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Abstract—A linear stability analysis is implemented to 

examine the onset of thermal convection of nanofluids. The 
fluid is assumed to have a non-zero relaxation time, related to 
nanoparticle concentration. The fluid thus obeys the Cattaneo-
Vernotte constitutive equation instead of Fourier’s law of heat. 
It is found, in agreement with experiment, that both steady and 
oscillatory convection can set in upon loss of conduction for 
relatively low and high nanoparticle concentrations, 
respectively. 
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I. INTRODUCTION 

 
HE composition of a nanofluid consists of a base fluid 
(e. g., water, oil or organic based liquid) containing a 

small volume fraction (1-5%) of nanoparticles (1-100nm in 
diameter). The exciting feature about nanofluids is that they 
allow substantial enhancement in heat transfer (as much as 
40 percent [1]), despite the low volume fraction of the 
nanoparticles.  This makes nanofluids extremely valuable, 
especially in processes where cooling is of primary concern, 
and thus the focus has now turned to convecting properties 
of nanofluids. One advantage that a fluid containing 
nanoparticles has over its milliparticle and microparticle 
counterparts is the small size of the nanoparticles, which is 
on the same order of magnitude as the molecules in the base 
fluid.  This allows the solution to exist in a very stable 
manner without the occurrence of gravitational settling or 
particle agglomeration [1,2].  The most commonly used base 
fluids are water and organic fluids such as ethanol and 
ethylene glycol.  The materials that have been utilized as 
nanoparticles include oxides of aluminum and silicon, as 
well as metals such as copper and gold [1].  Diamonds and 
nanotubes have also been widely experimented with [1].  If 
the fluid in a cooling process has improved thermal 
properties, then the workload of other components in the 
system (e. g., a pump) can be reduced.  Better thermal 
conductivity and heat transfer coefficients would allow 
systems involving microelectronics to run with increased 
power while still maintaining appropriate operating 
temperatures, furthering the processing capabilities.  The 
potential positive impact of nanofluids in many applications 
is very promising. 
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Given the very small size of nanoparticles, it is not 
unconceivable that the nanofluid mixture may still be 
considered as a one-phase isotropic mixture, as opposed to 
viewing it as a two-phase liquid. In the latter case, a myriad 
of additional effects resulting from the interaction between 
the base fluid and nanoparticles must be incorporated [1], 
making cumbersome the problem formulation [3, 4]. These 
include the effects of particle inertia, drag, Brownian motion 
and thermophoresis, to cite a few. Alternatively, and 
similarly to non-Newtonian fluids [5], the nanofluid may be 
viewed as a non-Fourier fluid. Wei and Wang [6] 
established the equivalence between the two-phase and non-
Fourier approaches for heat conduction. Essentially, a non-
Fourier fluid follows the Cattaneo-Vernotte heat equation, 
where a time derivative of the heat flux is added, multiplied 
by a relaxation time. 
 
The addition of the partial time derivative does not 
completely solve the problem of instantaneous thermal 
relaxation [7-9]. The Cattaneo-Vernotte equation is not a 
frame-invariant constitutive relation and, as such, is 
restricted to non-deformable media.  Several objective 
derivatives have been applied to remedy this situation.  
However, they each have had their own shortcomings.  The 
most promising modification comes from Christov [10] as 
well as Khayat [11], whose use of the Oldroyd’s upper-
convected derivative, which leads to the frame indifferent 
Cattaneo equation.  It can also yield a single equation for the 
temperature field, an advantage other invariant formulations 
do not possess [10].  This equation replaces Fourier’s law 
whenever the relaxation time is relevant, and quickly 
collapses back onto Fourier’s law whenever it is not. 
 

II. PROBLEM FORMULATION 

A. Governing equations and boundary conditions 

 
Consider a thin layer of a Newtonian non-Fourier liquid 

confined between the (X, Y) planes at Z 0  and Z D , 

maintained at fixed temperatures 0T T   (hotter) and 0T
(cooler), respectively. The fluid layer is assumed to be of 
infinite horizontal extent. Convection sets in when buoyancy 
effect exceeds a critical threshold. The gravity acceleration 
vector is given by g = - gez, where ez is the unit vector in the 
Z direction. The fluid density, ρ , is assumed to depend on 

the temperature T, following 
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 Tρ = ρ 1-α T - T0 0   ,            (1) 

 
where 

T
 is the coefficient of volume expansion and ρ0  is 

the mass density of the fluid at T0. The fluid is assumed to 

be incompressible, of specific heat at constant pressure Cp, 
thermal conductivity k and viscosity . In this case, the 

general governing equations for a non-Fourier fluid 
comprise the conservation of mass, linear momentum and 
energy, as well as the constitutive equations. In this case, the 
conservation equations are given by 
 

0V   ,                  (2 
 

 0 t P g      zV V V e V ,    (3) 

 

 0 p tc T TV Q      ,         (4) 

