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An Innovative Description of Elastic Constant
Tensor Based upon Orthonormal
Representations

Cigdem Dingkal

Abstract—A new procedure for representation of elastic
constant tensor in terms of its orthonormal decomposed parts
is presented. Form invariants and orthonormalized basis
elements are used to generate this decomposition method.
Numerical examples from various engineering materials serve
to illustrate and verify the decomposition procedure. The norm
concept of elastic constant tensor and norm ratios are used to
study the anisotropy of these materials. It is shown that this
method allows to investigate the elastic and mechanical
properties of an anisotropic material possessing any material
symmetry and determine anisotropy degree of that material.
For a material given from an unknown symmetry, it is possible
to determine its material symmetry type by this method.

Index Terms— elastic constant tensor, decomposition, form
invariant, orthonormalized basis elements, norm, material
symmetry type.

I. INTRODUCTION

A NISOTROPIC materials become the material of
choice in a variety of engineering applications in the
last century. Many materials are anisotropic and
inhomogeneous due to the varying composition of their
constituents.  For instance, polycrystalline materials
generally show an elastic anisotropy due to texture and the
anisotropy of single crystallites. The polycrystalline and
composite materials which show high anisotropy are used in
many applications in industry. Everyday passed, the number
of anisotropic materials is increasing by the addition of man-
made anisotropic single crystals and technologically
developed anisotropic materials. In order to understand the
physical properties of the anisotropic materials, use of
tensors by decomposing them is important. Tensors are the
most significant mathematical entities to describe direction
dependent physical properties of solids and the tensor
components characterizing physical properties which must
be specified without reference to any coordinate system.

The constitutive relation for linear anisotropic elasticity,
defined by using stress and strain tensors, is the generalized
Hooke's law [1]

Oy = Cijkl € 1)
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This formula demonstrates the well known general linear
relation between the stress tensor whose components are

oj;and the strain tensor (symmetric second rank tensor)
whose components are &,. CijkI are the components of

elastic constant tensor (elasticity tensor) Cijkl satisfies three

important symmetry restrictions. These are
CijkI:CjikI CijkI:CijIk CijkI:Cinj' (2)

which follow from the symmetry of the stress tensor, the
symmetry of the strain tensor and the elastic strain energy.
These restrictions reduce the number of independent elastic
constants C, from 81 to 21. Consequently, for anisotropic

materials (with triclinic symmetry) the elastic constant
tensor has 21 independent components.
The indices are abbreviated according to the replacement

rule given in the following TABLE [1]:
TABLE |
ABBREVIATION OF INDICES FOR FOUR AND DOUBLE
INDEX NOTATIONS

four index notation 11 (22|33| 23,32 | 13,31 | 12,12

double index notation 112]|3 4 5 6

In literature, the works for orthonormal decomposition of
any rank tensors can be summarized as; it was first proposed
by [2], developed by [3] who gave name as integrity basis
treated the strain energy function as a polynomial in the
strain components and lead to determination integrity basis
for invariant functions of the strain components for each one
of the 32 crystallographic point groups. Using the integrity
basis, orthonormal tensor basis which spans the space of
elastic constants was derived. Orthonormal tensor basis is
also obtained by another way which is form invariant.
Reference [4] identified invariant elastic constants for each
crystal class.

The purpose of the work is to develop a new
decomposition method for elastic constant tensor in order to
prove that a material possesses a particular symmetry type
can be explained in another anisotropic symmetry.

