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Abstract—A new procedure for representation of elastic 

constant tensor in terms of its orthonormal decomposed parts 

is presented. Form invariants and orthonormalized basis 

elements are used to generate this decomposition method. 

Numerical examples from various engineering materials serve 

to illustrate and verify the decomposition procedure. The norm 

concept of elastic constant tensor and norm ratios are used to 

study the anisotropy of these materials. It is shown that this 

method allows to investigate the elastic and mechanical 

properties of an anisotropic material possessing any material 

symmetry and determine anisotropy degree of that material. 

For a material given from an unknown symmetry, it is possible 

to determine its material symmetry type by this method. 

 

Index Terms— elastic constant tensor, decomposition, form 

invariant, orthonormalized basis elements, norm, material 

symmetry type. 

 

I. INTRODUCTION 

NISOTROPIC materials become the material of 

choice in a variety of engineering applications in the 

last century. Many materials are anisotropic and 

inhomogeneous due to the varying composition of their 

constituents. For instance, polycrystalline materials 

generally show an elastic anisotropy due to texture and the 

anisotropy of single crystallites. The polycrystalline and 

composite materials which show high anisotropy are used in 

many applications in industry. Everyday passed, the number 

of anisotropic materials is increasing by the addition of man-

made anisotropic single crystals and technologically 

developed anisotropic materials. In order to understand the 

physical properties of the anisotropic materials, use of 

tensors by decomposing them is important. Tensors are the 

most significant mathematical entities to describe direction 

dependent physical properties of solids and the tensor 

components characterizing physical properties which must 

be specified without reference to any coordinate system. 

The constitutive relation for linear anisotropic elasticity, 

defined by using stress and strain tensors, is the generalized 

Hooke's law [1] 

.klijklij C                    (1) 
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This formula demonstrates the well known general linear 

relation between the stress tensor whose components are 

ij and the strain tensor (symmetric second rank tensor) 

whose components are .kl ijklC are the components of 

elastic constant tensor (elasticity tensor) ijklC  satisfies three 

important symmetry restrictions. These are 

,klijijklijlkijkljiklijkl CCCCCC            (2) 

which follow from the symmetry of the stress tensor, the 

symmetry of the strain tensor and the elastic strain energy. 

These restrictions reduce the number of independent elastic 

constants 
ijklC from 81 to 21. Consequently, for anisotropic 

materials (with triclinic symmetry) the elastic constant 

tensor has 21 independent components. 

The indices are abbreviated according to the replacement 

rule given in the following TABLE [1]: 
TABLE I 

    ABBREVIATION OF INDICES FOR FOUR AND DOUBLE   
                    INDEX NOTATIONS 

four index notation 11 22 33 23, 32 13, 31 12, 12 

double index notation 1 2 3 4 5 6 

 In literature, the works for orthonormal decomposition of 

any rank tensors can be summarized as; it was first proposed 

by [2], developed by [3] who gave name as integrity basis 

treated the strain energy function as a polynomial in the 

strain components and lead to determination integrity basis 

for invariant functions of the strain components for each one 

of the 32 crystallographic point groups. Using the integrity 

basis, orthonormal tensor basis which spans the space of 

elastic constants was derived. Orthonormal tensor basis is 

also obtained by another way which is form invariant. 

Reference [4] identified invariant elastic constants for each 

crystal class. 

The purpose of the work is to develop a new 

decomposition method for elastic constant tensor in order to 

prove that a material possesses a particular symmetry type 

can be explained in another anisotropic symmetry. 

In the present paper, the decomposition method is 

introduced. Next, norm concept and anisotropy degree are 

presented. As an application of this method, numerical 

examples are given from randomly selected materials. 

