cumulative distribution function to an expected 
cumulative distribution function. This test gives more 
weight to the tails of a distribution than the Kolmogorov-
Smirnov test. The null hypothesis of both tests is that the 
data follow the specified distribution.  

F. Return level Estimate 

A return level is the level that is expected to be exceeded 
on an average of once every t time periods. In this study, the 
return level is the maximum temperature amount and t 
corresponds to the selection intervals which are 1-week, 2-
weeks, a month, quarter year and half year. Return levels 
are important for prediction and planning purposes and can 
be estimated from stationary models.  

III. FINDING AND DISCUSSIONS 

A. Descriptive Statistics 

The study involves 10 years of data consisting of daily 
maximum temperatures from year 2000 to 2009. Table 1 
and Table 2 show the descriptive statistics for the daily 

temperatures together with the various selection intervals. 
The maximum value is 35.6. 

Table I and Table II show that the 3653 daily maximum 
temperatures has a standard deviation of 1.289 and quite a 
large coefficient of variation of 4.06, indicating a varied 
daily maximum temperature. After partitioning the data into 
different selection periods, it is observed that as the 
selection period increases, the difference between the 
minimum and maximum gets smaller, and the coefficient of 
variation decreases. This indicates that the maximum 
temperature data is less dispersed from the mean as the 
selection period increases. 

TABLE I 
SUMMARY STATISTICS OF MAXIMUM TEMPERATURE 

 
The skewness are positive for all selection periods 

although it is slightly negative on the daily temperature. 
This observation points to a distribution with a right tail 
which is relatively longer than the left tail. An increasing 
skewness indicates that the right tail becomes heavier as the 
selection period increases. 

TABLE II 
SUMMARY STATISTICS OF MAXIMUM TEMPERATURE 

                CV   SK J.B(p-value) 

daily            4.06 -0.83 927.23(0.00) 

weekly         2.53  0.32  10.00(0.00) 

biweekly      2.35  0.45   8.99(0.01) 

monthly       2.22  0.65    8.30(0.02) 

quarterly      2.20  0.59    2.16(0.34) 

half yearly   2.24  0.70    1.67(0.43) 

CV= Coefficient of Variation, SK = Skewness 

 
The p-value of the Jarque-Bera (J.B) normality test, 

(which has a chi-squared distribution with two degrees of 
freedom) for the weekly, biweekly, and monthly maximum 
rejects the null hypothesis in favour of a non-normal 
distribution while the quarterly and half yearly maximums 
favour a normal distribution. Thus, the quarterly and half 
yearly periods are considered not appropriate. A check with 
the histogram of maximum temperature for the three 
selection periods (weekly, biweekly and monthly) supports 
right-skewed distributions. Therefore, we conclude that 
modeling with the GEV distribution with weekly, biweekly 
and monthly selection periods is reasonable for this study.  

B. Testing for Stationarity 

To check for the stationarity assumption, line graphs of 
the maximum temperatures are plotted for all selected 
intervals. The graphs show that there is no strong evidence 
of trends and no strong indication that the pattern of 

     N Min Mean S.Dev 

Daily  3653 25.1 31.72 1.289 

weekly   522 30.2 32.795 0.830 

biweekly   261 31.3 33.102 0.777 

monthly   120 32.2 33.408 0.743 

quarterly 40 32.4 33.753 0.742 

half yearly 20 33 34.025 0.764 
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variation in maximum temperatures has changed. This 
observation is supported by the Augmented Dickey Fuller 
(ADF) and Kwiatkowski, Phillips, Schmidt and Shin 
(KPSS) tests, as shown in Table III. 

