
 

 

 

Abstract - A revolving flow of ferrofluid over a rotating disk 

is investigated by solving the boundary layer equations with 

boundary conditions by using Neuringer-Rosensweig model. 

The components of velocity and pressure profile are calculated 

numerically. However, the solution for the flow profile and the 

change in boundary layer displacement thickness follows the 

lines for ordinary viscous flow. Expressions are obtained in the 

cylindrical co-ordinate system by considering the z-axis as axis 

of rotation. Here, we have solved non-linear differential 

equations numerically by using power series approximations. 

 

Index Terms - Axi-symmetric, rotating disk, boundary layer, 

ferrofluid, magnetic-field. 

 

I. INTRODUCTION 

ERROFLUIDS are stable suspensions of colloidal 

ferromagnetic particles of the order of 10nm in suitable 

non-magnetic carrier liquids. These colloidal particles 

are coated with surfactants to avoid their agglomeration. 

Because of the industrial applications of ferrofluids, the 

investigation on them fascinated the researchers and 

engineers vigorously since last five decades. One of the 

many fascinating features of the ferrofluids is the prospect of 

influencing flow by a magnetic field and vice-versa [1, 2]. 

Sealing of the rotating shafts is the most known application 

of the magnetic fluid. Ferrofluid is widely used in sealing of 

hard disc drives, rotating x-ray tubes under engineering 

applications. 

The major applications of ferrofluid in electrical field is 

that controlling of heat in loudspeakers. Control on heating 

makes the life of sound speakers longer and increases the 

acoustical power without any change in its geometrical 

shape. Magnetic fluids are used in the contrast medium in X-

ray examinations and for positioning tamponade for retinal 

detachment repair in eye surgery. Therefore, ferrofluids play 

an important role in the field of bio-medical science also. 

There are rotationally symmetric flows of the 

incompressible ferrofluid in the field of fluid mechanics, 

having all three velocity components viz. radial, tangential 

and vertical, in space, different from zero. In such type of 

flows, the variables are independent of angular coordinates 
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and the angular velocity is uniform at large distance from the 

disk. We consider this type of flow for an incompressible 

ferrofluid when the rotating disk is subjected to the magnetic 

field )H,,H( zr 0  by using Neuringer-Rosensweig model 

[3]. This model has been used by Verma [4] for solving 

paramagnetic Couette flow by taking into account the 

interactions of external magnetic field.  

Rosensweig [5], in his monograph, has given an 

authoritative introduction to the research on magnetic liquids 

and revealed interesting information about the effect of 

magnetization. In general, magnetization is a function of 

magnetic field, temperature and density of the fluid. This 

leads to convection of ferrofluid in the presence of the 

magnetic field gradient. Karman [6] rotating disc problem is 

extended to the case of flow started impulsively from rest, 

and also the steady state is solved to a higher degree of 

accuracy than previously done by a simple analytical  

method which neglects the resembling difficulties in 

Cochran’s [7] well known solution.  

The pioneering study of ordinary viscous fluid flow, due 

to the infinite rotating disc was carried by Karman. He 

introduced the famous transformation, which reduced the 

governing partial differential equations into ordinary 

differential equations. Cochran obtained asymptotic 

solutions for the steady hydrodynamic problem formulated 

by Karman. Benton [8] improved Cochran’s solutions and 

also, solved the unsteady case. Attia [9] studied the unsteady 

state in the presence of an applied uniform magnetic field. 

The effect of the steady flow of ordinary viscous fluid, due 

to the rotating disc with uniform solution was considered by 

Mithal [10].  Attia [11] discussed about flow due to an 

infinite disk rotating in the presence of an axial uniform 

magnetic field by taking Hall effect into consideration.  

Sunil et al. [12] studied the effect of rotation on 

thermosolutal convection in a ferromagnetic fluid 

considering a horizontal layer of an incompressible 

ferromagnetic fluid. Venkatasubramanian and Kaloni [13] 

investigated the effect of rotation on the thermo-convective 

instability of a horizontal layer of ferrofluid heated from 

below in the presence of uniform vertical magnetic field. 

Das Gupta and Gupta [14] examined the onset convection in 

a horizontal layer of ferromagnetic fluid heated from below 

and rotating about a vertical axis in the presence of a 

uniform magnetic field. Ram et al. [15] solved the non-linear 

differential equations under Neuringer- Rosensweig model 

by using power series approximations and discussed the 

effect of magnetic field-dependent viscosity on velocity 
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components and pressure profile. Further, the effect of 

porosity on velocity components and pressure profile has 

been studied by Ram et al. [16]. 

