On Fuzzy *μ - Irresolute Maps and Fuzzy *μ -Homeomorphism Mappings in Fuzzy Topological Spaces

Sadanand Patil

Abstract : The aim of this paper is to introduce a new class of fuzzy sets, namely $*\mu$ - closed fuzzy sets for fuzzy topological spaces. This class is a super class of the closed fuzzy sets. We introduce and study new space namely fuzzy cT μ *-spaces and μ T μ *-spaces.

Further, the concept of fuzzy μ -continuous, fuzzy μ -irresolute mappings, fuzzy μ -closed maps, fuzzy μ -open maps and fuzzy μ -homeomorphism in fuzzy topological spaces are also introduced, studied and some of their properties are obtained.

2000 Math Subject Classification: 54A40

Keywords and phrases: * μ -closed fuzzy sets, f * μ -continuous, f * μ -irresolute, f * μ -open, f * μ -closed mappings and f * μ - homeomorphism.

I. INTRODUCTION

The concept of fuzzy sets and fuzzy set operations were first introduced by L. A. Zadeh in his classical paper [25] in the year 1965. Subsequently several researchers have worked on topology using fuzzy sets and developed the theory of fuzzy topological spaces. The notion of fuzzy subsets naturally plays a very significant role in the study of fuzzy topology introduced by C.L.Chang [3].

N. Levine [4] introduced the concepts of generalized closed sets in general topology in the year 1970. G.Balasubramanian and P. Sundaram [2] introduced and studied generalized closed fuzzy sets in fuzzy topology. K.K.Azad [1] introduced semi-closed fuzzy sets in the year 1981. H.Maki, T. Fukutake, M.Kojima and H.Harada [5] introduced semi-generalized closed fuzzy sets (briefly fsg - closed) in fuzzy topological space in the year 1998.

In the year 2005, $*\mu$ - closed sets, $*\mu$ - continuous, $*\mu$ - irresolute, $*\mu$ -closed, $*\mu$ -open maps were introduced and studied by M.K.R.S.Veera Kumar [23] for general topology.

Recently author introduced and studied Ψ -closed fuzzy sets[10], pre-semi-closed fuzzy sets[11], g*-semiclosed fuzzy sets[6], g#- closed fuzzy sets[7], g#-semiclosed fuzzy sets[8], #g closed fuzzy sets[12], #g-semiclosed fuzzy sets[13], g*- closed fuzzy sets[9], μ - closed fuzzy sets[14], \hat{g} -closed fuzzy sets[9], *g- closed fuzzy sets[15], *g-semi- closed fuzzy sets[16], α -*gclosed fuzzy sets[17], μ -semi- closed fuzzy sets[18], μ -preclosed fuzzy sets[19], semi- μ - closed fuzzy sets[20], g μ closed fuzzy sets[22] and g* Ψ - closed fuzzy sets[21].

The class of Ψ -closed fuzzy sets is properly placed between the class of semi- closed fuzzy sets and the class of semi-pre-closed fuzzy sets. The class of pre-semiclosed fuzzy sets is placed properly between the class of semi-pre- closed fuzzy sets and the class of gsp- closed fuzzy sets. The class of g#- closed fuzzy sets is placed properly between the class of closed fuzzy sets and the class of g*- closed fuzzy sets. The class of g#-semi- closed fuzzy sets is properly placed between the class of semiclosed fuzzy sets and the class of gs- closed fuzzy sets. The class of g*- closed fuzzy sets is properly placed between the class of closed fuzzy sets and the class of g- closed fuzzy sets. The class of #g- closed fuzzy sets is placed properly between the class of g*- closed fuzzy sets and the class of g- closed fuzzy sets. The class of #g-semi- closed fuzzy sets is placed properly between the class of #gclosed fuzzy sets and the class of gs- closed fuzzy sets. This class also lies between the class of semi- closed fuzzy sets and the class of gs- closed fuzzy sets. The class of µclosed fuzzy sets is a super class of the classes of g#closed fuzzy sets, α - closed fuzzy sets and the class of closed fuzzy sets. The class of g-closed fuzzy sets is placed properly between the class of closed fuzzy sets and the class of g- closed fuzzy sets. The class of *g- closed fuzzy sets is placed properly between the class of g*- closed fuzzy sets and the class of g- closed fuzzy sets. The class of *g-semi- closed fuzzy sets is placed properly between the class of g#s- closed fuzzy sets and the class of gs- closed fuzzy sets. The class of α -*g- closed fuzzy sets is properly placed between the class of a- closed fuzzy sets and the class of ag- closed fuzzy sets. The class of µs- closed fuzzy sets is a super class of the classes of semi- closed fuzzy sets, α - closed fuzzy sets, closed fuzzy sets, μ closed fuzzy sets, g#- closed fuzzy sets and the class of g#s- closed fuzzy sets. The class of µp- closed fuzzy sets is a super class of the classes of pre closed fuzzy sets, α - closed fuzzy sets, closed fuzzy sets, ga- closed fuzzy sets, ĝ -closed fuzzy sets, µ- closed fuzzy sets and the class of g#- closed fuzzy sets. The class of sµ- closed fuzzy sets properly contains the classes of semi- closed fuzzy sets, a- closed fuzzy sets and the class of closed fuzzy sets. The class of g*Ψ-closed fuzzy sets is properly placed between the class of Ψ -closed fuzzy sets and the class of gsp-closed fuzzy sets. The class of gu- closed fuzzy sets is placed properly