 
TABLE III 

UNIT ROOT TEST FOR MAXIMUM TEMPERATURE 
  Test critical value Test 

SP test 1% 5% 10% Statistic 
 

W 
 
 

B 
 
 

M 

 
ADF 
KPSS 

 
ADF 
KPSS 

 
ADF 
KPSS 

 
-3.980 
0.216 

 
-3.990 
0.216 

 
-4.040 
0.216 

 
-3.420 
0.146 

 
-3.430 
0.146 

 
-3.450 
0.146 

 
-3.130 
0.119 

 
-3.140 
0.119 

 
-3.150 
0.119 

 
-6.360 
0.133 

 
-5.430 
0.121 

 
-6.030 
0.142 

SP= Selection Period, W = weekly, B=biweekly, M = monthly 
 

The p-values (0.00) of the ADF tests are significant at the 
1%, 5% and 10% significance levels. The KPSS test shows 
that all the test statistics are insignificant at the 1% and 5% 
levels since all the test statistics have values which are 
smaller than the critical values over different selection 
periods. Hence, the null hypothesis cannot be rejected, 
favouring difference-stationarity. We therefore conclude 
that there is stationarity in maximum returns over the 
difference of selection periods at the 1% and 5% 
significance levels. 

 
Performing the Mann-Kendall (MK) test under the null 

hypothesis of an absence of trends, we obtain the result as 
shown in Table IV below: 

TABLE IV 
MANN-KENDALL TEST 

Selection 
Period 

z  

p-value 
 
upward trend 

 
downward 
trend 

weekly 
  biweekly 
   monthly 

-4.3426 
-2.9861 
-2.7193 

0.9999 
0.9986 
0.9967 

0 
0 
0 

 
All three selection periods show the existence of a 

downward trend as time increases, contradicting the results 
of the stationary test. This results suggest that we ought to 
model for both stationarity and non-stationarity in this 
study. 

C. Parameter Estimates and Model Selections 

The parameter estimates over different selection periods 
for the three models considered in section II.C are shown in 
Table V to Table VII. Maximization of the GEV’s log-
likelihood for weekly maximums leads to the parameter 
estimations for Model 1, Model 2, and Model 3, 
respectively and shown in Table V. The diagonal of the 
variance-covariance matrix of the parameter estimates 
corresponds to the variances of the individual parameters 
( , , )   , with the standard errors listed in brackets. 

 
Fitting the GEV distribution to the biweekly and monthly 

maximums leads to the maximum likelihood estimate as 
shown in Table VI and VII, respectively. It is noted that the 

standard error (s.e) for all the parameters increase as the 
selection intervals increase.  

TABLE V 
PARAMETER ESTIMATES FOR WEEKLY MAXIMUM 

Parameters Model 1 
(s.e) 

Model 2 
(s.e) 

Model 3 
(s.e) 

 
  

 

 
32.4699 
(0.0376) 

 
 

 
32.4643 
(0.0376) 

 
  

 

 
0.7878 

(0.0257) 

 
0.7784 

(0.0296) 

 

 

  

 

 
-0.19 

(0.0232) 

 
-0.1382 
(0.0281) 

 
-0.1974 
(0.0227) 

    

   0  

  
32.2921 
(0.0849) 

 
-0.1895 
(0.0326) 

   
1  

  
0.0002 

(0.0003) 

 
-0.0002 
(0.0000) 

 
LLV 

 
-639.549 

 
-649.866 

 
-639.319 

LLV= Log Likelihood Value 
 

 TABLE VI 
PARAMETER ESTIMATES FOR BIWEEKLY MAXIMUM  

Parameters Model 1 
(s.e) 

Model 2 
(s.e) 

Model 3 
(s.e) 

 
  

 

 
32.789 

(0.0486) 

 
 

 
32.7816 
(0.0499) 

 
  

 

 
0.7127 

(0.0337) 

 
0.6949 

(0.0353) 

 

 

  

 

 
-0.1571 
(0.0375) 

 
-0.085 

(0.0444) 

 
-0.1682 
(0.0385) 

    

   0  

  
32.6339 
(0.1019) 

 
-0.265 

(0.1047) 

   
1  

  
0.0003 

(0.0006) 

 
-0.0005 
(0.0006) 