 

where  and   are the gradient and Laplacian operators, 
respectively, and a subscript denotes partial differentiation. 
Here V = (U, W) is the velocity vector, P is the pressure, T 
is the temperature and Q is the heat flux vector. Note that 
the Boussinesq's approximation, which states that the effect 
of compressibility is negligible everywhere in the 
conservation equations except in the buoyancy term, is 
assumed to hold. In this work, the heat flux is assumed to be 
governed by [10, 11] 
 

 t k TQ V Q Q V Q         .    (5) 

 
where τ is the relaxation time. The boundary conditions at 
the lower and upper surfaces are taken to correspond to free-
free conditions. In this case 
 

   z zX, Z 0, t X, Z D, t 0,V e V e     
 

 

   zz z zz zX,Z 0, t X,Z D, t 0,V e V e       (6) 

 

   0 0T X,Z 0, t T T, T X,Z D, t T .     
 

 
 
Other boundary conditions could have been adopted, such as 
the rigid-rigid or rigid-free conditions. However, the free-
free conditions are convenient and the most commonly used 
in the literature. Moreover, no qualitative change in 
behaviour is expected if one set of boundary conditions is 
used or another [5]. In fact, Khayat carried out a 
comparative study in the case of the similar problem of 
rotating flow [5].  
 
The base state corresponds to the stationary heat conduction, 
which remains the same as for a Fourier fluid. In this case, 
the temperature, pressure gradient and heat flux are given by 
 

 B 0T Z D T T T,     
        

 

 B 0dP / dZ 1 T 1 Z D g,       T     (7) 
 

B
T

0,k
D

Q
   

 
. 

 

B Dimensionless problem 

 
The problem is conveniently cast in dimensionless form 

by taking the length, time and velocity scales as 
2D

D, and
D




, respectively, where 
p

k

c
 


 is the 

thermal diffusivity. Let  
2

B
D

p P P 


 and 

BT T

T


 


 be the dimensionless pressure and 

temperature deviations from the base conduction state. In 
this case, one obtains the problem in dimensionless form: 
 

0v   ,                  (8) 
 

 1
t zPr p Rav v v e v         ,    (9) 

 

t wv q       ,           (10) 

 

 t zC q v v q q v q            (11) 

 
where v(u, w) and q are the dimensionless velocity and heat 
flux vectors, respectively. The following non-dimensional 
groups have been introduced, namely the Prandtl number, 
Pr, the Rayleigh number, Ra, and the Cattaneo number, C, 
given by 

 
3

T
2

T gD
Pr , C , Ra

D

   
  
 

    (12) 

 
Clearly, the Fourier limit is recovered by taking the limit
C 0 . 
 
The problem can be simplified somewhat by casting it in 
terms of the scalar variable j q   . Thus, upon taking the 

divergence of equation (11), and noting the identity 

   :a b a b a b        , a and b being two 

general vectors, one obtains the following constitutive 
equation for j: 
 

 tC j j jv     ,           (13) 
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These equations must be solved subject to the following 
homogeneous boundary conditions: 
 

   

   

x,z 0, t x,z 1, t 0,

x,z 0, t x,z 1, t 0.

v v   

     

 

 
where the continuity equation (8) is used. It is interesting to 
note the presence of two linear terms of non-Fourier origin, 
on the left-hand side of equation (11), namely the transient 
term and the velocity gradient in the z direction. This 
contrasts with the convection of viscoelastic fluids where 
the transient term is the only linear term that survives [5]. 
 
 

III. LINEAR STABILITY ANALYSI 

 
Similarly to a Fourier fluid, the conduction of a non-

Fourier fluid is lost to convection once a critical value of the 

Rayleigh number, Rac, is exceeded. However, in contrast to 
a Fourier fluid, and similarly to a viscoelastic fluid [5], non-
Fourier conduction can be lost to steady or oscillatory 
convection, depending on the flow parameters. Let 

 Tu,w, p, , jΦ   designate the vector set of unknown 

variables. Note that Φ 0  corresponds to the conduction 
state. 

The linear stability analysis of the conduction state is 
similar to the case of a viscoelastic fluid, except that in the 
current problem, the fluid at rest does recognize further the 
non-Fourier character given by the additional linear velocity 
gradient mentioned above, in addition to the transient term. 
Thus, the stability of the conduction state is examined to a 
small (infinitesimal) perturbation of the form 
 

   st ikxx,z, t e zΦ 

 ,           (14) 

 
where k is the wavenumber of the perturbation in the x 
direction, and s dictates the time evolution of the 
disturbance. Thus, the conduction or base state is stable 
(unstable) if the real part of s is negative (positive). 
Following the standard procedure in linear stability analysis, 
the resulting z-dependent eigenfunctions are obtained upon 
substituting (14) into (8)-(10) and (13) and linearizing to 
obtain: 
 

 

 

   

1 2 2

1 2 2

2 2

iku Dw 0,

Pr su ikp D k u,

Pr sw Dp D k w Ra ,

s j w,

Cs 1 j D k .