Sadanand Patil, Lecturer, Dept. of Mathematics, KLS's VDRIT, Haliyal(Uattar Kannad), Karnataka State, India (<u>patilsadu</u> @gmail.com)

Proceedings of the World Congress on Engineering 2012 Vol I WCE 2012, July 4 - 6, 2012, London, U.K.

between the class of closed fuzzy sets and the class of g-closed fuzzy sets.

The aim of this paper is to introduce a new class of fuzzy sets, namely $*\mu$ - closed fuzzy sets for fuzzy topological spaces. This class is a super class of class of the closed fuzzy sets. We introduce and study new space namely fuzzy cT μ *-spaces.

Further, the concept of fuzzy μ -continuous, fuzzy μ -irresolute mappings, fuzzy μ -closed maps, fuzzy μ -open maps and fuzzy μ -homeomorphism in fuzzy topological spaces are also introduced, studied and some of their properties are obtained.

II. PRELIMINARIES

Let X, Y and Z be sets. Throughout the present paper (X, T), (Y, σ) and (Z, η) and (or simply X, Y and Z) mean fuzzy topological spaces on which no separation axioms is assumed unless explicitly stated. Let A be a fuzzy set of X. We denote the closure, interior and complement of A by cl (A), int (A) and C (A) respectively. Before entering into our work we recall the following definitions, which are due to various authors.

Definition 2.01: A fuzzy set A in a fts (X, T) is called: 1) a semi - open fuzzy set, 2) a pre - open fuzzy set, 3) a α open fuzzy set and 4) a semi pre-open fuzzy sets can be found in [4] and [9].

The semi - closure (resp. pre closure fuzzy, α - closure fuzzy and semipro closure fuzzy) of a fuzzy set A in a fts (X, T) is the intersection of all semi - closed (resp. pre closed fuzzy sets, α - closed fuzzy sets and sp-closed fuzzy sets) fuzzy sets containing A and is denoted by scl (A) (resp. pcl (A), α cl (A) and spcl(A)).

The following definitions are useful in the sequel. Definition 2.02: A fuzzy set A of a fts (X, T) is called: 1) a generalized closed (g - closed fuzzy) fuzzy set, 2) a generalized – pre closed (gp -closed fuzzy) fuzzy set, 3) a α -generalized closed (α g-closed fuzzy) fuzzy set, [17] 4) a generalized α -closed (g α -closed fuzzy) fuzzy set, 5) a generalized semi - pre-closed (gsp-closed fuzzy) fuzzy set, 6) a generalized semi - closed (gsp-closed fuzzy) fuzzy set, 7) a semi - generalized closed (sg-closed fuzzy) fuzzy set, 8) a g*- closed fuzzy set, 9) a Ψ -closed fuzzy set, 10) a \hat{g} closed fuzzy set, 11) a g#- closed fuzzy set, 12) a g#sclosed fuzzy set, 13) a g* Ψ - closed fuzzy set, 14) a μ -

closed fuzzy set, 15) a *g- closed fuzzy set, 16) a *g-semiclosed fuzzy set, 17) a α -*g- closed fuzzy set and 18) a gµ - closed fuzzy sets can be found in [7], [8], [9], [10], [14], [15], [16], [17] and [22].

