
 

 
 
 

  
Abstract—The performance of natural convective flow over a 
rectangular enclosure for coupled heat and mass transfer 
under freezing-thawing process is investigated experimentally 
and numerically. The enclosure filled with an unsaturated 
porous material. The two-dimensional model based on 
experimental observation for three phases’ air, water and ice is 
sought and solved. Each phase in the porous media is assumed 
in local thermodynamic equilibrium (LTE) with each other. 
Comparison of the experiment and modeling is in good 
agreement. 
 
Index Terms— porous media, coupled heat and mass, 
solidification, free convection 
 

I. INTRODUCTION 

HIS Study looks to the freezing processes in porous 
media which is of great interest in environmental, 

energetic, biological and industrial systems, natural freezing 
and thawing in the cold regions, food preservation, 
agriculture, separation processes, thermal energy storage 
and freezing of biological tissues. Sorption of moisture in 
building materials can cause metal corrosion, structure 
deterioration and improper performance of building 
insulations. In addition, expansion and deformation of soil 
framework during freezing process is an important feature in 
the foundation and road engineering in the cold regions. In 
food chemistry, it involves the determination of the cooling 
rates the most suited to the food preservation. In 
biomechanics, a similar worry is the cryopreservation of 
organs in view of their further transplantation. Therefore, 
heat and moisture transfer in porous media during freezing 
process is important, but reported literature on this subject is 
not many. Luikov carried out heat and moisture transfer for 
the drying process in capillary porous bodies [1], His model 
is applicable for both hygroscopic and non-hygroscopic 
materials and accounts for all forms of water bonding. The 
physical and thermodynamic properties in Luikov’s 
equations are functions of either temperature or moisture 
content or both. Therefore, this system of coupled  
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equations is non-linear. Luikov and Mikhailov suggested 
that if calculations are carried out by zones, the transport 
coefficients can be taken as constant in each of these zones  
and Luikov’s equations become linear [2]. Basirat Tabrizi 
and Hamdullahpur [3] introduced a source term due to the 
surface evaporation and used the energy and mass balances 
based on Luikov’s model to investigate drying process in 
capillary porous bodies. Hamdami et al. [4]-[5] used scheme 
to simulate heat and mass transfer during freezing of humid 
porous media. They employed Lee’s three-level model of 
the heat and mass transfer during freezing of par-baked 
bread. The model accommodates the effect of temperature 
dependent variables. They indicated cement pastes still 
expand if water replaced by benzene, which unlike water, 
contracted when solidifying. Few models were presented for 
partially frozen soil by using coupled heat and moisture 
transfer [6]-[9]. Bazant et al. [10] introduced a mathematical 
model for freeze–thaw durability of concrete as a coupled 
heat and moisture transfer problem. Nevertheless, due to the 
complexity of equilibrium relation of unfrozen water, they 
did not clearly show the closed form of the equations. 
Freezing (thawing) of soil around the buried pipes used for 
conveying various fluids [11], cryosurgery and cryo-
preservation of biological tissue  [12], and food processing 
[13]. The freezing of porous media has been studied 
extensively for low porosity media (porosity below 50% 
such as rock, sand, soil) whereas few are available for high 
porosity media [14]-[16] Studied on phase front propagation 
in soils. Chatterji investigated on the frost damage of 
concrete by freeze–thaw cycles [17]. The prediction of the 
temperature and moisture fields in a product needs to 
understand the physic of the phenomena and the importance 
of specific parameters. This could be of use for food 
freezing (i.e. bread) or soil freezing, concrete freezing. In 
most practical situations, the flow pattern in porous media is 
three-dimensional. However, two-dimensional flow does 
exist both under laboratory condition and some in nature. 
The understanding from two-dimensional analysis may 
facilitate the study on the three-dimensional situation. This 
paper investigates the natural convection in the saturated 
porous media by assuming two-dimensional pattern in 
freezing processes.  

II. EXPERIMENTAL SETUP AND TEST PROCEDURES 
 A test rig is designed to measure the variation of 
temperature of a porous body during freezing. Figure 1 
shows this apparatus and it consists of a loop channel, a 
compression refrigeration cycle, measuring instruments. The 
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evaporator is embodied into a flat aluminum plate to provide 
a cold surface.  
 

 
(a) 

 
(b) 

 
Fig.1.  (a)Schematic diagram of apparatus: (1) Air channel, (2) Digital 

temperature recorder, (3) Cubic sample of porous media, (4) Cold surface 
(evaporator), (5) Insulation, (6) Compressor, (7) Condenser, (8) Expansion 

valve , (b) Location of thermocouples in porous medium 
A cubic porous media is placed on the cold surface while 

air stream moved naturally over. Hence, the upper surface is 
exposed to the air. Sand is used as porous medium due to its 
extensive applications in building materials. This material is 
packed in a rectangular cubic perforated mold in dimensions 
of 20 × 20 × 2 cm in order to configure the porous media. 
Three thermocouples type K are used to measure the 
temperature inside the porous media. They are inserted at 
the various coordinates. The temperature measurement is 
carried out every minute during the freezing process. The 
estimated uncertainty due to experimental instruments was 
obtained ±1.5◦C for temperature measurement. The 
accuracy due to experimental instruments is shown in Table 
I. 
 

