
 

 
Abstract—Based on the analysis of the post-limit 

deformation stage, it is shown that under soft loading of rocks, 
displacement rate greatly increases in the post-limit 
deformation zone, and the kinetic energy grows as well. It is 
supposed that given the kinetic energy reaches a certain 
threshold value, a rock block exposed to the post-limit 
deformation splits off the rock mass. This assumption is 
applied to studying the phenomenon of zonal disintegration of 
rocks surrounding deep cylindrical tunnels. 
 

Index Terms—Kinetic energy, post-limit deformation, zonal 
disintegration 

I. INTRODUCTION 
It is conventional that rock mass around deep excavations 

is zoned as follows: a destruction zone immediately adjoins 
an excavation, and then there is a plastic strain zone 
followed with an elastic strain zone. The destruction zone is 
the poorest studied. The priority questions on how does rock 
mass fail and what are the laws of this failure remain 
unanswered. Destruction around deep excavations shows 
itself first of all as the oriented fracturing. The same pattern 
can been seen when breaking window glass with a hard 
object: a web of fractures appears, some fractures delineate 
the hole contour, other make net of radial fractures. There 
are several zones of oriented fractures around deep tunnels, 
these zones are spaced as a rule at a2 , where a  is the 
tunnel radius, or the average radius of “false” contour 
[Oparin, 2008; Shemyakin, 1992; Shemyakin, 1986; 
Kurlenya, 1996].  

Destruction of a material is described using equations that 
characterize behaviour of the material during failure. For 
example, the deformable solid mechanics introduces the 
concept of post-limit deformation of rocks. This is a branch 
of the “shear stress—displacement curve”, that is obtained 
under loading samples by stiff presses, under pre-set 
displacements of the loader grips in time t . The load is 
corrected every time it is applied (modern presses are 
equipped with servo-valves to implement the loading  

 
adjustment). Figure 1 shows a typical curve of the shear 
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stress and displacement [Goodman, 1987]: loading is 
applied up to the point A , whereupon post-limit 
deformation takes place. 

II. EQUATIONS OF THE MATERIAL BEHAVIOUR  
It is worth pointing out that if the load   is fixed and 

retained constant for a long time at the point C  of the curve 
in Fig. 1, the material will “creep”, the displacement will 
grow from C  to D , and later on the material will go to 
the descending branch ADB  of the curve )(   
[Goodman, 1987]. If the said is included in plotting the 
curve )(t  , the result will be the deformation pattern 

shown in Fig. 2.  

 
The curve in Fig. 2 consists of: branch I—elastic loading 

of material up to the point C in Fig. 1; branch II—the 
transfer from C to the point D (Fig. 1); branch III—the post-
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Fig. 2. Typical shear stress   and displacement curve from 
[Goodman, 1987]. 
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Fig.1. Typical curve of creep in medium under deformation. 
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limit deformation branch ADB  of the curve )(   in 
Fig. 1. Kovrizhnykh [Kovrizhnykh, 2008] introduced the 
term “perfect creep” to describe the branch III in Fig. 2, on 
the analogy with the perfect plasticity. He suggested that the 
stress  , correspondent to long-term strength, holds 
constant afterwards. This is a debatable assertion, since, as 
seen in Fig. 1, the stress   drops as it goes to the branch 
ADB  and induces growth of the strain  , that is, the stress 

is not constant. Thus, it is necessary to include the post-limit 
deformation branch in Fig. 1 in analyzing, for instance, 
zonal disintegration of rocks around deep excavations and in 
other analyses.  

To begin with, the “stress—strain” curve illustrates 
material resistance to deformation. Let the value of a load 
F  exerted on a material change with increasing t . Let the 
material resistance be R . These values are related under the 
Newton law: 

RFxm   
It follows from Fig. 1 that R  can differ from F . When 

F  exceeds R , which is especially pronounced at the post-
limit deformation stage, accelerations arise and kinetic 
energy grows. On an assumption that the kinetic energy 
reached in a fractured zone in rocks increases fast up to a 
critical value as compared with the neighbouring zones, the 
fractured rock zone can lose contact with the rock mass (the 
kinetic energy is converted to the potential energy of 
fracture). The fracturing de-stresses the rock mass. The de-
stressing on the plane of break results in loading of the rest 
rock mass. The process of the zonal disintegration in rocks 
continues.  

Mathematical modeling of the post-limit deformation 
involves the notion of the proper tensor basis. We take the 
experiment of the pre-limit and post-limit deformation of 
quartzite samples [Bieniawsky, 1983]. Figure 3 shows the 
curves )( ZZZ   , )(  ZZ   obtained in uniaxial 
compression of a cylindrical quartzite sample. The stress 
and strain tensors are, respectively: 
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Here, r   due to that r ,   are perpendicular to z  
and the material is assumed initially isotropic. To describe 

the tensors above, we introduce identity tensors: 
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Projections of T , T  on unitary vectors are denoted as 

1S , 2S , 3S , 1 , 2 , 3 , respectively. Evidently, 
033 S . The relations )( 111  SS , )( 222  SS  for 

quartzite are shown in Fig. 4.  

 
Revolve the basis 1T , 2T  clockwise, and the curve in Fig. 