In the present case, we take cylindrical coordinates 

),,( zr where z-axis is normal to the plane, and this axis is 

being considered the axis of rotation. The viscous effects are 

dominant over a region at a small distance from the disk, if 

Reynolds number is large which gives rise to a boundary 

layer over the surface of disk. We have presented the 

boundary layer equations together with boundary conditions.  

These equations along with Maxwell equations are solved 

theoretically as well as numerically. Also, it is found that 

there is a variation in the boundary layer displacement 

thickness as compared to the ordinary viscous flow case. 

Here, the effect of vertically applied magnetic field in a 

circular layer of ferrofluid on a rotating disk is studied 

within the framework of Neuringer-Rosensweig approach 

and various types of ferrofluid responses are considered. 

This problem, to the best of our knowledge, has not been 

investigated yet. 

II. MATHEMATICAL FORMULATION AND 

SOLUTION 

This model considers the liquid particle in magnetic fluid as 

a mathematical point with only three degrees of freedom. As 

a complete set of independent variables, the following 

functions are chosen: three scalars (density, pressure and 

temperature) and three vectors (velocity, magnetization and 

magnetic field). Thermodynamic coefficients of the 

magnetic fluid are considered as scalars. This model 

considers the magnetization M


as being parallel to the 

applied magnetic field, thus implying that no interaction of 

magnetic fluid with external magnetic field through magnetic 

body couples, and kinetic processes are considered.
 

This model leads to governing equations which are 

considered from the Navier-stokes equation of 

magnetization. The system of equations consists of the 

following:  

Equation of continuity          0V.


                          (1) 

Equation of motion (Momentum equation for an 

incompressible ferromagnetic fluid with constant viscosity in 

a frame of reference rotating with angular velocity 


) 
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The approximate initial and boundary conditions for the 

flow due to rotation of an infinitely long disk )z( 0  with 

constant angular velocity are given by 

      at   ;0z   ,0rv    ,rv    .0zv  

      at   ;z   ,0rv    .0v                                       (7)  

Here, zv does not vanish at ;z but tends to a finite 

negative value. 

From boundary layer approximation, we get for (3) that 

    201
rH

r
M

r

p 
                                    (8) 

On considering very less variation of magnetic field along z-

direction and using Karman transformations,  

),(Ervr ),(Frv ),(Gvz

);(Pp  where z                 (9) 

in equations (3)  - (6)  with the help of (8), we get a system 

of non-linear differential equations in E, F, G and P  as 

follows:  

01222 FFEEGE                                 (10) 

022 EEFFGF                                                (11) 

0GGGP                                                        (12) 

02EG                                                                      (13) 

0)()(

)0(,0)0(,1)0(,0)0( 0

FE

PPGFE
        (14)  

The values of E, F, G and P are compared graphically with 

their corresponding values in classical case. G must tend to a 

finite limit, say c , as  tends to infinity. Cochran indicated 
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that formal asymptotic expansion (for large ) of the system 

of equations (10) - (13) is a power series in )cexp( , i.e.     
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Let a)(E 0  and b)(F 0 . Using this supposition and 

equations (10) - (14), we get some additional boundary 

conditions for the approximate solution. 

III. RESULTS 

First four coefficients in the equations (15) - (18) are 

calculated with the help of (14) and additional boundary 

conditions, which are as follows: 
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Using the values 620540 .b,.a , and 8860.c  from 

Cochran [7], we calculate the values of the coefficients ,A1  

,D,D,D,C,C,C,C,B,B,B,B,A,A,A 32143214321432

 and 4D . We draw the graphs of velocity components and 

asymptotic pressure with the dimensionless parameter . 

The present results give the good approximate solution of 

the above system of non-linear differential equations.  

 

The boundary layer displacement thickness is calculated as 

0

34561451.d)(Fd       

The fluid is taken to rotate at a large distance from the wall, 

the angle becomes 

   
0

0 418709670
0

0
.

)(F

)(Ev
/

z

v
tan r         

IV. DISCUSSION 

The problem considered here involves a number of 

parameters, on the basis of which, a wide range of numerical 

results have been derived. Of these results, a small section is 

presented here for brevity. The numerical results for the 

velocity profiles, for zr ,,  components of the velocity, 

commonly known as radial, tangential, vertical (axial) 

velocities, are shown in figure 1.1, 1.2, 1.3 respectively.  