Definition 2.03: Let X, Y be two fuzzy topological spaces. A function f: $X \rightarrow Y$ is called:

1) fuzzy continuous (f-continuous), 2) fuzzy α -continuous (f α -continuous), 3) fuzzy semi- continuous function (fscontinuous), 4) fuzzy pre-continuous (fp-continuous) function, 5) fg-continuous function, 6) fgp-continuous function, 7) fgs-continuous function, 8) fsg- continuous function, 9) fg α -continuous function, 10) f α g-continuous function, 11) fgsp- continuous functions, 12) fg^{*}continuous function, 13) f Ψ -continuous function, 14) fg* Ψ - continuous function, 15) f μ -continuous function, 16) f*gs-continuous function, 17) f#g-continuous function, 18) f#gs-continuous function, 19) f Ψ -irresolute, 20) gc-irresolute and 21) g*-irresolute functions can be found in [7], [8], [9], [10], [14], [15], [16], [17] and [22].

Definition 2.04: Let X, Y be two fuzzy topological spaces. A function f: $X \rightarrow Y$ is called:

1) fuzzy T $\frac{1}{2}$ - space can be found in [9].

Definition 2.05: Let X, Y be two fuzzy topological spaces. A function f: $X \rightarrow Y$ is called:

1) fuzzy-homeomorphisms, 2) fuzzy g*shomeomorphisms, 3) fuzzy g#-homeomorphisms, 4) fuzzy g#s-homeomorphisms and 5) fuzzy g# α -homeomorphisms can be found in [6], [7], [8] and [9].

III. $^{\ast}\mu$ -Closed fuzzy sets in FTs

Definition 3.01: A fuzzy set A of a fuzzy topological space (X, T) is called $*\mu$ -closed fuzzy set if cl(A) \leq U whenever A \leq U and U is *gs - open fuzzy set in (X, T).

Theorem 3.02: Every closed (resp: μ -closed fuzzy set, α closed fuzzy set, pre-closed fuzzy set, g μ - closed fuzzy set, g- closed fuzzy set, sg- closed fuzzy set, g#-s- closed fuzzy set and g#- closed fuzzy set) fuzzy set is * μ -closed fuzzy set in any fts X.

Proof: Follows from the definitions.

The converse of the above theorem need not be true as seen from the following example.

Example 3.03: Let $X = \{a, b, c\}$ and the fuzzy sets A and B be defined as follows: $A = \{(a, 0.4), (b, 0.5), (c, 0.6)\}, B = \{(a, 1), (b, 0.9), (c, 0.7)\}$. Consider the fts (X, T), where $T = \{0, 1, A\}$. Note that the fuzzy subset B is * μ -closed fuzzy set but not a closed (resp: not a μ -closed fuzzy set, not a closed fuzzy set, not a g μ - closed fuzzy set, not a g μ - closed fuzzy set, not a g μ - closed fuzzy set, not a g μ - closed fuzzy set, not a g μ - closed fuzzy set, not a g μ - closed fuzzy set and not a g μ - closed fuzzy set) fuzzy set in (X, T).

Theorem 3.04: In a fts X, if a fuzzy set A is both *gs - open fuzzy set and * μ -closed fuzzy set, then A is closed fuzzy set.

Theorem 3.05: If A is $*\mu$ -closed fuzzy set and cl (A) \wedge (1- cl (A)) = 0. Then there is no non - zero g - closed fuzzy set F such that F \leq cl (A) \wedge (1-A).

Theorem 3.06: If a fuzzy set A is μ -closed fuzzy set in X such that A \leq B \leq cl (A), then B is also a μ -closed fuzzy set in X.

Definition 3.07: A fuzzy set A of a fts (X, T) is called μ - open fuzzy (μ -open fuzzy set) set if its complement 1–A is μ -closed fuzzy set.

Theorem 3.08: A fuzzy set A of a fts is μ -open iff F≤int (A), whenever F is g-closed fuzzy set and F ≤ A.

Proof: The following proof omitted.

Theorem 3.09: Every open (resp: μ - open fuzzy set, α open fuzzy set, pre- open fuzzy set, $g\mu$ - open fuzzy set, gopen fuzzy set, sg- open fuzzy set, g#-s- open fuzzy set and g#- open fuzzy set) fuzzy set is a * μ -open fuzzy set but not conversely.