Finally, in the last section, the results of numerical analysis 

are discussed and conclusions pertinent to this work are 

stated. 
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II. DECOMPOSITION PROCESS  

In analyzing the elastic and mechanical properties of 

anisotropic linear materials, elastic constant tensor is 

required to make up a linear constitutive relation between 

stress and strain tensors, each of which represents some 

directly detectable and measurable effect in the material 

(Recall Hooke's law, given in (1)). Elastic constant tensor is 

introduced in specification of physical properties for many 

anisotropic materials. Decomposition of the elastic constant 

tensor into orthonormal parts, offer not only valuable insight 

into the tensor structure but also simplify immensely the 

calculations of sums, products, inverses and inner products. 

The decomposition method developed can be carried out for 

materials possessing symmetry classes such as isotropic, 

cubic, transversely isotropic, tetragonal (classes: mm4 ,  

,24 m ,422 mmm/4 ), trigonal (classes: ,32 ,3m m3 ), 

orthorhombic and triclinic [1]. In this work, materials 

possessing isotropic, transversely isotropic and 

orthorhombic symmetry are selected for application since 

important engineering materials exhibit those symmetries. 

For isotropic materials, an expression for the elastic 

constant tensor which is different from the traditional form 

is also presented. 

   A.  Form Invariant 

A physical property of tensor is resolved along the triads 

32,1 ,vvv denoting the unit vectors along the material 

coordinate axis [4]. The symmetry properties of the 

material, due to the geometric or crystallographic symmetry, 

can be defined by the group of orthonormal transformations 

which transform any of these triads 
 a  into its equivalent 

positions. For each of the symmetry classes selected, as 

reference system a rectangular Cartesian coordinate system  

Oxyz  is chosen, so related to the material directions ,1    

,2 3  in the material under consideration that the 

symmetry of the material may be described by one or more 

of the transformations. Their relative orientations in the 

seven crystal systems are well known. Transformations in 

which the coefficients satisfy the orthogonality relations are 

called linear orthogonal transformations. In this formulation, 

the number of elastic constants and their values do not 

depend on the choice of the coordinate system. The form 

invariant expression for the components of elastic constant 

tensor, the elastic stiffness coefficients is, 

abcddlckbjaiijkl AC                 (3) 

Where summation is implied by repeated indices, 
ai   are 

the components of the unit vectors 
a  ( 3,2,1a ) along the 

material direction axes. 
abcdA  is invariant in the sense that 

when the Cartesian system is rotated to a new orientation  

,́´´ zyOx   then (3) takes the following form; 

abcddlckbjaiijkl AC ´´´´´                  (4) 

Where 
321 ,,    form a linearly independent basis in three 

dimensions but they are not necessarily always orthogonal 

(it is a general case). The orthogonality condition used in 

this work, is a particular case for elastic constant tensor so 

the corresponding reciprocal triads must satisfy the 

following relation 

ijajai                        (5) 

The expression given in (5) can be rewritten as 

IT                          (6) 

Where I is identity matrix which is  
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                (7) 

Since  1ij   ( ji   ) or  0ij   ( ji   ). These are 

the orthogonality relations which are also defined in (5). 

   B.   Orthonormalized Basis Elements 

Form invariant is the necessary step in constructing 

orthonormal tensor basis of elasticity tensors. By 

appropriate use of  ij  , elements of the orthonormal tensor 

basis can be constructed for each symmetry types [5]. 

Furthermore symmetry in crystal means simply invariance 

of the properties with respect to the transforms of some 

subgroup of the orthogonal group, whereas the properties of 

an isotropic medium are invariant with respect to all the 

transforms of the orthogonal group. In other words, it 

explains the form of ijklC tensor for any isotropic medium 

and it is invariant with respect to the all transforms of the 

orthogonal group. However there is a unique tensor that is 

not affected by all orthogonal transforms, it is a unique 

tensor, apart from a scalar factor, so ijklC   can be expressed 

as combinations of the components ij  of that tensor with 

certain coefficients. There are only three different such 

combinations which contain four subscripts lkji ,,,   namely

klij , ,jlik jkil [5]. Because of the symmetry of  

,ijklC   i  and j   are permuted. So the elements takes the 

new form; klij  and jkiljlik   . For other symmetry 

types, these elements are used in a suitable form, when 

constructing  orthonomalized basis. Form-invariant 

expression of isotropic symmetry is formed by the following 

two basis elements: 

jkiljlikklij  ,                   (8) 