 
LLV 

 
-299.457 

 
-304.496 

 
-299.178 

     
TABLE VI 

PARAMETER ESTIMATES FOR MONTHLY MAXIMUM 
Parameters Model 1 

(s.e) 
Model 2 

(s.e) 
Model 3 

(s.e) 
 
  

 

 
33.0808 
(0.0647) 

 
 

 
33.0655 
(0.0649) 

 
  

 

 
0.62 

(0.0470) 

 
0.6088 

(0.0459) 

 

 

  

 

 
-0.0601 
(0.0748) 

 
-0.0755 
(0.0733) 

 
-0.0815 
(0.0778) 

    

   0  

  
33.3429 
(0.1199) 

 
-0.3521 
(0.1829) 

   
1  

  
-0.0041 
(0.0016) 

 
-0.0019 
(0.0025) 

 
LLV 

 
-128.383 

 
-125.079 

 
-128.077 
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 The likelihood-ratio test is used to compare the three 
models and the test statistic and p-values are listed in Table 
VIII and Table IX.                                                                            

TABLE VIII 
MODEL 1 VS MODEL 2 

Model 1 vs Model 2   p-value 

weekly 
         biweekly 
         monthly 

6.6071 
10.0775 
20.6351 

     0.0102 
0.0015 
0.0000 

 
TABLE IX 

MODEL 1 VS MODEL 3 
Model 1 vs Model 3   p-value 

          weekly 
biweekly 
monthly 

0.6104 
0.5575 
0.4592 

     0.4346 
0.4553 
0.4979 

 
Comparing Model 1 with Model 2 (Table VIII), we 

observe that Model 2 is a slight improvement from Model 1 
over different selection intervals. From Table 9, Model 1 is 
preferred over Model 3 for all selection periods.  

Since Model 1 is better than Model 3, while Model 2 is 
better than Model 1, we can therefore conclude that Model 
2, where   is allowed to vary linearly with respect to time, 

and other parameters are constants, is the best among the 
three models over different selection periodss. This result is 
also supported by an earlier Mann-Kendal test which 
concluded that there exists a downward trend as time 
increases. 

D. Model Diagnostics 

Figure 1(a) and 1(b) shows the model diagnostics for 
weekly maximums for Model 1, Model 2 and Model 3, 
respectively. Inspection of Model 1 diagnostics shows that 
neither the probability plot nor the quantile plot doubt the 
validity of the fitted model since each set of plotted points 
appears to be linear. The return level plot shows 
approximate linearity, since   is close to zero. 
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Fig. 1(a):  Model Diagnostic for Weekly Maximum 

 

0.0 0.4 0.8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Empirical

M
o
d
e
l

Residual Probability Pl

-2 2 4 6

-2
0

2
4

6

Model

E
m
pi
ri
ca
l

dual Quantile Plot (Gumb

 
Fig. 1(b):  Model Diagnostic for Weekly Maximum  

 
For Model 2 and Model 3, only the residual probability 

and quantile plots are displayed with the quantile plot on the 
Gumbel scale. All plots suggest that all models have a good 
fit. Inspection on biweekly and monthly maximum (not 
shown here) resulted in similar results. 

E. Kolmogorov-Smirnov and Anderson-Darling of Fit 
Test 

Table X shows the Kolmogorov-Smirnov and Anderson-
Darling test results over different selection periods. 
Modeling using the different selection periods resulted in 
almost similar fits. An inspection of the p-values leads to a 
non-rejection of the null hypotheses over the different 
selection periods.  However, as the selection period 
increases, convergence to the GEV is most likely to be 
better for the weekly selection period as its p-value is 
smaller than the p-values for the other two selection periods. 

