
 

 

Abstract— The objective of this work is the setting in 
numeric work of two finite elements for the    axisymmetric 
shells; the first element is based on the Reissner-Mindlin 
theory and second is relative to Love-Kirchhoff theory. The 
MATLAB language is used for the programming of these two 
elements.  In order to test the elaborated programs, some 
applications are carried out. 

 
Index Terms—Modeling, Axisymmetric behaviour, Finite 

element, MATLAB programming 

 

I. INTRODUCTION 

ith the evolution of the finite element method several 

researchers developed many finite elements relating 

to axi symmetric shells, according to the theory of shells, 

can distinguish two types of finite elements can 

distinguished: 

The finite elements where the effect of transverse 

shearing is taken into account (Reissner-Mindlin theory).  

The finite elements where the effect of transverse 

shearing is not taken into account (theory of Love-

Kirchhoff). 

Several elements were developed since 1960, the first 

finite element formulated (1963) in the field of this types of 

structures hull be a truncated element for shells of 

revolution based on the theory of Love-Kirchhoff references 

([1] [2] [3] [4]). Currently, the most used element of 

Kirchhoff is CAXI_K element [5], for this type the field of 

displacement U is linear and W is cubic. With regard to the 

elements based on the Reissner-Mindlin theory, CAXI_L 

element [5] was proposed and tested. A simple element and 

powerful based on the displacement model was formulated 

by Zienkiewicz and Taylor [6], the components of U and β 

are linear and W quadratic, the integration is done with 3 

points of Gauss for the membrane, 2 points for the bending 

and 1 point for transverse shearing.  

While taking as a starting point the element with mixed 

formulation in transverse shearing for the straight beams, 
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an element with U and W linear and ß quadratic were 

formulated and tested by Despinoy [7] and Liu [8], by using 

a uniform integration with two Gauss points, this element 

implies a local elimination of two internal variables, but it 

presents a better performance than CAXI_L element. 

The objective of this work is to setting numerically 

operational two finite elements for axisymmetric shells, for 

this, one carried out the development of two programs 

called Axisym CAXI_L and CAXI_K in MATLAB. The 

first one is dealing with the finite element CAXI_L which 

is based on the Reissner-Mindlin theory, and the second is 

related to CAXI_K element based on the Love-Kirchhoff 

theory. 

II. AXISYMMETRIC SHELLS THEORY  

A. Love Kirchhoff theory 

Assumptions 
The following assumptions have to be considered:   

Geometrical assumptions of linearization: Displacements 

and strains remain small. 

Assumption of material linearization: The material obeys 

the Hook's law. 

The transverse normal stress is neglected σz = 0.  

The cross-sections, normal in the medium plan not 

deformed, remain plane and perpendicular to the 

medium plan deformed γαz = 0, γβz = 0 and εz = 0. 

 
Displacement model 

The relations efforts resulting-deformations are given by:  
  
[ ] [ ]{ } [ ]{ }χHeHN mfm +=                    (1a) 
 
[ ] [ ]{ } [ ]{ }χHeHM fmf +=                       (1b) 

N: efforts resulting from membrane.  
M: efforts resulting from bending (moments). 

With eee s     θs χχχ =  

 es, eθ: Deformation of membrane according to S (meridian) 

and θ (circumferentially). 

χs, χθ : Curvatures according to s and θ.  

The displacement model corresponds to: 

 
0=-= int extWWW   (Principle of virtual work)       (2a) 

 

[ ]{ } [ ]{ }( ) [ ][ ] [ ]{ }( )( )∫ +++2= **
int

s
fmfmfm rdsχHeHχχHeHeπW  (2b) 

e*,  χ* : Deformations of membrane and virtual curvatures 
respectively. 
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B. Reissner Mindlin theory 

Assumptions 
Geometrical assumptions of linearization: Displacements     

and strains remain small.  

Assumption of material linearization: The material obeys 

the Hooke law. 

The normal transverse stress is negligible: σz = 0. 

 

Mixed models in transverse shearing 

 

0=-= int extWWW                        (3a) 
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1-**
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           (3b) 

Ts, T
*
s: real and virtual shearing action following s.          

Hc: shearing stiffness. 

III. ELEMENTS FORMULATION 

A. CAXI_L Element 

The finite element CAXI_L [5] is a truncated element 

with two nodes, its formulation is based on the theory of 

Reissner-Mindlin theory. The model used for this element 

is the mixed model in transverse shearing. We suppose that 

the shell is modelled by a succession of truncated cones 

defined by the end nodes on the meridian curve.  
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Fig.1. Truncated element CAXI_L (geometry) 

 

The approximations of the displacement field of U, W 

and of β are linear in s and the shearing action Ts is 

constant. 