    So, the decomposition of ijklC  for triclinic system with 

no elastic symmetries is given in terms of its 

orthonormalized basis elements as 

),...(,),( XXIIKAACC K

ijkl

K

ijkl

K

ijkl             (9) 

     Where ),( K

ijklAC   represents the inner product of ijklC   

and
thK elements,

K

ijklA , the orthonormalized basis elements 

and given for each elastic symmetry types, besides, the inner 

products for triclinic symmetry are obtained as 
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)],(2)[(
3

1
),( 231312332211 CCCCCCAC I

ijkl 

)],

(2)(6)(2[
53

1
),(

23

1312665544332211

C

CCCCCCCCAC II

ijkl




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1
),( 33221133 CCCCAC III

ijkl   
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3

1
),( 2313122313 CCCCCAC IV

ijkl   
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1
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C

CCCCCCCCAC V

ijkl




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3

2
),( 665544 CCCAC VI

ijkl    ],[
2

1
),( 2211 CCAC VII

ijkl   

],[),( 2313 CCAC VIII

ijkl  ],[2),( 5544 CCAC IX

ijkl    

,22),( 46CAC X

ijkl  ,2),( 35CAC XI

ijkl   ,2),( 15CAC XII

ijkl   

,2),( 25CAC XIII

ijkl  ,2),(,22),( 1645 CACCAC XV

ijkl

XIV

ijkl   

,2),( 26CAC XVI

ijkl  ,22),(,2),( 5636 CACCAC XVIII

ijkl

XVII

ijkl   

,2),( 24CAC XIX

ijkl  .2),(,2),( 1434 CACCAC XXI

ijkl

XX

ijkl        (10) 

     Here, elastic constants are given in Voigt notation. 

C.   Isotropic Materials 

The form invariant expression is defined for isotropic 

material as [4] 

)( jkiljlikklijijklC            (11) 

   Where   and    are invariant elastic constants and they 

are also called Lame constants and klijijkl   ,

jkiljlikijkl   .The traditional form of stress-strain 

relation for isotropic solids can be defined as 

ijijrrij  2                  (12) 

It is also well known that stress tensor is decomposed into 

spherical and deviatoric parts and it is given as 

).
3

1
(

3

1
ijrrijijrrij           (13) 

For isotropic materials, the decomposition of ijklC for the 

isotropic system is given in terms of the orthonormalized 

basis elements as 

),(,),(),(),( IIIKAACAACAACC II

ijkl

II

ijkl

I

ijkl

I

ijkl

K

ijkl

K

ijkl

K

ijkl     

                     (14) 

Where ),( K

ijklAC  denotes the inner product of  ijklC  and  

,
3

1

3

1
klijijkl

I

ijklA    )23(
56

1
ijklijkl

II

ijklA   which are 

orthonormalized basis elements for isotropic system. The 

inner products are 

)],(2)[(
3

1
),( 231312332211 CCCCCCAC I

ijkl        (15)

)].(4)(12)(4[
56

1
),( 231312665544332211 CCCCCCCCCAC II

ijkl 
 

                       (16) 

Equation (14) denotes the new representation of elastic 

constant tensor for isotropic symmetry which is not in 

literature. 

D.  Transversely Isotropic Materials 

The form invariant expression for transversely isotropic 

materials [4] 

ijklijklijklijklijklijklC  54321      (17) 

Where
lkjiijkl 3333   ,  kljilkijijkl  3333    

and ).)(())(( 1331133123322332 lklkjijilklkjijiijkl     

 ,1  ,2  ,3  4  and 
5  are invariant elastic constants 

for transversely isotropic system. The decomposition of  

ijklC  for transversely isotropic system is given in terms of 

the orthonormalized basis elements as 

V
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                                  (18) 

Where  ),15(
56

1
ijklijklijkl

III

ijklA     

 ),5159(
12

1
ijklijklijklijkl
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1
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Which are orthonormalized basis  elements for 

transversely isotropic system. 