Proof: Follows from the definitions.

The converse of the above theorem need not be true as seen from the following example.

Example 3.10: In the example 3.03, the fuzzy subset $1-B=\{(a, 0), (b, 0.1), (c, 0.3)\}$ is * μ -open fuzzy set but not

Proceedings of the World Congress on Engineering 2012 Vol I WCE 2012, July 4 - 6, 2012, London, U.K.

a open (resp: not a μ - open fuzzy set, not a α - open fuzzy set, not a pre- open fuzzy set, not a $g\mu$ - open fuzzy set, not a g- open fuzzy set, not a sg- open fuzzy set, not a g#-sopen fuzzy set and not a g#- open fuzzy set) fuzzy set in (X. T).

Remark 3.11: The following diagram 1 shows the relationships of *µ -closed fuzzy sets with some other fuzzy sets.

B (A \triangleleft \rightarrow B) represents A implies B but where $A \rightarrow$ not conversely. (A and B are independent).

Theorem 3.12: If int (A) $\leq B \leq A$ and if A is $*\mu$ -open fuzzy set, then B is $*\mu$ -open fuzzy set in a fts (X, T).

Theorem 3.13: If $A \le B \le X$ where A is $*\mu$ -open fuzzy relative to B and B is $*\mu$ -open fuzzy relative to X, then A is μ -open fuzzy relative to fts X.

Theorem 3.14: Finite intersection (Union) of *µ -open fuzzy set is a $*\mu$ - open fuzzy set.

IV. FUZZY $^{*}\mu$ -CLOSURE and FUZZY $^{*}\mu$ -Interior fuzzy SETS IN FTS

In this section we introduce the concepts of fuzzy $*\mu$ closure (f $*\mu$ - cl) and fuzzy $*\mu$ -interior (f $*\mu$ -int), and investigate their properties.

Definition 4.01: For any fuzzy set A in any fts is said to be fuzzy μ -closure and is denoted by f μ -cl (A), defined by $f *\mu$ -cl (A) = $\land \{U: U \text{ is } *\mu \text{ -closed fuzzy set and } A \leq U \}.$

Definition 4.02: For any fuzzy set A in any fts is said to be fuzzy μ -interior and is denoted by f μ -int (A), defined by $f *\mu$ -int (A) = $\lor \{V: V \text{ is } *\mu \text{ -interior fuzzy set and } A \ge$ V}.

Theorem 4.03: Let A be any fuzzy set in a fts (X, T).

Then $f * \mu - cl (A) = f * \mu - cl (1 - A) = 1 - f * \mu - int$ (A).

=
$$f * \mu$$
 -int (1–A) = 1– $f * \mu$ -cl (A).

Proof: Omitted.

Theorem 4.04: In a fts (X, T), a fuzzy set A is $*\mu$ -closed iff $A = f * \mu - cl (A)$.

Proof: Omitted.

Theorem 4.05: In a fts X the following results hold for fuzzy *µ -closure.

1) $*\mu - cl(0) = 0.$

- * μ -cl(A) is * μ -closed fuzzy set in X. 2)
- 3) * μ -cl(A) \leq * μ -cl(B) if A \leq B.
- 4) $*\mu$ -cl ($*\mu$ -cl(A)) = $*\mu$ -cl(A).
- * μ -cl(A \vee B) \geq * μ -cl(A) \vee * μ -cl(B). 5)

6) *
$$\mu$$
 -cl (A \wedge B) \leq * μ -cl(A) \wedge * μ -cl(B)

Proof: The easy verification is omitted.

Theorem 4.06: In a fts X, a fuzzy set A is $*\mu$ -open iff A=f * μ -int(A).

Proof: omitted.

Theorem 4.07: In a fts X, the following results hold for $*\mu$ -interior.

- 1) $*\mu int(0) = 0.$
- 2) * μ -int(A) is * μ -open fuzzy set in X.

* μ -int(A) \leq * μ -int(B) if A \leq B. 3)

- 4) $*\mu$ -int ($*\mu$ -int(A)) = $*\mu$ -int(A).
- 5) * μ -int(A \vee B) \geq * μ -int(A) \vee * μ -int(B).
- 6) * μ -int(A \wedge B) \leq * μ -int(A) \wedge * μ -int(B).

