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Abstract—Computing compressible two-phase flows that con-
sider different materials and physical properties is conducted. A
finite volume numerical method based on Godunov approach is
developed and implemented to solve an Euler type mathematical
model. This model consists of five partial differential equations
in one space dimension and it is known as the reduced model. A
fixed Eulerian mesh is considered and the hyperbolic problem
is tackled using a robust and efficient HLL and HLLC Riemann
solvers. The performance of the two solvers is verified against
a comprehensive suite of numerical case studies in one and
two dimensional space. Computing the evolution of interfaces
between two immiscible fluids is considered as a major challenge
for the present model and the numerical technique. The
achieved numerical results display a good agreement with all
reference data.

Index Terms—compressible multiphase flows, shock wave,
Godunov approach, HLL Riemann solver, HLLC Riemann
solver.

I. INTRODUCTION

THE numerical simulation of the creation and evolution
of interfaces in compressible multiphase flows is a

challenging research issue. Multiphase flows occur in several
industries and engineering operations such as power gener-
ation, separation and mixing processes. Computation of this
type of flow is complicated and causes some difficulties in
various engineering applications such as safety of nuclear
reactors [1]. Compressible multi-component flows can be
represented numerically by two main approaches. These are:
Sharp Interface Method (SIM) and Diffuse Interface Method
(DIM). The main characteristic of the DIM is that it allows
numerical diffusion at the interface. The DIM corresponds
to different mathematical models and various successful
numerical approaches: for instance, a seven equation model
with two velocities and two pressures developed in [2]; a
five equation model proposed in [3] known as the reduced
model; a similar five equation model was derived from the
seven equation model in [4] and another two reduced models
derived in [5]. This paper introduces the development of the
numerical formulation which utilises the mathematical model
for compressible two-component flows first presented in [3].

The performance of the current mathematical model was
investigated in [4] and [6] using classical benchmark test
problems and Roe type solver. In this paper we attempt to
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examine the performance of the developed numerical method
based on this model for a wider range of test problems using
different numerical solvers.

In the framework of multi-component flows with interface
evolution many interesting experiments have been carried
out. For example, experiments to observe the interaction
between a plane shock wave and various gas bubbles were
presented in [7]. The deformation of a spherical bubble
impacted by a plane shock wave via a multiple exposure
shadowgraph diagnostic was examined in [8]. Quantitative
comparisons between the experimental data and numerical
results of shock-bubble interactions were made in [9]. On
the other hand, many numerical simulations for compressible
two phase flows that consider the evolution of the interface
have been made. For instance, a numerical method based
on upwind schemes is introduced and applied to several two
phase flows test problems in [10]. The interaction of the
shock wave with various Mach numbers with a cylindrical
bubble was investigated numerically in [11]. An efficient
method to simulate and capture the interfaces between com-
pressible fluids was proposed in [12]. A new finite-volume
interface capturing method was introduced for simulation of
multi-component compressible flows with high density ratios
and strong shocks in [13].

Computation of compressible two phase flows with dif-
ferent materials and tracking the evolution of the interface
between two immiscible fluids is the main aim of the present
work. This paper is organised as follows: The governing
equations of the two phase flow model are reviewed. The
numerical method is then described with HLL and HLLC
Riemann solvers. The obtained results are presented. Finally,
the conclusion is made.

II. THE MATHEMATICAL MODEL

The reduced model that is considered in this work consists
of five equations in 1D flow. It is structured as: Two con-
tinuity equations, a mixture momentum equation, a mixture
energy equation augmented by a volume fraction equation.

Without mass and heat transfer the model can be written
as follows:

∂α1

∂t
+ u

∂α1

∂x
= 0, (1a)

∂α1ρ1
∂t

+
∂α1ρ1u

∂x
= 0, (1b)

∂α2ρ2
∂t

+
∂α2ρ2u

∂x
= 0, (1c)

∂ρu

∂t
+
∂ρu2 + p

∂x
= 0, (1d)

∂ρE

∂t
+
∂u(ρE + p)

∂x
= 0. (1e)

The notations are conventional: αk and ρk characterize the
volume fraction and the density of the kth component of
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the flow, ρ, u, p, E and c represent the mixture density,
the mixture velocity, the mixture pressure, the mixture total
energy and the mixture sound speed respectively.