In the present paper, the decomposition method is
introduced. Next, norm concept and anisotropy degree are
presented. As an application of this method, numerical
examples are given from randomly selected materials.
Finally, in the last section, the results of numerical analysis
are discussed and conclusions pertinent to this work are
stated.
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Il. DECOMPOSITION PROCESS

In analyzing the elastic and mechanical properties of
anisotropic linear materials, elastic constant tensor is
required to make up a linear constitutive relation between
stress and strain tensors, each of which represents some
directly detectable and measurable effect in the material
(Recall Hooke's law, given in (1)). Elastic constant tensor is
introduced in specification of physical properties for many
anisotropic materials. Decomposition of the elastic constant
tensor into orthonormal parts, offer not only valuable insight
into the tensor structure but also simplify immensely the
calculations of sums, products, inverses and inner products.
The decomposition method developed can be carried out for
materials possessing symmetry classes such as isotropic,

(classes: 4mm,

42m, 422, 4/mmm), trigonal (classes: 32, 3m, 3m),

orthorhombic and triclinic [1]. In this work, materials
possessing  isotropic,  transversely  isotropic  and
orthorhombic symmetry are selected for application since
important engineering materials exhibit those symmetries.

For isotropic materials, an expression for the elastic
constant tensor which is different from the traditional form
is also presented.

cubic, transversely isotropic, tetragonal

A. Form Invariant

A physical property of tensor is resolved along the triads
V, V,,Vydenoting the unit vectors along the material
coordinate axis [4]. The symmetry properties of the

material, due to the geometric or crystallographic symmetry,
can be defined by the group of orthonormal transformations

which transform any of these triads v, into its equivalent
positions. For each of the symmetry classes selected, as
reference system a rectangular Cartesian coordinate system

Oxyz is chosen, so related to the material directions v,

V,, Vv, in the material under consideration that the

symmetry of the material may be described by one or more
of the transformations. Their relative orientations in the
seven crystal systems are well known. Transformations in
which the coefficients satisfy the orthogonality relations are
called linear orthogonal transformations. In this formulation,
the number of elastic constants and their values do not
depend on the choice of the coordinate system. The form
invariant expression for the components of elastic constant
tensor, the elastic stiffness coefficients is,

Cijkl = VaiVijckaIAabcd (3)
Where summation is implied by repeated indices, v,;, are
the components of the unit vectors v, (a=1,2,3) along the

material direction axes. A, is invariant in the sense that

when the Cartesian system is rotated to a new orientation
OXy'z, then (3) takes the following form;

C ik =V aiV bj¥V «V al Asbed (4)
Where v,,v,,v, form a linearly independent basis in three

dimensions but they are not necessarily always orthogonal
(it is a general case). The orthogonality condition used in
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this work, is a particular case for elastic constant tensor so

the corresponding reciprocal triads must satisfy the
following relation

VaiVaj :é‘ij (5)
The expression given in (5) can be rewritten as

w' =1 (6)
Where | is identity matrix which is

0, O, O 100

Oy 0y Oy |=[0 1 0} (7

03, Oz Oy 0 01
Since &; =1 (i=]j)or §;=0 (i#]) Theseare
the orthogonality relations which are also defined in (5).

B. Orthonormalized Basis Elements

Form invariant is the necessary step in constructing
orthonormal tensor basis of elasticity tensors. By

appropriate use of 5ij , elements of the orthonormal tensor
basis can be constructed for each symmetry types [5].

Furthermore symmetry in crystal means simply invariance
of the properties with respect to the transforms of some
subgroup of the orthogonal group, whereas the properties of
an isotropic medium are invariant with respect to all the
transforms of the orthogonal group. In other words, it

explains the form of Cij|<I tensor for any isotropic medium

and it is invariant with respect to the all transforms of the
orthogonal group. However there is a unique tensor that is
not affected by all orthogonal transforms, it is a unique

tensor, apart from a scalar factor, so Cijkl can be expressed

as combinations of the components 5ij of that tensor with

certain coefficients. There are only three different such
combinations which contain four subscripts i, j,k,I namely

5ij5k| , 0y 0

Cij» 1 and j are permuted. So the elements takes the

i» 040 [5]. Because of the symmetry of

new form; 8,0y and 0, 8 + 0,8 . For other symmetry

types, these elements are used in a suitable form, when
constructing orthonomalized basis. Form-invariant
expression of isotropic symmetry is formed by the following
two basis elements:

004,  OyO; +6,0, 8)

So, the decomposition of CijkI for triclinic system with

no elastic symmetries is given in terms of its
orthonormalized basis elements as
K K
Cijkl =Z(C, AijkI)AijkI (K =1.XXI), 9)
K

Where (C, A'J(k,) represents the inner product of Cy

th . .
and K™ elements, Ai;'<k| , the orthonormalized basis elements

and given for each elastic symmetry types, besides, the inner
products for triclinic symmetry are obtained as
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C, Aijkl )= [(Cn +C,, +Cy) +2(C, +C3 +Cu)l,

(C, Auk|) ﬁ —=[2(C;; +Cpy + Cy3) +6(C,, + Cy5 + C) - 2(C, + Cog

+ CZS)]I

my _ i _
(C, Ajkl) = \@ [3C33 (C11 +Cp + C33)],

1
(C Am) ﬁ[?’cm + 3023 - 2(C12 + C13 + Czs)]v

1
(C, A\j/kl) = E[_Z(C“ +Cpy +Cy3) +4(C,, + Cis +Cy) + 2(C, + Cyy

+ C23)]

]kl) \/7[(:44 +C55 Zcee] (C \I/lill ) = \/g[cn _C22]1

(¢ AYL!') [C.s - Cyil, (C. Ajl) =2[Cyy —Css),
(C,Al)=2V2C,, (C,AN)=2C,, (C,Al)=2C,
(C.Al')=2Cy, (C.A}') =242C,.,(C, Al ) =2C,,
(C, Alt") =2C,, (C, AR") =2C,4, (C, A" ) = 2J2C,,

€, Anxklﬁ() 2C24’ (C, Aijkl) 2C34,(C Aﬁm ):2C14-
Here, elastic constants are given in VVoigt notation.

(10)

C. lIsotropic Materials

The form invariant expression is defined for isotropic
material as [4]

Cijkl :wijé‘kl +,U(5ik5j| +5i|5jk) (11)

Where A and g are invariant elastic constants and they
0%
Bija = 6x0; + 0,0} .The traditional form of stress-strain

relation for isotropic solids can be defined as

= 26,6, +2us,

rr¥ij

are also called Lame constants  and ¢y =

(12)

It is also well known that stress tensor is decomposed into
spherical and deviatoric parts and it is given as

1 1
0 =~ 0,0; + (0 —56”5”-)- (13)

3
For isotropic materials, the decomposition of Cijkl for the

isotropic system is given in terms of the orthonormalized
basis elements as

Ijkl Z(C AJkl)AJkl (C A]kI)AJkI ( A]kl)A]klv( _I,”)

(14)
Where (C Ajfkl) denotes the inner product of C; and

)WhiCh are

1 1
Aijkl =7 %k :gé}jgkll Ai;lkl :ﬁ(3ﬂijkl

orthonormalized basis elements for isotropic system. The
inner products are

- Zaijkl

ISBN: 978-988-19251-3-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

(C: A;kl) = % [(Cu + sz + C33) + 2(C12 + C13 + Czs)]i (15)

1
(C, A;LI) = ﬁ[‘l(cu + sz + C33) +12(C44 + Css + Cse) - 4(C12 + C13 + Cza)]-

(16)
Equation (14) denotes the new representation of elastic
constant tensor for isotropic symmetry which is not in
literature.
D. Transversely Isotropic Materials

The form invariant expression for transversely isotropic
materials [4]

Ciw =A% + 4B + i + Al + As€iju @an
Where Vi = 53i 53j§3k 53| ) 5‘jk| = 5ij 5k35|3 + 5i35j3§kl

and &, = (6,015 +040},)(0o0ia + Gadia) + (00ja + 05011) (G0 +6001):