Proof: Omitted.

Now we introduce the following.

Definition 4.08: A fts (X, T) is called a fuzzy – $cT\mu^*$ space if every $*\mu$ - closed fuzzy set is a closed fuzzy set. Theorem 4.09: A fts (X, T) is called a fuzzy – $cT\mu^*$ space iff every μ - open fuzzy set is a open fuzzy set in X. Theorem 4.10: Every fuzzy – T $\frac{1}{2}$ space is fuzzy – cT μ *-

space.

Proof: Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 4.11: Let X= {a, b, c}. The fuzzy sets A, B and C defined as follows: $A = \{(a, 1), (b, 0), (c, 0)\}, B = \{(a, 0), (b, 0)\}$ 1), (c, 1)} and C= $\{(a, 0), (b, 1), (c, 0).$ Then (X, T) is a fts space with T= $\{0, 1, A\}$. Then (X, T) is fuzzy - cT μ * space as μ closed fuzzy set B is closed in X. But (X, T) is not fuzzy -T 1/2 space since g-closed fuzzy set C is not closed fuzzy set in X.

Definition 4.12: A fts (X, T) is called a fuzzy - $\mu T \mu$ space if every μ - closed fuzzy set is a μ -closed fuzzy set.

Theorem 4.13: Every fuzzy - T $\frac{1}{2}$ space is fuzzy - $\mu T \mu$ space.

Proof: Omitted.

The converse of the above theorem need not be true as seen from the following example.

Example 4.14: Let $X = \{a, b, c\}$. The fuzzy sets A, B and C defined as follows: $A = \{(a, 1), (b, 0), (c, 0)\}, B = \{(a, 1), (b, 0), (c, 0)\}, B = \{(a, 1), (b, 0), (c, 0),$ 0), (c, 1)} and C= {(a, 1), (b, 1), (c, 0)}. Let (X, T) be fts with $T = \{0, 1, A, B\}$. Then X is fuzzy – $\mu T \mu$ space but not fuzzy -T 1/2 space as the fuzzy set C is g-closed fuzzy set and is $*\mu$ - closed fuzzy set but not closed fuzzy set.

Theorem 4.15: A fts X fuzzy - T 1/2 space iff it is fuzzy $cT\mu^*$ space and fuzzy – $\mu T\mu$ space.

Theorem 4.16: A fts X is called a fuzzy – $\mu T \mu$ space iff every open fuzzy set in X is a $*\mu$ - open fuzzy set in X.

V. FUZZY *^µ -CONTINUOUS AND FUZZY *^µ -IRRESOLUTE MAPPINGS IN FTS

Definition 5.01: A function f: $X \rightarrow Y$ is said to be fuzzy * μ -continuous (f *µ -continuous) if the inverse image of every open fuzzy set in Y is $*\mu$ -open fuzzy set in X.

Theorem 5.02: A function f: $X \rightarrow Y$ is f * μ -continuous if the inverse image of every closed fuzzy set in Y is *µ closed fuzzy set in X.

Proof: Omitted.

Theorem 5.03: Every fuzzy continuous (resp: fµ continuous, fa- continuous, fpre- continuous, fgµ continuous, fg- continuous, fsg- continuous, fg#-scontinuous and fg#- continuous) function is fuzzy *µ continuous. Proof: Omitted.

Proceedings of the World Congress on Engineering 2012 Vol I WCE 2012, July 4 - 6, 2012, London, U.K.

The converse of the above theorem need not be true as seen from the following example.

Example 5.04: Let $X = Y = \{a, b, c\}$ and the fuzzy sets A, B, and C defined as follows. $A = \{(a, 0), (b, 0.1), (c, 0.1), ($ (0.3), B= {(a, 0.4), (b, 0.5), (c, 0.6)}, C = {(a, 1), (b, 0.9), (c, 0.7)}. Consider T = $\{0, 1, B\}$ and $\sigma = \{0, 1, A\}$. Then (X, T) and (Y,σ) are fts. Define f: $X \rightarrow Y$ by f(a)=a, f(b)=band f(c)=c. Then f is $f^*\mu$ -continuous but not f-continuous (resp: not a f μ -continuous, not a f α -continuous, not a fprecontinuous, not a fgu-continuous, not a fg- continuous, not a fsg-continuous, not a fg#-s-continuous and not a fg#continuous). As the fuzzy set C is closed fuzzy set in Y and $f^{-1}(C) = C$ is not closed fuzzy set in X but * μ -closed (resp: μ -closed fuzzy set, α -closed fuzzy set, pre-closed fuzzy set, gu-closed fuzzy set, g- closed fuzzy set, sg-closed fuzzy set, g#-s-closed fuzzy set and g#-closed fuzzy set) fuzzy set in X. Hence f is fuzzy *µ-continuous.