The mixture variables can be defined as:

ρ = α1ρ1 + α2ρ2,

ρu = α1ρ1u1 + α2ρ2u2,

p = α1p1 + α2p2,

ρE = α1ρ1E1 + α2ρ2E2,

1

ρc2
=

α1

ρ1c21
+

α2

ρ2c22
.

A. Equation of State

In the present work, the isobaric closure is used with
stiffened equation of state (EOS) to close the model. The
mixture stiffened (EOS) can be cast in the following form:

p = (γ − 1)ρe− γπ, (2)

where e is the internal energy, γ is the heat capacity ratio
and π is the pressure constant.

The mixture equation of state parameters γ and π can be
written as:

1

γ − 1
=
∑
k

αk
γk − 1

and

γπ =

∑
k
αkγkπk

γk−1∑
k

αk

γk−1

,

where k refers to the kth component of the flow.
The internal energy can be expressed in terms of total

energy as follows:

E = e+
1

2
u2.

B. Quasi-Linear Equations of The Reduced Model

In one-dimensional flow with two fluids, the system of
equations (1a-1e) can be written in the following form:

∂α1

∂t
+ u

∂α1

∂x
= 0, (3a)

∂U

∂t
+
∂F (U)

∂x
= 0, (3b)

where the conservative vector U and the corresponding flux
function F (U) are as follows:

U =


α1ρ1
α2ρ2
ρu
ρE

 and F (U) =


α1ρ1u
α2ρ2u
ρu2 + p
u(ρE + p)

 .
This system in quasi-linear form with primitive variables
becomes,

∂W

∂t
+A(W )

∂W

∂x
= 0, (4)

where the primitive vector W and the Jacobian matrix A(W )
for this system can be written as:

W =


α1

ρ1
ρ2
u
p

 and A(W ) =


u 0 0 0 0
0 u 0 ρ1 0
0 0 u ρ2 0
0 0 0 u 1

ρ

0 0 0 ρc2 u

 .

The Jacobian matrix A(W ) provides the following eigenval-
ues: u+c, u, u, u and u−c. which represent the wave speeds
of the system.

III. NUMERICAL METHOD

For the sake of simplicity, the numerical method that is de-
veloped in this work is described for 1D flow. The extension
of the method to two dimensions is straightforward.

Godunov approach with second order accuracy in space
and time is applied to discretise the conservative vector and
it could be written as:

Un+1
i = Uni −

∆t

∆x
[F (U∗(U−

i+ 1
2

, U+
i+ 1

2

))−

F (U∗(U−
i− 1

2

, U+
i− 1

2

))]. (5)

The flux vector F (U∗) is calculated using HLL and HLLC
Riemann solvers. Similarly, the discretisation of the volume
fraction equation with second order accuracy can be written
as:

αn+1
i = αni −

∆t

∆x
u[α∗(α−

i+ 1
2

, α+
i+ 1

2

)−

α∗(α−
i− 1

2

, α+
i− 1

2

)]. (6)

The stability of the numerical method is assured by imposing
the Courant number (CFL) as follows:

CFL =
S∆t

∆x
≤ 1,

where, S is the maximum value of the wave speeds and can
be expressed as:

S+
i± 1

2

= max〈c+
1,i± 1

2

+ u+
1,i± 1

2

, c−
1,i± 1

2

+ u−
1,i± 1

2

,

c+
2,i± 1

2

+ u+
2,i± 1

2

, c−
2,i± 1

2

+ u−
2,i± 1

2

〉,

S−
i± 1

2

= min〈u+
1,i± 1

2

− c+
1,i± 1

2

, u−
1,i± 1

2

− c−
1,i± 1

2

,

u+
2,i± 1

2

− c+
2,i± 1

2

, u−
2,i± 1

2

− c−
2,i± 1

2

〉,

where, 1 and 2 refer to the first and the second phase
respectively.