 

   

     

   

    

 

 

 

  

 

      

(14) 

 
Here D = d/dz. The dispersion relation in this case reads: 
 

 

2
3 2

n n
n

3 2
n

n

1 Pr 1 k Ra Pr
s s Pr s

C C

Pr
k Ra 0

C

             

   


   (15) 

 

where 
2 2 2

n k n    , and n is the mode number. In 

contrast to a Fourier fluid, the presence of the cubic term in 
(15) hints to the possibility of steady or oscillatory 
convection. Thus, the stability picture depends on C, Pr and 
Ra. This is a similar situation to viscoelastic fluids where the 
elasticity number appears instead of C [5]. The 
corresponding eigenvectors are given by 
 

 in
u cos n z

k


 

 

 

 w sin n z 

 

 2
n

Cs 1
sin n z

Cs s

 
     



         (16)

 

 
 

1
n

2

Pr s
p n cos n z

k

 
   

      

 n
2

n

j sin n z
Cs s

 
    


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In addition, the heat flux components deduce to 

 
2 2

x 2
n

C n k
q i sin n z

sC 1 k Cs s

 
       


 

                      (17) 

 z 2
n

C 1
q n cos n z

Cs 1 Cs s

 
    

    


 

 
 
For weakly non-Fourier fluids, steady convection is 
predicted upon loss of conduction, and one recovers the 

same critical Rayleigh number, Rac, as for a Fourier fluid, 
namely 

 
3
n

c 2
Ra =

a


.                  (18) 

 
 
In this case, the n > 1 neutral curves are all above the n = 1 

curve, with Rac displaying a minimum, 
4

m
27

Ra
4


  at 

mk
2


 . For strongly non-Fourier fluids, oscillatory 

convection sets in, and the corresponding neutral curves are 
obtained upon setting s i   in (15), ω being the 
frequency. Separating real and imaginary part gives 
 

11
C Pr 1

C
     ,            (19) 

 

 2

c 2 2 2

C Pr Pr 1
Ra

k C Pr

   
 .          (20)  

 

Clearly, oscillatory convection is possible only if 

 

1 Pr
C

Pr





.                 (21) 

 
 

IV. RESULTS AND DISCUSSION 

 
Typical marginal stability curves for several values of C 

are illustrated in figure 1 for Pr = 10. The curve C = 0 is the 
marginal stability curve for a Fourier fluid, and is 
independent of Pr. In this case, there is an exchange of 
stability between the pure conduction state and stationary 
convection. For C > 0, curves correspond to marginal 

stability for oscillatory convection (overstability) branch out 
from the Fourier curve. Two regimes are clearly 
distinguishable from figure 1. The weakly non-Fourier 

regime which is taken to correspond to C < CT = 0.0655, 

where CT is the level of non-Fourier character of the fluid 
above which transient convection is predicted to be first 
observed. Thus, oscillatory behaviour sets in for any 
wavenumber. 
 

For C < CT, however, oscillatory convection is still possible 

for a range of wave numbers corresponding to k > ki (the 
point of intersection between the C = 0 and C > 0 curves). 

When C > CT, oscillatory convection is predicted to be 
observed first. In this case, the conductive state loses its 
stability to oscillatory convection. It is thus appropriate to 
define a weakly (strongly) non-Fourier fluid, as a fluid for 

which C < CT (C > CT). Note that the critical wavenumber 
corresponding to the onset of oscillatory convection is 

always larger than ki. Thus, the convective pattern becomes 
increasingly difficult to detect for the more non-Fourier 
fluids. Note that, in the strongly non-Fourier regime, 
stationary convection remains possible for a small range of k 
values (shown to the extreme left of the intersection point 
with the C = 0 curve). This range diminishes and eventually 
vanishes as C increases. Above a certain non-Fourier level, 
only oscillatory convection is predicted for any wave 
number.  
 

The corresponding frequency, ω, curves are shown in 
figure 2. For small C, oscillatory behaviour is clearly 

possible when k > ki, with ki being the intersection point of 
the ω curve and the k axis (also point of intersection of the C 
= 0 and C > 0 curves). The frequency increases with 
wavenumber. Thus, oscillatory rolls tend to be smaller in 
size. As C increases, the non-zero frequency range increases 
(the zero frequency range decreases), with the point of 
intersection continuously moving to the left (see also figure 
1). Interestingly, the frequency decreases with C for 
relatively large k. For C > 0.1115, oscillatory behaviour is 
predicted for any wavenumber, the point of intersection 
always being at k = 0 and infinite Rayleigh number.  

 

V. CONCLUSION 

In conclusion, the present study examines the linear 
stability of the conduction state of a NF once a threshold 
temperature difference is exceeded. The NF is modeled as a 
non-Fourier fluid obeying a generalized Cattaneo-Vernotte 
heat equation. It is found that steady (oscillatory) convection 
sets in for (weakly) non-Fourier fluids, corresponding to low 
(high) NP concentration. 
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Figure 1. Marginal stability curves for Pr = 10. Critical Rayleigh number plotted against the wavenumber, k. 

 

          
Figure 2. Critical frequency of oscillation plotted against wavenumber for Pr = 10/ 
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