Remark 5.05: The following diagram 2 shows the relationships of f-* μ -continuous maps with some other fuzzy maps.

WE INTRODUCE THE FOLLOWING DEFINITIONS.

Definition 5.06: A function f: $X \rightarrow Y$ is said to be fuzzy * μ -irresolute (f * μ -irresolute) if the inverse image of every * μ -closed fuzzy set in Y is * μ -closed fuzzy set in X.

Theorem 5.07: A function f: $X \rightarrow Y$ is f *µ-irresolute function iff the inverse image of every *µ-open fuzzy set in Y is *µ-open fuzzy set in X.

Theorem 5.08: Every f $*\mu$ -irresolute function is f $*\mu$ - continuous.

Proof: Follows from the definitions.

The converse of the above theorem need not be true as seen from the following example.

Example 5.09: Let $X = Y = \{a, b, c\}$ and the fuzzy sets A, B, C, D and E be defined as follows. A= $\{(a, 1), (b, 0), (c, 0)\}$, B = $\{(a, 0), (b, 1), (c, 0)\}$, C = $\{(a, 1), (b, 1), (c, 0)\}$, D= $\{(a, 1), (b, 0), (c, 1)\}$, E= $\{(a, 0), (b, 1), (c, 1)\}$. Consider T = $\{0, 1, A, B, C, D\}$ and $\sigma = \{0, 1, C\}$. Then (X, T) and (Y, σ) are fts. Define f: X \rightarrow Y by f(a)=b, f(b)=c and f(c)=a. Then f is f * μ -continuous but not f * μ -irresolute as the fuzzy set E is * μ -closed fuzzy set in Y but f⁻¹(E) = C is not * μ -closed fuzzy set in X.

Theorem 5.10: Let X, Y, Z be three fuzzy topological spaces. Let f: $X \rightarrow Y$ and g: $Y \rightarrow Z$ be any two fuzzy functions. Then

- gof is *μ -continuous if g is continuous and f is *μ -continuous.
- gof is *μ -irresolute if g is *μ -irresolute and f is *μ -irresolute.
- gof is *μ -continuous if g is *μ -continuous and f is *μ -irresolute.

(4) gof is *μ -continuous if g is *μ -continuous and f is gc -irresolute.

Proof: Omitted.

VI. FUZZY * μ -Open Maps and Fuzzy * μ -Closed Maps in FTS

This study was further carried out by Sadanand N. Patil [9]. We introduced the following concepts.

Definition 6.01: A function f: $X \rightarrow Y$ is said to be fuzzy * μ -open (briefly f * μ -open) if the image of every open fuzzy set in X is * μ -open fuzzy set in Y.

Definition 6.02: A function f: $X \rightarrow Y$ is said to be fuzzy * μ -closed (briefly f * μ -closed) if the image of every closed fuzzy set in X is * μ -closed fuzzy set in Y.

Theorem 6.03: Every fuzzy - open map (resp: $f\mu$ - open map, $f\alpha$ - open map, fpre- open map, fg μ - open map, fg- open map, fg#-s- open map and fg#- open map) is fuzzy * μ -open map.

Proof: The proof is follows from the definition 6.01.

The converse of the above theorem need not be true as seen from the following example.

Example 6.04: Let $X = Y = \{a, b, c\}$. Fuzzy sets A, B and C be defined as follows. A= $\{(a, 0), (b, 0.1), (c, 0.3)\}$, B= $\{(a, 0.4), (b, 0.5), (c, 0.6)\}$ and C = $\{(a, 1), (b, 0.9), (c, 0.7)\}$. Consider T = $\{0, 1, A\}$ and σ = $\{0, 1, B\}$. Then (X, T) and (Y, σ) are fts. Define f: X \rightarrow Y by f(a)=a, f(b)=b and f(c)=c. Then f is f * μ -open map but not a f-open map (resp: not a f μ - open map, not a f α - open map, not a fpre-open map, not a fg#- open map, not a fg#- open map and not a fg#- open map) as the fuzzy set A is fuzzy open in X, its image f(A) = A is not open fuzzy set in Y which is * μ -open fuzzy set in Y.