A. The HLL Approximate Riemann Solver

With HLL Riemann solver, the numerical flux function at
cell boundaries can be written as:

FHLLi+ 1
2

= [
S+
i+ 1

2

Fi − S−
i+ 1

2

Fi+1 + S+
i+ 1

2

S−
i+ 1

2

(Ui+1 − Ui)

S+
i+ 1

2

− S−
i+ 1

2

]

and

FHLLi− 1
2

= [
S+
i− 1

2

Fi−1 − S−
i− 1

2

Fi + S+
i− 1

2

S−
i− 1

2

(Ui − Ui−1)

S+
i− 1

2

− S−
i− 1

2

].

The second order form for volume fraction can be written
as:

αHLLi+ 1
2

= [
u
n+ 1

2
i (S+

i+ 1
2

α
n+ 1

2

i+ 1
2 ,−
− S−

i+ 1
2

α
n+ 1

2

i+ 1
2 ,+

)

S+
i+ 1

2

− S−
i+ 1

2

+
S+
i+ 1

2

S−
i+ 1

2

(α
n+ 1

2

i+ 1
2 ,+
− αn+

1
2

i+ 1
2 ,−

)

S+
i+ 1

2

− S−
i+ 1

2

],
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αHLLi− 1
2

= [
u
n+ 1

2
i (S+

i− 1
2

α
n+ 1

2

i− 1
2 ,−
− S−

i− 1
2

α
n+ 1

2

i− 1
2 ,+

)

S+
i− 1

2

− S−
i− 1

2

+
S+
i− 1

2

S−
i− 1

2

(α
n+ 1

2

i− 1
2 ,+
− αn+

1
2

i− 1
2 ,−

)

S+
i− 1

2

− S−
i− 1

2

].

B. The HLLC Approximate Riemann Solver

This technique is an adjustment of the previous method
where a contact wave with a speed S∗ was added to
the fastest and slowest wave speeds which is consequently
produces two separate regions. Therefore, the letter C in the
name of the method refers to the contact.

The flux vector using HLLC scheme as in [14] is given
by:

FHLLCi+ 1
2

=


FL if 0 ≤ SL,
FL + SL(U∗

L − UL) if SL ≤ 0 ≤ S∗,
FR + SR(U∗

R − UR) if S∗ ≤ 0 ≤ SR,
FR if 0 ≥ SR,

where FL and FR refers to the flux at left and right region,
SL and SR refers to the left and right wave speed and S∗

denotes to the contact wave speed. The conservative vector
U∗
m for the two phase model can be obtained as follows:

U∗
m = (

Sm − u
Sm − S∗ )


α1ρ1
α2ρ2
ρS∗

[Eρ+ ρ(s∗ − u)(s∗ + p
ρ(sm−s∗) )]

 ,
where the subscript m refers to the left and the right regions.

The contact wave speed S∗ is estimated by:

S∗ =
pR − pL + ρLuL(SL − uL)− ρRuR(SR − uR)

ρL(SL − uL)− ρR(SR − uR)
,

where subscripts R and L denotes to right and left regions
respectively.

The volume fraction using HLLC solver can be written
with second order accurcy as:

αni± 1
2

=


α−
i± 1

2

if 0 ≤ S−
i± 1

2

,

α−
i± 1

2

if S−
i± 1

2

≤ 0 ≤ S∗
i± 1

2

,

α+
i± 1

2

if S∗
i± 1

2

≤ 0 ≤ S+
i± 1

2

,

α+
i± 1

2

if 0 ≥ S+
i± 1

2

.