Ay Ay Ay, A, and A are invariant elastic constants
for transversely isotropic system. The decomposition of
Cijk, for transversely isotropic system is given in terms of

the orthonormalized basis elements as

ukl (C Ath)AJkI (C Ahkl)AJkI (C1A::<|I)A;Ikll
+(C, A1jkI)AijkI

( A]k| )AUkI

(18)
Il 1
Where Ay = 6\/5 (157ijk| Biw — |Jk|)
A\Jkl = ( ijki 157ijk| +,Bijk| _5aijkl)!
V 1
Aijkl = Z(Zgijkl _é‘ijkl +37ijk| _ﬂijkl +0—’ijk|)

Which are orthonormalized basis elements for
transversely isotropic system.

Since first two orthonormalized basis elements of
transversely isotropic system are the same as isotropic
symmetry, inner products are also identical, the other inner
products for transversely isotropic system are

1
C,A")=—[-3¢C,,-3C,,+12C,,-2C,, - 2C,,— 2C,, - 4C
( ) 6«/5[ 11 22 33 12 13 23 44
- 4C55 - 4C66]’

(C, AY )= %[_SCM —3C,,-10C;, + 8C13 + 8C23 +4Cy
+4C,, +4C],

1
(C,A) = Z[—C11 -C,,+2C,,+4C,, +4C,,—4C,]. (19)

E. Orthorhombic Materials

For orthorhombic materials, the form invariant expression
is [4]
Ijk| ﬂ'laukl +/12/6Ijk| +/137/IJ|(| +ﬂ“ 5|Jkl +ﬂ“ gljk|

+ j“GTijkl + /17pijk| + ﬂﬁgijkl + ﬂ’geijkl
(20)
Where Pi = 6}15115k15|1v Cijt = 013030101 + 016;10,30,3:
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ukl = (05, 5 +6 5,2)(5k25|3+5k35|2)

A Ay Ay Ay Ay Agi Ay, Ag and A are invariant elastic
constants for orthorhombic system. The decomposition of
Cijkl for orthorhombic system is given in terms of its
orthonormalized basis elements as

|Jk| :Z(C A]kl)AijkI!(K =1...IX) (21)
Where
\j/II<I = 2\/— (ZTukI Eijki 5|jkl +37ukl ﬂijkl +aijkl)’

Vit _

1 1
ikl _ﬁ(zpijkl +E”ijkl *+ Viju _Eﬂijkl)’

1 1
\J/I|<II| :E(Zo-ijkl =i + 25 )» Airljl :m(zeijkl _gijkl)*

which are orthonormalized basis elements for orthorhombic

system. (c, Ak,) represents the inner product of CIJkI for

orthorhombic symmetry and the K" elements, Aijkl of
the basis, since first five orthonormalized basis elements of
orthorhombic system are the same as transversely isotropic

symmetry, inner products are also common, the other four
inner products for orthorhombic materials are

(C.A")= «f[ C;;+2C;, -C,, +4C],
(C, A" )=%[011—C22], (C.A™)=C,—C,,

(C, A% ) = \E(CM _Css)- (22)
1. NUMERICAL ANALYSIS
Let us consider the decomposition of the elastic constant
tensor in the following materials.
A. For an Isotropic Material

Especially textured and non-crystalline materials show
isotropic symmetry. There are two independent elastic

constants for isotropic symmetry whichare C,;,C,,.
Reactor pressure vessel (RPV) steel is presented as isotropic

material and the elastic coefficients in GPa (10'°dyn - cm2)
for RPV steel are given [6]

277.001 118.715 118715 0 0 0
118.715 277.001 118715 0 0 0 (23)
118715 118715 277.001 0 0 0
"TIo 0 0 79143 0 0
0 0 0 0 79143 0
0 0 0 0 0  79.143

By using the formula given in (14), inner products are
calculated as
(C, Al )=514.431,(C, A" ) =353.94. (24)
The symmetric fourth rank tensor for RPV steel can be
represented in the form

Ciu =514.431A}, +353.94A], (25)
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Regarding (25), elastic constant tensor of RPV can be
decomposed as