Theorem 6.05: Every fuzzy - closed map is fuzzy $*\mu$ - closed map.

Proof: The proof is follows from the definition 6.02.

The converse of the above theorem need not be true as seen from the following example.

Example 6.06: In the example 6.04, the function f is fuzzy $*\mu$ -closed map but not closed fuzzy map as the fuzzy set C is closed in X and its image f(C) =C is $*\mu$ -closed fuzzy set in Y but not closed in Y.

Theorem 6.07: A function f: $X \rightarrow Y$ is f * μ -closed iff for each fuzzy set S of Y and for each open fuzzy set U such that f $^{-1}(S) \leq U$, there is a * μ -open fuzzy set V of Y such that $S \leq V$ and f $^{-1}(V) \leq U$.

Theorem 6.08: If a map f: $X \rightarrow Y$ is fuzzy gc - irresolute and f * μ -closed and A is * μ -closed fuzzy set of X, then f(A) is * μ -closed fuzzy set in Y.

Theorem 6.09: Let f: $X \rightarrow Y$, g: $Y \rightarrow Z$ be two maps such that gof: $X \rightarrow Z$ is f * μ -closed map.

i) If f is f - continuous and surjective, then g is $f *\mu$ -closed map.

ii) If g is $f * \mu$ -irresolute and injective, then f is $f * \mu$ -closed map.

Proof: omitted.

Definition 6.10 [17]: Let X and Y be two fts. A bijective map f: $X \rightarrow Y$ is called fuzzy - homeomorphism (briefly f - homeomorphism) if f and f⁻¹ are fuzzy - continuous. We introduce the following.

Proceedings of the World Congress on Engineering 2012 Vol I WCE 2012, July 4 - 6, 2012, London, U.K.

Definition 6.11: A function f: $X \rightarrow Y$ is called fuzzy f * μ - homeomorphism (briefly f * μ -homeomorphism) if f and f ⁻¹ are f * μ -continuous.

Theorem 6.12: Every f - homeomorphism is fghomeomorphism, fg# -homeomorphism, fg#shomeomorphism, fg# α -homeomorphism, fg*shomeomorphism, fĝ-homeomorphism and f * μ homeomorphism.

Proof : The proof is follows from the definition 6.02.

The converse of the above theorem need not be true as seen from the following example.

Example 6.13: Let $X = Y = \{a, b, c\}$ and the fuzzy sets A, B and C be defined as follows. A = {(a, 1), (b, 0), (c, 0)}, B = {(a, 1), (b, 1), (c, 0)}, C = {(a, 1), (b, 0), (c, 1)}. Consider T = {0, 1, A} and σ = {0, 1, B}. Then (X, T) and (Y, σ) are fts. Define f: X \rightarrow Y by f(a)=a, f(b)=c and f(c)=b. Then f is fg-homeomorphism, fg# -homeomorphism, fg#shomeomorphism, fg# α -homeomorphism and f * μ homeomorphism but not f - homeomorphism as A is open in X f (A) = A is not open in Y. f⁻¹ : Y \rightarrow X is not fcontinuous.

Theorem 6.14: Let f: $X \rightarrow Y$ be a bijective function. Then the following are equivalent:

a) f is $f * \mu$ -homeomorphism.

b) f is $f * \mu$ -continuous and $f * \mu$ -open maps.

c) f is f * μ -continuous and f * μ -closed maps.

Proof: Omitted

Definition 6.15: Let X and Y be two fts. A bijective map f: $X \rightarrow Y$ is called fuzzy * μ -c - homeomorphism (briefly f * μ -c - homeomorphism) if f and f⁻¹ are fuzzy * μ -irresolute. Theorem 6.16: Every f * μ -c- homeomorphism is f * μ - homeomorphism.

Proof: Omitted.