TABLE I 
ACCURACY OF MEASUREMENT 

Process Quantity  
Air temperature 
Wall temperature    
Sand weight               
Sand volume fr       

15±0.7 ºC 
-7 ±0.7 ºC 
500±3g 
0.4±0.005   

 

 

III. MODELING 
 The physical problem involves investigation of heat and 
mass transfer during freezing of capillary porous material. 
During freezing, moisture in porous media exists in three 
phases: solid, liquid and gas. Governing equations are 

obtained by the conservation of mass and energy of each 
phase. Equations are based on the following assumptions: 
 

a) each phase in the porous media is in local 
thermodynamic equilibrium 

b) two-dimensional unsteady flow 
c) for of lack of filtration motion and pressure 

gradient in porous matrix, momentum equations are 
neglected 

d) all thermo physical parameters are assumed 
constant 

e) no mass transfer from boundary of porous solids 
 
 In order to describe the simultaneous heat, moisture in 
saturated porous media with phase change following model 
is introduced. List of symbols are shown in Table II.  
 
Mass balance of liquid phase: 
   

߲ሺ݈ߝ݈ߩሻ

ݐ߲
ൌ  െ ሶ݉                                                                     (1) 

Mass balance of solid phase: 
  

߲ሺݏߝݏߩሻ

ݐ߲
ൌ  ሶ݉                                                                        (2) 

Mixture energy equation is: 
 ሺܿߩሻ݉

߲ܶ

ݐ߲
ൌ 2ܶ݉݇  െ ሶ݉ ݄                                                 (3) 

Where 
ߝ ൌ ௦ߝ   ߝ  ߝ   ߝ
ሺܿߩሻ݉ ൌ ݏሻܿߩሺݏߝ  ሻ݈ܿߩሺ݈ߝ  ሻ݃ܿߩሺ݃ߝ   (4)           ሻܿߩሺߝ
݇݉ ൌ ݏ݇ݏߝ   ݈݈݇ߝ  ݃݇݃ߝ   ݇ߝ
 
 Here, the field variables include temperature T, liquid 
content εl, solid content εs, gas content εg and porous content 
εp. The phase change rate of condensation which stands for 
the source term due to the moisture freezing on the particle 
surface  and negative sign of m in  (1) means that the 
amount of liquid content decreases during experiment and 
therefore in (2) the positive sign means the amount of solid 
content increases. The term can be expressed as [18]: 
   ሶ݉ ൌ ሶݔሺܿߪ  ݈ܿ െ  ሶሻ                                                           (5)ݔ
The evaporation coefficient, σc, is: 
ܿߪ   ൌ

݈ܦכ݈ߩכݑܰ

݀
                                                                     (6) 

It can be assumed the relation for sphere particle as [19]:                         

ݑܰ ൌ 2  .ହ଼ଽோವ
భ
ర

൭ଵାቀబ.ఱ
ౌ౨ቁ

వ
భల൱

ర
వ
                                                (7) 

ݎܲ  ൌ  (8)                                                                          ߙ/ߥ 
ܦܴܽ ൌ ൫݂ܶ݅݊ߚ݃ െ (9)                                             ߭ߙ/൯݀3ݏܶ                    
 The moisture content of the saturated wetting porous 
medium at the surface of the solid particle xcl as a function 
of the temperature and moisture content of the particle is 
[18]: 
ሶݔ   ൌ ߮1ሺܶሻ߮2ሺݔሻ                                                         (10) 
The above functions can be computed from the tension 
curve of the moisture and the sorption characteristic of the 
solid moisture in the system. The approximations are [18]: 
   ߮1ሺܶሻ ൌ 0.622 כ ሺ ݓܲ

760െܲݓ
ሻ                                            (11) 

  ߮2ሺݔሻ ൌ ܿݏݔሺ݊ݔ 
݊  ݈ሻ/ሺܿݏݔ

݊ ሺ݊ݔ  ݈ሻሻ                             (12) 

ݓܲ   ൌ 10^ሺ0.622 
݂݊݅ܶכ7.5

238݂ܶ݅݊
ሻ                                         (13) 

Where n and l are constants (n = 3; l = 0.01). 
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thickness had important role in mass rate and temperatures, 
because the cold air doesn’t have time to influence inside 
the porous sample. Finally Fig. 6 illustrates the effect of 
different porosity; it shows that the porosity doesn’t have 
main effect in final equilibrium temperature. 
 

 
 
Fig. 3 Comparison of simulated with the measured temperature of porous 
sample and modeling without mass rate of phase change at pt. (12, 0.5)   

 
(a) 

 
(b) 

Fig. 4 Simulation of different temperature a. initial and b. surface 
temperature at pt. (12, 0.5)   

V. CONCLUSION 
 Numerical study of two-dimensional heat and mass 
transfer in capillary porous media by introducing a source 
term was proposed. In order to validate the model, an 
experimental setup was built to measure the temperature of a 
cubic porous media during freezing process. The 
experimental data was obtained and the uncertainty analysis 
was performed. A relatively good agreement was achieved 

between experimental and model results. The mass rate of 
phase change predicts the behavior of heat and mass transfer 
characteristics much better than without source term (or 
pure conduction). 

 
 
 
Fig. 5 Simulated temperature data for different thickness vs. time (sec) 

 
 
 
Fig. 6 Simulated temperature data for different porosity, dot line ε=0.5, 

black line ε=0.5  
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