 

2211 += UNUNU        2211 += WNWNW  
 

2211 += βNβNβ                                                   (4) 
 
with: LsN -1=1    ;     LsN =2   

The strains are:  

Membrane strains are es, eθ. 

The curvatures are χs, χθ.  

The transverse shearing is γ.  

The element stiffness matrix can be evaluated 

numerically with the reduced integration method of internal 

work We
int: 

 
[ ]{ }

nn
e uKuW *

int =                                        (5a) 

               
With:  [ ] [ ] [ ]cmf KKK +=                                           

  And:  
 
                    LrBHBHBBHBHBk mffmmf

T

ffmfmm

T

mmf  2   
 

[ ] { } { }
cmccTmKTmc BLrHBπkkk

T
2== /

1
/     (5b) 

With: 

[kc] : transverse shearing stiffness matrix. 

[kmf]: membrane bending stiffness matrix for an isotropic 

material 

 

hGkHc ..  

 
( )νEG +12=  

6

5
=K   (Transverse shearing correction factor) 

[ ]
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= 2 ν
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[ ]
1-0

01

)rν-12(1

Eh
=

m
2

3S
H mf                           (6) 

 
Resulting efforts (normal effort and bending moment): 
 
[ ] [ ]{ } [ ]{ }χHeHN mfm +=  

[ ] [ ]{ } [ ]{ }χHeHM fmf +=   

B. CAXI_K Element 

This finite element is a truncated element. Its 

formulation based on the Kirchhoff theory [5] and the 

displacement model. The curvilinear components U (s) and 

W (s) are defined by linear approximations and cubic of 

hermitian type respectively. The numerical integration used 

is of Gauss type with two points for the evaluation of the 

stiffness matrix [ke].   
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Fig.2. Truncated element CAXI_K 

 

[ ] [ ] [ ]∫ ∫0

1

1- 2
k2=2=

L

s
ξξloc ξd

L
πdskπk                (7) 

With: 

[ ] [ ] [ ][ ] [ ][ ]( ) [ ] [ ][ ] [ ][ ]( )( )ffmmf
T

ffmfmm
T

mξ BHBHBBHBHBk +++=
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The numerical integration according to the Gauss method 
is: 

[ ] ( )[ ]∑
2

1=
2

=2=
i

iiξloc

L
ωξξkπk  

With 31±=iξ  and 1=iω                         (8) 

 
After the evaluation of [k]loc, and before the assembling 

of the matrices; it is necessary to transform the variables 

{un}loc defined in the local coordinate of the element 

according to the nodal variables of the cylindrical reference. 

The transformation matrix [T] is given by: 

                                                          

[ ]
[ ] [ ]

10

0
=

t
T     [ ]

[ ]

[ ] [ ]t0

0
=

Tt
t  

[ ] [ ]
CS

SC
ntQ ==                                    (9)                                                                                           

Thus we can write:  [ ] [ ] [ ] [ ]TkTk loc
Te =  

IV. NUMERICAL IMPLEMENTATION   

As it is well known, all the programs based on the finite 

element method include a few characteristic subroutines: 

Reading, checking and organisation of the data describing 

the meshes (nodes and elements), physical parameters 

(elasticity modulus … etc), applied loadings and boundary 

conditions 

Construction of the elementary stiffness matrices and 

vectors, then the assembly of those, to form the global 

matrix and the total vector of the applied loadings 

Resolution of the system of equations after taking into       

account the boundary conditions 

Printing the results after calculation of the additional 

variables (stresses, reactions… etc)       

    

A. General Algorithm 

 

PROG :Axisym Data file

Plotmesh

Matk

LOCE

Matke

DelDOFs

AddDOFs AddToVect

Matstress LOCE

Plot deformed Plotmesh

INSTRUCTION   U = K \ F

PROG :Axisym Data file

Plotmesh

Matk

LOCE

Matke

DelDOFs

AddDOFs AddToVect

Matstress LOCE

Plot deformed Plotmesh

INSTRUCTION   U = K \ F

 
 

Fig.3. General Algorithm of the Axisym Program 

 

The two elaborate programs (Axisym CAXI_L, and 

Axisym CAXI_K) relating to finite elements CAXI_L, 

CAXI_K, presented above are written with MATLAB 

language, each program consists of a principal function 

Axisym and subroutines. 

 

B. Description of Axisym program 

Principal function Axisym 
 It calls the various subroutines or functions for 
different calculations of an axisymmetric structure, 
using the formulations described above for each 
element. 

 
Data file  

It is a file function where all the relative data with the 

problem are introduced:  

Table of the nodes coordinates.  

Table of the elements connectivity  

Elements thickness 

Elasticity modulus 

Poisson's ratio 

Boundary conditions (numbers of the fixed degrees of   

freedom) 

Applied loading vector   

The MATLAB instruction: [data] = feval (str2func 

(Name of the data file); open the data file and allows the 

various subroutines or functions to read the relating data. 