REFERENCES

- K.K.Azad, On fuzzy continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981), 14-32.
- [2] G. Balasubramanian and P. Sundaram, On some generalizations of fuzzy continuous functions, FuzzySetsand Systems, 86(1997), 93-100.
- [3] C.L.Chang, Fuzzytopologicalspaces, J.Math.Anal.Appl. (1968), 182-190.
- [4] N.Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo 19 (2) (1970), 89-96.
- [5] H.Maki, T.Fukutake, M.Kojima and H.Harada, Generalised closed sets in fts I Report for Meeting on Topological spaces, Theory and its Applications, (1998), 23-26.
- [6] Sadanand N. Patil, On g*-Semi-Continuous Mappings in Fuzzy Topological Spaces, Intl.Jl.Math.Comp.Appls. Special Vol. (June-2008). Pp.
- [7] Sadanand N. Patil, On g#-Closed Fuzzy Sets and g#-Continuous Maps in Fuzzy Topological Spaces, Proc. Of the KMA National Seminar on Fuzzy Math and App. July 1-2, 2005, Mar Athanasius College, Kothamangalam. Pp. 53-79.
- [8] Sadanand N. Patil, On g#-semi-Closed Fuzzy Sets and g#-semi-Continuous Maps in Fuzzy Topological Spaces, Presented a paper at the "IMS Conference Roorkey", on December 26-30, 2005, organized by the Department of Mathematics, Roorkey (UP).
- [9] Sadanand N.Patil, Thesis "On Some Recent Advances In Topology" Awarded the Doctorate Degree in Karnataka University Dharwad 2009.
- [10] Sadanand. N.Patil, on Ψ-open fuzzy sets and fuzzy Ψ-irresolute maps in fuzzy topological spaces, proc. Of the Int.Con.on Anal and App. November 3-5, 2008, Aligarh Muslim University, Aligarh. ppSubmitted.

- [11] Sadanand. N.Patil, on pre-semi-closed fuzzy sets in fuzzy topological spaces......Submitted.
- [12] Sadanand. N.Patil, on #g closed fuzzy sets and fuzzy #gcontinuous maps in fuzzy topological spaces.....Submitted.
- [13] Sadanand. N.Patil, on #g-semi- closed fuzzy sets and fuzzy #gsemi-irresolute maps in fuzzy topological spaces.....Submitted.
- [14] Sadanand. N.Patil, on μ- closed fuzzy sets, fuzzy μ- continuous maps and fuzzy μ- irresolute maps in fuzzy topological spacesSubmitted.
- [15] Sadanand. N.Patil, on fuzzy *g-homeomorphism maps fuzzy topological spaces.....Submitted.
- [16] Sadanand. N.Patil, on *g-semi-closed fuzzy sets and fuzzy *gsemi- irresolute maps in fuzzy topological spaces.....Submitted.
- [17] Sadanand. N.Patil, on α-*g-closed fuzzy sets in fuzzy topological spaces.....Submitted.
- [18] Sadanand. N.Patil, on µ-semi- closed fuzzy sets and fuzzy µ-semicontinuous maps in fuzzy topological spaces......Submitted.
- [19] Sadanand. N.Patil, on μ-pre-closed fuzzy sets in fuzzy topological spaces.....Submitted.
- [20] Sadanand. N.Patil, on semi-µ- closed fuzzy sets and fuzzy semi-µirresolute maps in fuzzy topological spaces.....Submitted.
- [21] Sadanand. N.Patil, on g*Ψ- closed fuzzy sets and fuzzy g*Ψhomeomorphism maps in fuzzy topological spaces, proc. Of the Int.Con.on Anal and App. November 3-5, 2008, Aligarh Muslim University, Aligarh. Pp.....Submitted.
- [22] Sadanand. N.Patil, on gμ- closed fuzzy sets and fuzzy gμ-irresolute mappings in fuzzy topological spaces, Paper to be presenting by Sadanand. N.Patil at the "International Jubilee Conference on Discrete Mathematics", on January 11-13, 2009, organized by the Department of Mathematics, Banasthali University, P.O.Banasthali Vidyapith-304022, (Rajasthan) (INDIA).....Submitted.
- [23] M.K.R.S.Veerakumar, *μ-closed sets, Antarctica.J.Math., 2(1) (2005), 123-141.
- [24] C.K.Wong, Fuzzy points and Local properties of Fuzzy Topology, Jl.Math.Anal.Appl. 46(1974), 316-328.
- [25] L.A.Zadeh, Fuzzy sets, Inform. and Control, 8 (1965), 338-353.