 
TABLE X 

KOLMOGOROV-SMIRNOV (KS) AND ANDERSON-DARLING (AD) 
sample size statistics p-value 

(weekly=522) 
KS 
AD 

 
0.04275 
0.6332 

 
0.28751 

- 
(biweekly=261) 

KS 
AD 

 
0.05437 
0.48604 

 
0.40872 

- 
(monthly = 120) 

KS 
AD 

 
0.06093 
0.33153 

 
0.74108 

- 

 
Thus, we further conclude that the data follow the 

specified distribution for weekly, biweekly and monthly 
selection periods. An inspection of the graphs of the p.d.f. 
of a GEV distribution revealed that weekly maximums show 
better convergence to the GEV distribution than the other 
two selection periods. 

F. Return Level Estimate 

The highest daily temperature for the 10-year observation 
period is 35.6. To predict the probability that a daily 
maximum temperature exceeding 35.6 will occur in a longer 
period, return levels are used. The return levels are 
estimated by using Model 1 (stationary) of weekly, 
biweekly and monthly maximums.  

The following Table XI shows the return levels over 
different selection intervals with an (*) representing the 
return amount which exceeds the maximum temperature 
(35.6). The 95% confidence intervals which are obtained by 
profile likelihood, are displayed in brackets. Inspection of 
the table shows that return level estimates increase as the 
return periods increase.  
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TABLE XI(A) 
RETURN LEVEL ESTIMATE FOR 5,  10T 

 
Selection 

period 5T   
 
10T   

 
weekly 

 
33.498 

(33.409, 33.5910) 

 
33.9123 

(33.8115, 34.0231) 
 

biweekly 
 

33.7413 
(33.6223, 33.869) 

 
34.1398 

(34.0022, 34.3016) 
 

monthly 
 

 
33.9701 

(33.7961,34.172) 

 
34.3859 

(34.1717, 34.6901) 
 

TABLE XI(B) 
RETURN LEVEL ESTIMATE FOR 50,  100T 

 
Selection 

period 50T   
 
100T   

 
weekly 

 
34.6404 

(34.4977, 34.8286) 

 
34.8858 

(34.7192, 35.1185 
 

biweekly 
 

34.8677 
(34.6601, 35.1804) 

 
35.123 

(34.8745, 35.5229 ) 
 

monthly 
 

 
35.2375 

(34.8512, 36.0238) 

 
35.5729 

(35.0792,36.6318)* 

 
The table also shows that the temperature which exceeds 

the maximum temperature (35.6) of the observation period 
appears in the confidence interval of 100T   for monthly 
maximums. For weekly and biweekly maximums, the 
temperature which exceeds the maximum temperature 
(35.6) of the observation period is predicted to occur in 
more than 100T  .  

IV. SUMMARY AND CONCLUSION 

Generalized Extreme Value (GEV) distribution is used to 
model maximum temperatures using data obtained from 
Penang weather station for the period from 2000 to 2009. 
Stationarity tests shows that all the selection periods are 
stationary while a trend test revealed a decreasing trend. 

 All selection periods are fitted to the GEV distribution 
and the parameters are estimated. The likelihood ratio test 
suggests that the best model is a model with a location 
parameter that increases linearly with time, and the scale 
and shape parameters are constants. Model diagnostics 
which include probability plot, quantile plot, return level 
plot and density plot show a good fit. The Kolmogorov-
Smirnov and Anderson-Darling goodness of fit tests show 
that modeling using the different selection periods resulted 
in almost similar fits. However, modeling using weekly 
maximum gave the best convergence to the GEV 
distribution. 

The return level estimate, which is the return level that is 
expected to be exceeded in a certain period of time is 
estimated at 5,  10,  50T   and 100. The results revealed 

that the temperature which exceeds the maximum 
temperature amount (35.6) of the observation period starts 
to appear in the confidence interval of 100T   for monthly 
maximums. For weekly and biweekly maximum, the 
temperature which exceeds the maximum temperature 

(35.6) of the observation period is predicted to be more than 
the period for this study.  

In conclusion, modeling maximum temperatures using 
GEV distribution seems reasonable even though only 10 
years of data are available. 
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