C. Extension of the Model to 2D

The set of governing equations (3a, 3b) is extended for a
two-dimensional compressible two-phase flows and becomes
six equations as follows:

∂α1

∂t
+ u

∂α1

∂x
+ v

∂α1

∂y
= 0, (7a)

∂U

∂t
+
∂F (U)

∂x
+
∂G(U)

∂y
= 0. (7b)

For

U =


α1ρ1
α2ρ2
ρu
ρv
ρE

 , F (U) =


α1ρ1u
α2ρ2u
ρu2 + p
ρuv

u(ρE + p)



and

G(U) =


α1ρ1v
α2ρ2v
ρuv

ρv2 + p
v(ρE + p)

 ,

where u and v refer to the velocity components in the x and
y directions respectively.

Quasi-linear form of the 2D model can be expressed as:

∂W

∂t
+A(W )

∂W

∂x
+B(W )

∂W

∂y
= 0, (8)

where the primitive variables vector and Jacobian matrices
for the reduced system 8 are:

W =


α1

ρ1
ρ2
u
v
p

 , A(W ) =


u 0 0 0 0 0
0 u 0 ρ1 0 0
0 0 u ρ2 0 0
0 0 0 u 0 1

ρ

0 0 0 0 u 0
0 0 0 ρc2 0 u


and

B(W ) =


v 0 0 0 0 0
0 v 0 0 ρ1 0
0 0 v 0 ρ2 0
0 0 0 v 0 0
0 0 0 0 v 1

ρ

0 0 0 0 ρc2 v

 .

The eigenvalues of Jacobian matrix A(W) are: u + c, u, u,
u, u and u − c. The eigenvalues of Jacobian matrix B(W)
are: v + c, v, v, v, v and v − c.

To solve 2D test problems, the numerical method which
is described at the beginning of section III for solving 1D
test cases is extended. The HLL and HLLC Riemann solvers
and the second order accuracy are considered.

IV. TEST PROBLEMS

A. 1D Test Problems

In this part, two interface interaction test problems which
are reported in [15] are considered. These cases consider
different initial states and physical properties that provide an
extreme condition due to high heat and density ratios. A CFL
of 0.6 was considered for all computations and the analytical
solution was used for comparison.

1) Initial Conditions for Test I:

ρ, u, p, γ, π =

{
(3.984, 27.355, 1000, 1.667, 0) if x < 0.2,
(0.01, 0, 1, 1.4, 0) if x > 0.2.

In this case a strong shock wave propagates from a high
density gas to a low density gas because of the high differ-
ence of pressure at the interface. The computation was made
using HLL solver and 400 cells. The results at time t = 0.01
s are shown in Fig. 1 for both mixture velocity and mixture
density.
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Fig. 1. Mixture Velocity (Fig.1a) and Mixture Density (Fig.1b) for Test I
at Time t = 0.01 s

2) Initial Conditions for Test II:

ρ, u, p, γ, π =

{
(0.384, 27.077, 100, 1.667, 0) if x < 0.6,
(100, 0, 1, 3.0, 0) if x > 0.6.

This test presents an opposite scenario to the previous case.
Here a strong shock wave spreads from a low density gas to
a high density one because of the initial pressure difference.
The computation was made using HLLC Solver and 300
cells. The results for mixture velocity and mixture density
are illustrated in Fig. 2 at time t = 0.03 s.

In both 1D test cases, one can observe a good agree-
ment between the numerical and the exact solutions. It
can be noticed that the present numerical method has the
mechanism for tracking the contact discontinuity. The shock
wave transmitting in the gas on the right hand side and the
rarefaction wave in the gas on the left hand side are clearly
observable. The numerical dissipation that appeared at the
contact discontinuity is due to the nature of the method and
because of the relatively small number of computational cells
used. This problem can be solved easily by different ways
such as increasing the number of the computational cells or
decreasing the CFL number.

B. 2D Test Problems

Here three different test cases have been considered to
observe the evolution of the interface and to assess the nu-
merical algorithm that is developed in this work. The results
obtained are compared with other numerical results which are
generated using different models and numerical methods. All
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Fig. 2. Mixture Velocity (Fig.2a) and Mixture Density (Fig.2b) for Test II
at Time t = 0.03 s

TABLE I
INITIAL CONDITIONS FOR THE EXPLOSION TEST

Property Fluid 1 Fluid 2

Density, kg/m3 0.125 1

X-Velocity, m/s 0 0

Y-Velocity, m/s 0 0

Pressure, Pa 0.1 1

Heat ratio, γ 1.4 1.4

simulations were made using 300× 300 computational cells
and a CFL = 0.3. The periodic boundary conditions were
considered in all cases for all sides.