Since first two orthonormalized basis elements of 

transversely isotropic system are the same as isotropic 

symmetry, inner products are also identical, the other inner 

products for transversely isotropic system are 
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 E.  Orthorhombic Materials 

For orthorhombic materials, the form invariant expression 

is [4] 

  
ijklijklijklijkl

ijklijklijklijklijklijklC
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                        (20) 

      Where  ,1111 lkjiijkl    ,33111133 lkjilkjiijkl         
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 ).)(( 23322332 lklkjijiijkl     

,1 ,2 ,3 ,, 54  ,, 76  8  and
9  are invariant elastic 

constants for orthorhombic system. The decomposition of 

ijklC
 

for orthorhombic system is given in terms of its 

orthonormalized basis elements as 

)...(,),( IXIKAACC K

ijkl

K

ijkl

K

ijkl                        (21) 

 Where  

),32(
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1
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ijklA       

which are orthonormalized basis elements for orthorhombic 

system. ),( K

ijklAC represents the inner product of  
ijklC   for 

orthorhombic symmetry and the  
thK   elements,  ijklA   of 

the basis, since first five orthonormalized basis elements of 

orthorhombic system are the same as transversely isotropic 

symmetry, inner products are also common, the other four 

inner products for orthorhombic materials are 

 ],42[
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1
),( 66221211 CCCCAC VI    

 ],[
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1
),( 2211 CCAC VII   ,),( 2313 CCAC VIII   

 ).(2),( 5544 CCAC IX 
             (22)

 

III. NUMERICAL ANALYSIS 

Let us consider the decomposition of the elastic constant 

tensor in the following materials. 

A. For an Isotropic Material 

Especially textured and non-crystalline materials show 

isotropic symmetry. There are two independent elastic 

constants for isotropic symmetry which are ., 1211 CC   

Reactor pressure vessel (RPV) steel is presented as isotropic 

material and the elastic coefficients in GPa ( 1010 dyn  cm 2 ) 

for RPV steel are given [6] 
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             (23) 

By using the formula given in (14), inner products are 

calculated as 

.94.353),(,431.514),(  III ACAC            (24) 

The symmetric fourth rank tensor for RPV steel can be 

represented in the form 
II

ijkl

I

ijklijkl AAC 94.353431.514              (25) 

Regarding (25), elastic constant tensor of RPV can be 

decomposed as  
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                                                            (26) 

B. For a Transversely Isotropic Material 

Most textured and non-crystalline materials exhibit 

transversely isotropic symmetry. There are five independent 

elastic constants for transversely isotropic symmetry which 

are .,,,, 4433131211 CCCCC Polystyrene is presented as a 

transversely isotropic material and the elastic coefficients in 

GPa for Polystyrene are given [7] 
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                         (27) 

By applying the formula given in (18), inner products can 

be computed as 
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                                 (28) 

The elastic constant tensor for Polystyrene can be 

decomposed as 

V

ijkl
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ijklijkl
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15.0

05.04025.07616.587.10




  

                             (29) 

From (29), isotropic and transversely isotropic parts of 

Polystyrene are constructed as 
II

ijkl

I

ijkl AAI 7616.587.10                (30) 

V

ijkl

IV

ijkl

III

ijkl AAATI 15.005.04025.0        (31) 

By adding (30) and (31), elastic constant tensor of RPV 

can be represented as 
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                          (32) 

 C. For an Orthorhombic Material 

Orthorhombic media show an orthorhombic symmetry. 