171477 171477 171477 0 0 0| [105.524 -52.762 -52.762 0 0 0
171477 171477 171477 0 0 0| |-52.762 105524 -52762 0O 0 0
171.477 171477 171477 0 0 0| |-52.762 -52.762 105.524 0 0 0
Tl o 0 0 000 * 0 0 0 79143 0 0
0 0 0 000 0 0 0 0 79143 0
0 0 0 000 0 0 0 0 0 79143
(26)

B. For a Transversely Isotropic Material

Most textured and non-crystalline materials exhibit
transversely isotropic symmetry. There are five independent
elastic constants for transversely isotropic symmetry which
are C,,C,,,C,;,C,;,C,,.Polystyrene is presented as a
transversely isotropic material and the elastic coefficients in
GPa for Polystyrene are given [7]
[5.20 275 275 O 0
275 520 275 O 0
275 275 570 0 O
! 0 0 0 130 O
0 0 0 0 130
L 0 0 0 0 0 1225

(27)

o O O O o

By applying the formula given in (18), inner products can
be computed as
(C,A")=10.87,(C,A") =5.7616,(C, A" ) = 0.4025,(C, A" ) = 0.05,
(C,A")=0.15.
(28)
The elastic constant tensor for Polystyrene can be
decomposed as

Cya =10.87Al, +5.7616A!, +0.4025A" +0.05AY
+0.15AY,
(29)

From (29), isotropic and transversely isotropic parts of
Polystyrene are constructed as

| =10.87A}, +5.7616Al, (30)

T1 =0.4025Aj; +0.05A}; +0.15A1, (31)

By adding (30) and (31), elastic constant tensor of RPV
can be represented as

5.3411 27644 27644 0 0 0 -014 -00133 -00133 0 0 0
27644 53411 27644 0 0 0 -00133 -014 -00133 0 0 0
27644 27644 53411 0 0 0 -00133 -00133 036 0 0 0
"o 0 0 12883 0 0 0 0 0 o017 0 0 |
0 0 0 0 12883 0 0 0 0 0 0017 0
0 0 0 0 0 12883 0 0 0 0 0 -0063

(32)

C. For an Orthorhombic Material

Orthorhombic media show an orthorhombic symmetry.
When the same symmetry is applied to textured or non-
crystalline materials, it is generally called orthotropy. Most
of the elastic bodies in engineering, biological tissues, rock
structures, metal crystals (due to the symmetries of the
lattice), most of the polycrystalline textured materials and
fiber-reinforced composites (because of the production
technique reasons), are, with acceptable accuracy,
considered as orthotropic. However, for most practical
purposes, orthotropic symmetry is equivalent to
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orthorhombic symmetry. There are nine independent elastic
constants  for  orthorhombic symmetry which are

C...C,,,C5;5,C,,Cl5,C,0,Cyy, Gy, Gy Ollivine is

presented as an orthorhombic material and the elastic
coefficients in GPa for Olivine are given [8]
192 66 60 0 0 O
66 160 56 0 0

60 56 272 0 O

0 (33)
. 0

0

0

ilo 0o o0 60 0
0 0 0 0 62
0 0 0 0 0 49
By employing the formula given in (21), inner products
are calculated as
(C,A")=329.33,(C,A") = 284.73,(C, A" ) =86.461, (C, A" ) = -8.67,(C, A') =18,
(C,A")=-8.49,(C,A")=226,C,A")=4,(C,A%)=-2.83. (34)

The symmetric fourth rank tensor for Olivine can be
represented in the form
Cyja =329.33A;, +284.73A;, +86.461A; —8.67A} +
18Aj, —8.A9A), +22.6 A, +4A —2.83A)

From (35), isotropic and transversely isotropic, tetragonal
and orthorhombic parts of Olivine are constructed as