1) Explosion Test: This test is reported in [14]. It is a two
dimensional single phase problem and the reduced model of
the two-phase flows is applied for this test. In this test the
two flow components stand for the same fluid. The schematic
diagram of this problem is shown in Fig. 3 and the initial
condition is demonstrated in table I. The computation was
made using HLL solver and the surface plots for density and
pressure distribution at time t = 0.25 s are illustrated in Fig.
4.

2) Interface Test: This test has been presented in many
literatures (see for example [16]). The computational domain
includes a circular interface of 0.32 m in diameter separates
two fluids as illustrated in Fig. 5. The initial conditions for
this test are stated in table II. The computation was done
using HLLC solver and the results are shown in Fig. 6 for
volume fraction and mixture density at time t = 0.36 s.
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Fluid 1 

D=0.8m 

Fluid 2 

2 m 

2 m 

Fig. 3. The Flow Domain and the Initial State for the Explosion Test

 

 

Fig. 4. Evolution of Density (Fig.4a) and Pressure (Fig.4b) at Time t =
0.25 s for the Explosion Test

TABLE II
INITIAL CONDITIONS FOR THE INTERFACE TEST

Property Fluid 1 Fluid 2

Density, kg/m3 0.1 1

X-Velocity, m/s 1 1

Y-Velocity, m/s 1 1

Pressure, Pa 1 1

Heat ratio, γ 1.6 1.4

3) Bubble Explosion Under Water Test: This test is
also presented in [16] and has been considered by other
researchers. The computational domain of this case study
including the bubble geometry is illustrated in Fig. 7 and the
initial state is shown in table III. The simulation was made
using HLL solver and the surface plots for mixture density
and pressure are presented in Fig.8.

The numerical results obtained from two dimensional test
problems are compared with the equivalent numerical results
that published in [14] and [16]. The comparisons are suc-
cessful; the current results demonstrate a good compatibility

 

D=0.32m 

Fluid 1 

Fluid 2 

1 m 

1 m 

0.25 m 

0
.2

5
 m

 

Fig. 5. The Flow Domain and the Initial State for the Interface Test

 

 

Fig. 6. Volume Fraction Contour (Fig.6a) and Density Distribution (Fig.6b)
at Time t = 0.36 s for the Interface Test

TABLE III
INITIAL CONDITIONS FOR THE UNDER WATER EXPLOSION TEST

Property Bubble Surrounding fluid

Density, kg/m3 1.241 0.991

X-Velocity, m/s 0 0

Y-Velocity, m/s 0 0

Pressure, Pa 2.753 3.059e−4

Heat ratio, γ 1.4 5.5

Pressure constant, π 0 1.505

with the other results. The numerical solutions obtained
characterize and capture the expected physical behaviour and
the evolution of the interface correctly for all two-phase test
problems.
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1 m 

Fig. 7. The Flow Domain and the Initial State for the Under Water
Explosion Test

 

 

Fig. 8. Density Evolution (Fig.8a) and Pressure Distribution (Fig.8b) at
Time t = 0.58 s for the Under Water Explosion Test

V. CONCLUSION

Numerical simulations of compressible flows between two
immiscible fluids have been performed successfully. The nu-
merical algorithm for these simulations has been developed
based on Godunov approach with HLL and HLLC solvers
considering second order precision. The performance of the
considered multi-component flow model and the numerical
method has been verified effectively. This has been made
using a set of carefully chosen case studies which are
distinguished by a variety of compressible flow regimes. The
obtained results show that the developed algorithm is able to
reproduce the physical behaviour of the flow components
efficiently. Consequently, it could be applied to simulate a
wide range of compressible multiphase flows with different
materials and physical properties.
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