When the same symmetry is applied to textured or non-

crystalline materials, it is generally called orthotropy. Most 

of the elastic bodies in engineering, biological tissues, rock 

structures, metal crystals (due to the symmetries of the 

lattice), most of the polycrystalline textured materials and 

fiber-reinforced composites (because of the production 

technique reasons), are, with acceptable accuracy, 

considered as orthotropic. However, for most practical 

purposes, orthotropic symmetry is equivalent to 

Proceedings of the World Congress on Engineering 2012 Vol I 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19251-3-8 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



 

orthorhombic symmetry. There are nine independent elastic 

constants for orthorhombic symmetry which are 

.,,,,,,,, 665544231312332211 CCCCCCCCC Olivine is 

presented as an orthorhombic material and the elastic 

coefficients in GPa for Olivine are given [8] 
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           (33) 

By employing the formula given in (21), inner products 

are calculated as 

,18),(,67.8),(,461.86),(,73.284),(,33.329),(  VIVIIIIII ACACACACAC

.83.2),(,4),(,6.22),(,49.8),(  IXVIIIVIIVI ACACACAC  (34) 

The symmetric fourth rank tensor for Olivine can be 

represented in the form 

IX

ijkl

VIII

ijkl

VII

ijkl

VI

ijkl

V

ijkl

IV

ijkl

III

ijkl

II

ijkl

I

ijklijkl

AAAAA

AAAAC

83.246.2249.818

67.8461.8673.28433.329




 (35) 

From (35), isotropic and transversely isotropic, tetragonal 

and orthorhombic parts of Olivine are constructed as 
II

ijkl

I

ijkl AAI 73.28433.329                (36) 

V

ijkl

IV

ijkl

III

ijkl AAATI 1867.8461.86                                     (37) 

VI

ijklATet 49.8                                                                (38) 

IX

ijkl

VIII

ijkl

VII

ijkl AAAO 83.246.22                                     (39) 

By adding (36), (37), (38) and (39), elastic constant tensor 

of Olivine can be denoted as 
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          (40) 

IV. THE NORM CONCEPT AND ANISOTROPY DEGREE  

Norm is an invariant of the material. There are many 

types of norm in literature. Those norms are Euclidean, 

Riemannian, log-Euclidean, Taxicab, infinity, uniform, zero 

and so on. These norms are used in different fields of 

science and engineering. For instance, zero norm is related 

with machine learning and optimization. Log-Euclidean 

norm is a measure for tensors such as symmetric positive-

definite matrices in medical imaging, modeling of 

anatomical variability i.e. human brain variability and 

Riemannian and log-Euclidean norms are used to find the 

shortest distance between an elasticity tensor of arbitrary 

symmetry and an elasticity tensor of lower symmetry. [9] 

These two norms are effective when elastic compliance 

tensor is considered. Since the most appropriate and reliable 

norm for elastic constant tensor is Euclidean norm in 

literature, Euclidean norm is used for computations as a 

measure in this work. Comparison of magnitudes of the 

Euclidean norm gives valuable information about the origin 

of the physical property under examination. Euclidean norm 

also represents the stiffness effect in the material like fiber-

reinforced composites. 

Euclidean norm of a Cartesian tensor is defined as the 

square root of the contracted product over all the indices 

with itself, which is given as follows 

2
1

}{ ...... ijklijkl CCCN                  (41) 

     Since the basis constructed in this thesis is orthonormal 

and ...ijklC  is in the space spanned by that orthonormal basis

}{ KA , it is straightforward to see that, now the norm 

2
1

}),({ 2K

ijkl
K

ACCN               (42) 

The norm of nearest isotropic tensor, denoted by ,o

iiklC  of 

ijklC is therefore 

),(,}),({ 2
1

2 IIIKACCN K

ijkl

o

IK

o

i 


        (43) 

 In similar way, with respect to the tensor
ijklC , the nearest 

tensors of other symmetry classes within the class spanned 

by the basis }{ KA can be read off from the representation 

and their norms may be computed according to (42). By 

using the norms, the nearest isotropic tensors of lower 

symmetries such as cubic, transversely isotropic, tetragonal, 

trigonal and orthorhombic can be found via the following 

formula [3] 

C

CC o

o


                (44) 

    Where 
o  is a scalar constant independent of the 

rotation of the axes. It is a measure of `nearness' of the 

nearest isotropic tensor. 