 

 
 

In figure 1.1, E2  shows the radial velocity profile with 

the variation of dimensionless parameter , known as 

Karman parameter. Here, the radial velocity E2 = 0.08894 is 

maximum at 4.0 , after that it decreases smoothly and 

for large values of , it converges to zero. E1 shows the 

radial velocity component for ordinary viscous fluid case 

with peak value is 0.4101159 as 2.1  . It is noticeable 

that the radial velocity E2 has very less peak value in 

comparison to E1  because of thickening of the ferrofluid 

layer due to the rotation of the whole system. On the other 

hand, the magnetic force reduces the pressure on fluid and 

increases the radial velocity. The effect of rotation is more 

pronounced than the force of magnetization in the sense of 

fluid thickening. In other words, figures 1.1 and 2, with the 

variation of dimensionless parameter , have converse 

behavior to each other. 

In figure 1.2, F2 shows the tangential velocity profile 

comparison with Newtonian case, i.e. F1 . In our case, if we 

increase the value of , the tangential velocity F2  decreases 

continuously and goes to zero for large value of . It is 

observed from the table, the value of tangential velocity is 

0.49762 at 1 , whereas in Benton’s case for the ordinary 

viscous fluid, the tangential velocity is 0.468  for the same 

value of . Therefore, at 1 , our value increases 6.7% 

approximately in comparison to the Benton’s value. From 

figure, it is clear that F1  converges to zero little faster 

than F2 . Here the tangential component of velocity follows 

almost the same trend as that of the ordinary viscous flow. 
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Figure 1.3, shows the axial velocity profile, which is zero 

in the beginning and tends to a finite value in the last. When 

we increase the value of , it decreases continuously in the 

negative region. Here the axial velocity converges to -0.886 

at 8.14  onwards. 

Figure 2, shows the pressure profile with the initial 

pressure, P0  at 0 . The pressure goes to negative region 

for first few values of .  At 40. , it goes to maximum 

negative 

 

    

 

value, which is -0.17909. After continuously increasing the 

value of , pressure also increases and at 3.1 , it comes 

out to 0.01194. When we increase the value of   

continuously from 3.1  onwards,  pressure increases in 

the positive direction and it takes peak value as 0.07667  

at 2.2 . After that, for large value of , pressure 

becomes  P0  .  

Comparing figures 1.1 and 2, we conclude that when 

radial velocity increases, the pressure of the ferrofluid 

decreases and when radial velocity decreases, ferrofluid 

pressure increases. These figures reveal converse behavior 

to each other. Here the tangential velocity diminishes slower 

than axial velocity components. The change in the curve of 

radial velocity is faster due to effect of external magnetic 

field, resulting in reducing the time required for velocity 

profile to reach their convergence level. 

In our problem, we have calculated the displacement 

thickness, numerically. Here, the disk is rotating along with 

rotation of the ferrofluid, due to which thickness is 

increasing. The displacement thickness in our case is 

1.34562, whereas in Benton’s case is 1.27144. In nut shell, 

we conclude that if we rotate the plate with rotation of the 

ferrofluid, there is an increment in the thickness of boundary 

layer. Here, we have also calculated angle between wall and 

ferrofluid, which is 41
0
  

V. CONCLUSION 

From these results, we conclude that magnetization force 

i.e., H.M


0   reduces the pressure. Also, it has been 

observed that magnetic field intensity increases the radial 

velocity; whereas, the fluid rotation has reverse effect. The 

effect of rotation is more pronounced than the force of 

magnetization due to which the radial velocity takes very 

less peak value in comparison to the ordinary viscous flow 

case. Due to the rotation, retardation of the radial velocity 

increases the thickness of the magnetic fluid layer. 

Conducting ferrofluids flow with rotating disk have the 

practical applications in many areas such as rotating 

machinery, lubrication, oceanography, computer storage 

devices, and viscometry and crystal growth processes. 
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NOMENCLATURE 

 

H


 Magnetic field intensity 

M


   Magnetization  

p     Fluid pressure  

p      Reduced pressure 

P      Karman pressure 

0P     Initial pressure (absolute value) 

V


     Velocity of ferrofluid  

     Kinematic viscosity  

f    Reference viscosity of fluid  

0     Magnetic permeability of free space  

     Fluid density  


     Gradient operator  

      Dimensionless Karman’s parameter 

d       Displacement thickness of the ferrofluid layer  

0      Angle of rotation 

      Angular velocity of the disk  

rv       Radial velocity  

v      Tangential velocity  

zv       Axial velocity  


      Angular velocity of whole system  
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