(35)

| =329.33A), +284.73A, (36)
TI =86.461Aj, —8.67Aj; +18A), (37)
Tet = —8.49A), (38)
O =22.6A0 +4A} —2.83A% (39)

By adding (36), (37), (38) and (39), elastic constant tensor
of Olivine can be denoted as

1947 673 673 0 0 07 [-207 17 -93 0 0 0
673 1947 673 0 0 0| |17 -217 93 0 0 0
673 673 1947 0 0 0| |-93 -93 773 0 0 0
iYlo o o 67 0 0|70 o 0 -27 0 o0
0 0 0 0 67 0 0O 0 0 0 -27 0
o 0o o0 0 0 7|0 0o o o 0 -117
3 3000 0][16 0 2 000
33 000 0| |0 -16 -2 0 00 (40)
0 0000 0| |2 -2 0 000
o o000 o/ffo o o -10 of
0O 0000 0[]0 0 0 010
0 0000 -3]0 0 0 000

IV. THE NORM CONCEPT AND ANISOTROPY DEGREE

Norm is an invariant of the material. There are many
types of norm in literature. Those norms are Euclidean,
Riemannian, log-Euclidean, Taxicab, infinity, uniform, zero
and so on. These norms are used in different fields of
science and engineering. For instance, zero norm is related
with machine learning and optimization. Log-Euclidean
norm is a measure for tensors such as symmetric positive-
definite matrices in medical imaging, modeling of
anatomical variability i.e. human brain variability and
Riemannian and log-Euclidean norms are used to find the
shortest distance between an elasticity tensor of arbitrary
symmetry and an elasticity tensor of lower symmetry. [9]
These two norms are effective when elastic compliance
tensor is considered. Since the most appropriate and reliable
norm for elastic constant tensor is Euclidean norm in
literature, Euclidean norm is used for computations as a
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measure in this work. Comparison of magnitudes of the
Euclidean norm gives valuable information about the origin
of the physical property under examination. Euclidean norm
also represents the stiffness effect in the material like fiber-
reinforced composites.

Euclidean norm of a Cartesian tensor is defined as the
square root of the contracted product over all the indices
with itself, which is given as follows

N = HC ‘ :{Cijkl...Cijkl...}E (41)
Since the basis constructed in this thesis is orthonormal
and CijkL__ is in the space spanned by that orthonormal basis

{A"}, it is straightforward to see that, now the norm

N =[c]={Z(C. ALY (42)
The norm of nearest isotropic tensor, denoted by C,j,;, of

Ciju is therefore

={Z(C° AL (K=1,11)

In similar way, with respect to the tensor c

(43)

i the nearest
tensors of other symmetry classes within the class spanned
by the basis {A“}can be read off from the representation
and their norms may be computed according to (42). By
using the norms, the nearest isotropic tensors of lower
symmetries such as cubic, transversely isotropic, tetragonal,
trigonal and orthorhombic can be found via the following
formula [3]

S
F

N =|ce

(44)

Where &° is a scalar constant independent of the
rotation of the axes. It is a measure of “nearness' of the
nearest isotropic tensor.

It is obvious that the anisotropy of the material, for
instance, the symmetry group of the material and the
anisotropy of the measured property depicted in the same
materials may be quite different. Clearly, the property tensor
must show, at least, the symmetry of the material. For
instance, a property which is measured in a material can
almost be isotropic but the material symmetry group itself
may have very few symmetry elements. We know that, for
isotropic materials, the elastic constant tensor has two scalar
(isotropic) parts, so the norm of the elastic constant tensor
for isotropic materials depends only on the norm of the

scalar parts, i.e, N=N, SO, the ratio N; /N =1for
isotropic materials. For cubic materials, the elastic constant

tensor has the same two parts that consisting the isotropic
symmetry and a third which is designated as the anisotropic

part, hence we define two ratios: N, / N for the isotropic

parts and N, /N for the anisotropic part. For lower

symmetry type materials such as transversely isotropic,
tetragonal, trigonal and orthorhombic, the elastic constant
tensor additionally contains more anisotropic parts, so we
can define N, /N for all the anisotropic parts.