It is obvious that the anisotropy of the material, for 

instance, the symmetry group of the material and the 

anisotropy of the measured property depicted in the same 

materials may be quite different. Clearly, the property tensor 

must show, at least, the symmetry of the material. For 

instance, a property which is measured in a material can 

almost be isotropic but the material symmetry group itself 

may have very few symmetry elements. We know that, for 

isotropic materials, the elastic constant tensor has two scalar 

(isotropic) parts, so the norm of the elastic constant tensor 

for isotropic materials depends only on the norm of the 

scalar parts, i.e.,  .iNN    so, the ratio 1/ NN i
for 

isotropic materials. For cubic materials, the elastic constant 

tensor has the same two parts that consisting the isotropic 

symmetry and a third which is designated as the anisotropic 

part, hence we define two ratios: NN i /  for the isotropic 

parts and NNa /  for the anisotropic part. For lower 

symmetry type materials such as transversely isotropic, 

tetragonal, trigonal and orthorhombic, the elastic constant 

tensor additionally contains more anisotropic parts, so we 

can define NNa /  for all the anisotropic parts. 

Although the norm ratios of different parts represent the 

anisotropy of that particular part, they can also be used to 
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asses and compare the anisotropy degree of a material 

property as a whole. 

The following significant notes are taken into account 

when we have evaluated the computed results in following 

tables. These notes are: 

1. It can be used as a parameter representing and 

comparing the overall effect of a certain property of 

anisotropic materials of the same or different symmetry. If 

the norm value of a material is large, it has more effective 

property than the other materials of the same symmetry 

type. 

2. When
iN is the largest among norms of the decomposed 

parts, if the norm ratio NN i /  is closer to one, the material 

property is closer to isotropic. 

3. When 
iN  is not the largest or not present, norm of the 

other parts can be used as a criterion. But in this case the 

situation is reverse; if the norm ratio value is larger than the 

others, the material property is more anisotropic. 

In following sections, several examples from transversely 

isotropic and orthorhombic symmetries are presented. 

A. Materials from Transversely Isotropy 

Elastic constants of transversely isotropic materials are 

given in TABLE II. The units are in GPa. 
TABLE II 

ELASTIC CONSTANT DATA OF TRANSVERSELY ISOTROPIC MATERIALS  

 

For transversely isotropic materials, the norm and norm 

ratios, 
o (the anisotropy degrees) are computed in order to 

determine which one is close to isotropy or anisotropy. The 

results for norm, norm ratios and the measure of `nearness' 

of the nearest isotropic tensor are presented in the following 

TABLE. 
TABLE III 

THE NORM AND NORM RATIOS (THE ANISOTROPY DEGREES) FOR 

TRANSVERSELY ISOTROPIC MATERIALS 

From TABLE III, it is seen that the ratio NN i / gives the 

same result for hardened and normal tool steel which is 

equal to 1and the results for  
o  is close to each other. But 

o of normal tool steel is smaller than 
o of hardened tool 

steel which shows that normal tool steel is more isotropic 

than the hardened one. The same case is also proved by 

comparing the NNa /   for both tool steel type. The larger 

ratio NNa /  and ,o   the more anisotropic property exist 

for a transversely isotropic material and in reverse manner, 

the smaller ratio ,/ NN i
a transversely isotropic material 

possesses the more anisotropic property. So Zinc is the most 

anisotropic material among the other transversely isotropic 

materials. 

 

B. Materials from Orthorhombic Symmetry 

     Elastic constants of orthorhombic materials are presented 

in TABLE IV. The units are in GPa. 

TABLE IV 

ELASTIC CONSTANT DATA OF ORTHORHOMBIC MATERIALS  

The norm and norm ratios,
o (the anisotropy degrees) for 

orthorhombic materials are calculated in order to determine 

the effect of anisotropy in other words which one is more 

anisotropic or isotropic. The results for norm, norm ratios 

and the measure of `nearness' of the nearest isotropic tensor 

are summarized in TABLE V. 
 