Plot mesh function  

This function gives a graphic posting of the meshes, the 

coordinates and the numbering of the nodes, which allows, 

with the layout the seized structure, a visual checking of the 

data (coordinates table and connectivity). 

Matk function  

This function contains the process of assembling the 

element stiffness matrices Ke provides by the function 

matke. The do loop is done on the elements, by using the 

function LOCE; which provides the insertion of each 

element term in the global stiffness matrix. 

LOCE Function  

According the connectivity table; this function provides 

the localization table (numbers) of the degrees of freedom 

for each element. 

Matke function  

The element stiffness matrix can be evaluated by 

Matke function. 

DelDOFs function 

The boundary conditions are fixed displacements on the 

levels of the supports, a vector E in the data file is used to 

specify the degrees of freedom to be fixed. To apply this 

condition; we eliminate the corresponding lines and 

columns to the vector E from the matrices K and the 

applied load vector F (since the loading is evaluated for all 

the nodes including those of the fixed supports). 
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Instruction U = K\F  

Once the boundary conditions are applied, it only 

remains to solve the discrete system. The solution in 

displacement (with the nodes) can be obtained with 

instruction MATLAB U = K \ F to solve the linear 

equations system (Cholesky method).                 

 AddDOFs function  

 With this function, the degrees of freedom of the fixed 

nodes are added to the displacement vector; that is removed 

by the DelDOFs function. The do loop is made on the 

numbers of the degrees of freedom add by using the 

AddToVect function. 

AddToVect function  

This function provides the resulting displacement vector 

for each degree of freedom.  

Matstress function 

With this function, we can calculate the stresses, using 

the formulation presented for each element. 

Plottedeformed function  

Finally, with this function we can obtain the deformed 

shape of the structure. 

  

V. NUMERICAL APPLICATIONS  

The purpose of this section is the validation of the 

elaborated programs. Also the comparison of the results 

obtained with the presented elements and those given by 

ANSYS. 

 

A. Circular Plate (without transverse shearing) 

A circular plate is subjected to uniformly distributed 

load; its geometry and mechanical properties are presented 

on the fig.4.    

Table I shows the results obtained with the Axisym 

programs for elements CAXI_L and CAXI_K and the 

analytical solution [10] without taking into account the 

assumption of transverse shearing(TS). 
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Fig.4. Circular plate subjected to uniformly distributed load 

 

TABLE I: VALUE OF MAXIMUM DISPLACEMENT (IN) 

Meshes 
Analy 
Sol. 
[10] 

Prog:CAXI_L Error Prog:CAXI_K Error 

2 
elements 

0,17 

0,2113 24,29% 0,1705 0,29% 

4 
elements 

0,1759 3,47% 0,1700 0,00% 

 

Comment  

Both elements CAXI_L and CAXI_K converge towards 

the analytical solution in a monotonous way. 

B. Hemisphere 

A hemisphere shell structure (Fig.5) is modelled by 

truncated element CAXI_K (24 elements). The results 

obtained will be compared with the analytical solution [10], 

and with those given by ANSYS (Fig.6). All results are 

presented in Table II. 
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Fig.5: Hemisphere 

 
 

TABLE II: VALUE OF MAXIMUM DISPLACEMENT (IN) 

Mesh 
Analyt. 

Sol. [10] 
ANSYS Prog:CAXI_K Error 

24 elements 1,60E-05 1,59E-05 1,587E-05 0,81% 
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Fig. 6 Deformed structure 

Comment  

The results obtained by the element CAXI_K are 

acceptable 

C. Circular cone 

A circular cone (Fig.7) is modelled by ANSYS and 

Axisym program with CAXI_L element. Figure (8) shows 

the variation of the results difference between the Axisym 

program and ANSYS. 

Proceedings of the World Congress on Engineering 2012 Vol I 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19251-3-8 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



 

r

z

762 in

h=51 in
ν = 0.3
E=107 lb/in2

P = 6.9 x 10-3 lb/in²

880 in

r

z

762 in

h=51 in
ν = 0.3
E=107 lb/in2

P = 6.9 x 10-3 lb/in²

880 in

 
Fig. 7 Circular cone 
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Fig. 8 Variation of the difference between Axisym and ANSYS 
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                                Fig. 9 Deformed structure 
 

Comment  

It is noticed that the results obtained by Axisym program 

using CAXI_L element and those given by ANSYS 

converge in a similar way. 
 

VI. CONCLUSION 

From the results obtained above, the following conclusions 
can be drawn: 

It can be observed that, the programs Axisym CAXI_L 

and CAXI_K give good results, which confirm the 

validation of the elaborated programs. 

The presented CAXI_L and CAXI_K prove their 
efficiency in analysing axisymmetric shells structures.  
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