Although the norm ratios of different parts represent the
anisotropy of that particular part, they can also be used to
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asses and compare the anisotropy degree of a material
property as a whole.

The following significant notes are taken into account
when we have evaluated the computed results in following
tables. These notes are:

1. It can be used as a parameter representing and
comparing the overall effect of a certain property of
anisotropic materials of the same or different symmetry. If
the norm value of a material is large, it has more effective
property than the other materials of the same symmetry
type.

2. When N is the largest among norms of the decomposed

parts, if the norm ratio N, /N is closer to one, the material

property is closer to isotropic.

3. When N, is not the largest or not present, norm of the

other parts can be used as a criterion. But in this case the
situation is reverse; if the norm ratio value is larger than the
others, the material property is more anisotropic.

In following sections, several examples from transversely
isotropic and orthorhombic symmetries are presented.

A. Materials from Transversely Isotropy

Elastic constants of transversely isotropic materials are
given in TABLE Il. The units are in GPa.
TABLE Il
ELASTIC CONSTANT DATA OF TRANSVERSELY ISOTROPIC MATERIALS

1'\;Ireac?isaversely isotropic C11 C12 C13 C33 C44
Polystyrene [7] 520 [.75 .75 |5.70 1.30
Hardened tool steel [10] | 277 113 112 272 80.3
Zinc(Zn)[11] 165 [PBL1 |50 61.8 [396
Cadmium[12] 116 42 41 50.9 19.6
Normal tool steel[13] 289 116 117 284 84.5

For transversely isotropic materials, the norm and norm

ratios, &° (the anisotropy degrees) are computed in order to
determine which one is close to isotropy or anisotropy. The
results for norm, norm ratios and the measure of “nearness'
of the nearest isotropic tensor are presented in the following

TABLE.
TABLE Il
THE NORM AND NORM RATIOS (THE ANISOTROPY DEGREES) FOR

From TABLE II1, it is seen that the ratio N; / N gives the
same result for hardened and normal tool steel which is

equal to 1and the results for £° is close to each other. But

&° of normal tool steel is smaller than &° of hardened tool
steel which shows that normal tool steel is more isotropic
than the hardened one. The same case is also proved by

comparing the N, /N for both tool steel type. The larger

ratio N, /N and &°, the more anisotropic property exist
for a transversely isotropic material and in reverse manner,
the smaller ratio N, /N, a transversely isotropic material

possesses the more anisotropic property. So Zinc is the most
anisotropic material among the other transversely isotropic
materials.

B. Materials from Orthorhombic Symmetry

Elastic constants of orthorhombic materials are presented
in TABLE IV. The units are in GPa.

TABLE IV
ELASTIC CONSTANT DATA OF ORTHORHOMBIC MATERIALS

Orthor- C11 C12 Cs C22 C,;|Cs; C44 Css |Cos

hombic

Media

Olivine [8] 192 | 66 | 60 | 160 | 56 | 272 | 60 | 62 | 49

Pine(Soft- 12410741076 171094 |1.791.18 |0.079| 0.91
ood) [14]

Olivinite[10] [232 |93 92 [210 82 (199 [73.3 [70.9 [68.6
Marble [10] (119 /51 52 110 @47 (104 [29.7 [30.7 [32.6
Canine 19 [9.73 |119 [22.2 |119 [29.7 [6.67 [5.67 {4.67
femora [15]

The norm and norm ratios, &° (the anisotropy degrees) for
orthorhombic materials are calculated in order to determine
the effect of anisotropy in other words which one is more
anisotropic or isotropic. The results for norm, norm ratios
and the measure of “nearness' of the nearest isotropic tensor
are summarized in TABLE V.