TABLE V 

THE NORM AND NORM RATIOS (THE ANISOTROPY DEGREES) FOR 

ORTHORHOMBIC MATERIALS 

    In TABLE V, by taking into account the effect of the 

norm ratios; ,/ NNi  NNa /  and ,o it is obvious that marble 

is an orthorhombic material that possesses the most isotropic 

effect among the other orthorhombic materials with the 

Orthor- 

hombic  

Media 

11C    12C   13C   
22C   23C   

33C   
44C   55C   

66C   

Olivine [8] 192 66 60 160 56 272 60 62 49 

Pine(Soft-

wood) [14] 

1.24 0.74 0.76 17.1 0.94 1.79 1.18 0.079 0.91 

Olivinite[10] 232 93 92 210 82 199 73.3 70.9 68.6 

Marble [10] 119 51 52 110 47 104 29.7 30.7 32.6 

Canine  

femora [15] 

19 9.73 11.9 22.2 11.9 29.7 6.67 5.67 4.67 

Transversely isotropic 

Media 
 11C    12C    

13C    
33C    44C   

Polystyrene [7] 5.20 2.75 2.75 5.70  1.30 

Hardened tool steel [10]  277  113  112 272  80.3 

Zinc(Zn)[11]  165 31.1  50 61.8  39.6 

Cadmium[12]  116  42  41 50.9  19.6 

Normal tool steel[13]  289  116  117  284  84.5 

Transversely 

isotropic 

Media 

 
iN    

aN    N    NN i /   NNa /    
o   

Polystyrene 12.2996   0432   12.31  0.9994   0.0351  0.000617  

Hardened tool 

steel 

 617.745  5.257   617.768   1.000   0.0085  0.000036  

Zinc(Zn) 301.619  98.510  

 

 317.298  0.9506   0.3105  0.049400  

Cadmium 211.340  60.330 

 

219.7819 0.9616   0.2745  0.038400  

Normal tool 

steel 

645.282 

  

5.367  

 

645.3038   1.000   0.0083  0.000035  

Orthorhombic 

Media 
 

iN    
aN    N    NN i /   NNa /  

 
o   

Olivine 435.35 93.267 445.228 0.9778 0.2095 0.0222 

Pine 

(Softwood) 

11.0247 15.9396 19.381 0.5688 0.8224 0.4312 

Olivinite 494.479 35.1969 495.73 0.9975 0.0710 0.0025 

Marble 251.9798 12.8411 252.3067 0.9987 0.0509 0.0013 

Canine 

Femora 

53.0038 8.9226 53.7495 0.9861 0.1660 0.0139 
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largest value for ratio NN i /    and the smallest value for
o . 

Pine, which is a softwood, exhibits the most anisotropic 

property among the others with the largest value for ratio    

NNa /
 
and  

o  . 

V. RESULTS AND CONCLUSION 

This decomposition method for elastic constant tensor 

have many applications in various subjects of science 

(atomic and molecular physics and the physics of condensed 

matter) and engineering such as decomposition of wood 

elastic constant tensor in structural engineering or 

representation of olivine elastic constant tensor in 

geophysical applications. In the mechanics of continuous 

media, for instance, in elasticity studies; the stress and strain 

tensors are decomposed into spherical (hydrostatic) and 

deviatoric parts each of which have important meanings. 

Moreover, for very valuable materials (diamonds, quartz) 

used in mining, it is difficult to measure its elastic constants 

because of its small samples. Applying this decomposition 

procedure, it is possible to specify the elastic constants of 

these types of materials. 

Representation of elastic constant tensor in terms of its 

orthonormal parts by this method provides a deeper 

understanding about elastic and mechanical behavior of 

anisotropic materials. It also has more significant effects on 

many applications in different fields such as: 

1) Calculation of norm and norm ratios for assessing and 

comparing the anisotropic properties of materials. 

2) Examining the material symmetry types in detail, 

3) Observing a material which possesses a particular 

symmetry type can be explained in another anisotropic 

symmetry. 

4) Determination of materials possessing same crystal 

symmetry type which are highly anisotropic or close to 

isotropy, 

5) Understanding the mechanical and elastic behavior of 

natural composites such as Bone and Wood types. 
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