TABLE V
THE NORM AND NORM RATIOS (THE ANISOTROPY DEGREES) FOR
ORTHORHOMBIC MATERIALS

TRANSVERSELY ISOTROPIC MATERIALS Orthorhombic | N\ N N N./N | N, /N 0
Media i a : 8 &
Transversely | N N N NN N_/N £°
i i 1 a a
:\S}I"etg?;'c Olivine 43535 [93.267 [445.228 [0.9778 [0.2095  [0.0222
Polystyrene  [12.2996 |0432 |12.31 [0.9994 [0.0351 [0.000617 Pine 11.0247 [15.9396[19.381 [0.5688 [0.8224  [0.4312
(Softwood)
Hardened tool | 617.745 [5.257 |617.768 |1.000 |0.0085 [0.000036 __
steel Olivinite 494.479 [35.1969495.73  [0.9975 [0.0710  [0.0025
Zinc(Zn) 301.619 [98.510 [317.298 [0.9506 [0.3105 [0.049400 Marble 251.9798 12.8411(252.3067 [0.9987 (0.0509 0.0013
Canine 53.0038 [8.9226 [53.7495 [0.9861 [0.1660  [0.0139
Cadmium  [211.340 [60.330 [219.7819 0.9616 |0.2745 [0.038400 Femora
In TABLE V, by taking into account the effect of the
Normal tool (645282 5.367 [645.3038 | 1.000 |0.0083 [0.000035 norm ratios; N;/N, N,/N and &°, it is obvious that marble
steel is an orthorhombic material that possesses the most isotropic
effect among the other orthorhombic materials with the

ISBN: 978-988-19251-3-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



Proceedings of the World Congress on Engineering 2012 Vol I
WCE 2012, July 4 - 6, 2012, London, U.K.

. 11] D. P. Singh, S. Singh and S. Chendra, Indian J. Phys., A 51, pp. 97,
largest value for ratio N, /N  and the smallest value fore®. ] 1977, g g y PP

Pine, which is a softwood, exhibits the most anisotropic ~ [12] Y-Li, Physics Status Solidi a, vol. 38, pp. 171, 1976.

. . [13] E. P. Papadakis , « Ultrasonic study of simulated crystal symmetries
property among the others with the largest value for ratio in polycrystalline aggregates’’, IEEE. Trans. Sonic. Ultrasonic, vol.

0 11, pp. 19, 1964.
Na INand & [14] R.Yamai, J Japan. Forestry Soc., vol. 39, pp.328, 1957.

[15] S. C. Cowin, W. C. Van Buskirk, “Thermodynamics restrictions on
V. RESULTS AND CONCLUSION the elastic constants of bone”’, Journal of Biomechanics, vol. 19, pp.
' 85-87, 1986.
This decomposition method for elastic constant tensor

have many applications in various subjects of science
(atomic and molecular physics and the physics of condensed
matter) and engineering such as decomposition of wood
elastic constant tensor in structural engineering or
representation of olivine elastic constant tensor in
geophysical applications. In the mechanics of continuous
media, for instance, in elasticity studies; the stress and strain
tensors are decomposed into spherical (hydrostatic) and
deviatoric parts each of which have important meanings.

Moreover, for very valuable materials (diamonds, quartz)
used in mining, it is difficult to measure its elastic constants
because of its small samples. Applying this decomposition
procedure, it is possible to specify the elastic constants of
these types of materials.

Representation of elastic constant tensor in terms of its
orthonormal parts by this method provides a deeper
understanding about elastic and mechanical behavior of
anisotropic materials. It also has more significant effects on
many applications in different fields such as:

1) Calculation of norm and norm ratios for assessing and
comparing the anisotropic properties of materials.

2) Examining the material symmetry types in detail,

3) Observing a material which possesses a particular
symmetry type can be explained in another anisotropic
symmetry.

4) Determination of materials possessing same crystal
symmetry type which are highly anisotropic or close to
isotropy,

5) Understanding the mechanical and elastic behavior of
natural composites such as Bone and Wood types.
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