4a will flatten while the curve in Fig. 4b will descend (the 
revolved basis coordinates are 1S , 1Э , 2S , 2Э ). At a 
certain moment (when  ) the curve in Fig. 4 will 
become nearly straight line. In quartzite the angle 

6.16 . Figure 5 shows 1
~S , 1

~Э , 2
~S , 2

~Э  in the tensor 

basis revolved at 6.16 ; here: 
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211 ЭЭЭ , 

   cossin~
222 ЭЭЭ . 

The papers [Chanyshev, 2002; Chanyshev, 2003] showed 
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Fig. 3. )( ZZZ    and )(  ZZ   in quartzite under 
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that the curves )~(~~
222 ЭSS   are universal for any type of 

loading; i.e., these curves are the rated relationships for an 
initially isotropic material. Any material has its angle  , 

straight line with the slope   and the curve )~(~~
222 ЭSS  . 

The calculations of the zonal disintegration phenomenon 
assume that 111 Э~~

S  (Fig. 5a), where 1  is constant 

under any state of a medium. To simplify the calculations, it 
is suggested to use the curve )~(~~

222 ЭSS   in Fig. 5b, 
including plasticity and post-limit deformation. Thus, we 
have derived an analog of the deformation plasticity theory. 

III.  MATHEMATICAL MODELING 
Let a rock mass with an excavation having radius ar   

be in the plain strain state. There are two dimensions 
available: a —the excavation radius and b —the external 
radius. The boundary conditions at the radial contours are: 

0
arr , ),(tpbrr 


 0)(,)( 1  tptptp  (1) 

and the initial conditions are: 
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The problem solution requires relating the stresses r , 

  and strains r ,  . Considering that: 
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from (2), derive the elastic relations in the form: 
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The post-limit deformation relations are obtained in the 
same form: 
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where 0
2

~Э , 0
2

~S —respectively, the peak-strength strains and 

stresses in the curve )~(~~
222 ЭSS  ; 1 —the drop modulus 

of this curve; the angle 4   . 

It is worthy to notice that the flexibilities 22a  and 11a  
differ in (3), which means that  2cos)( 121122  aa , 
or that material is anisotropic. In case when 012   , 

22a  is higher than 11a . On the other hand, if 4  , 
dilatancy takes place: 4   expands the volume of a 
medium since the shear stress is positive 2/)(  r  and 
the material is loosened; when 40    , the volume of 
the medium diminishes, the material is compacted.  

The calculations are limited to an “incompressible” 
material ( 01  ) and two branches of the deformation 

curve )~(~~
222 ЭSS  , namely, the elasticity and post-limit 

deformation. Taking into account that 01  , we have: 
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Substituting (6) in (4) and then in the equilibrium 
equation: 

2

2

t
u

rr
rr












  ,     (7) 

yields a formula of r  in terms on an arbitrary function 
)(tA  and an arbitrary constant. 

The same procedure with the equilibrium equation at the 
post-limit deformation stage allows an identical formula to 
find r  in the post-limit deformation zone. 

Application of the boundary conditions (1), the conditions 
for continuity of the stresses r ,   and displacement u  

Fig. 5а. Proportional curve of the stress 1
~S  versus strain 1Э~ . 
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at the interface between the elasticity and post-limit 
deformation zones, and the introduced denotation: 

10
22 cos)(~)(   tgatXStA ,    (8) 

will result in an equation to find )(tXX  : 
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By definition, 22)( act  , where cr   coincides 

with the interface between the elasticity and destruction 
zones ( ar  —the initial excavation radius). This is the 
second order equation for determining )(t , and it 
requires setting the initial conditions )(),( 00 tt    from 
the elastic problem solution. The radial stresses in the 
elastic zone are: 
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The radial stresses in the destruction zone are: 





































1

1
11

cos

~ 1

2

2
0
2









tg
p
r r

a
tg

S

 

































)(
)1(2

~ 1120
22 tX

r
a

a
r

tg
aS tgtg





  

)(
2sin

cos~ 110
2

2

2 tX
r
a

r
aS tgtg







































.   (11) 

The shear stresses in the elasticity and destruction zones 
are: 
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The formulas (10)—(12) are valid given the following 
conditions hold true: (A) boundary conditions (8) are 

satisfied at the boundaries ar   and br  ; (B) the 
conditions of continuity: 
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are fulfilled at the elasticity and destruction zones interface 
cr  ; and (C) the kinetic energy is below its critical value 

in the destruction zone. After the third condition has been 
violated, the destruction zone starts splitting off the rock 
mass. The reached value of 

cr
y
r 

  will drop to zero 

according to a certain law, and de-stressing of the rest rock 
mass (elasticity zone) will imply the rock mass loading and 
another destruction zone origination. The calculation 
formulas also include corrective terms associated with the 
time-dependent boundary conditions at the “false” contour 

cr  , which are withdrawn from the present paper due to 
awkwardness. 

The calculations comprised the following parameters: 
01  , internal radius 1а  m, external radius 9b  m, 

radius-wise step 0.1. Table 1 describes mechanical 
properties of tested rocks. 

TABLE 1 
MECHANICAL PROPERTIES OF ROCKS. 

 
The calculations were accomplished as follows. First, we 

solved the pure elastic problem. Under the pre-set boundary 
conditions (8), we estimated stresses, strains and 
displacements at ar  , and the displacement rate as the 
member of the initial conditions for the derivative )(t  at 
the time 0tt   when the contour ar   transfers to the 
destruction stage. Then, using the Runge—Kutta method, 
we solved the dynamic equation for determining )(t  
at any other time. The formulas (6)—(12) allowed finding 
displacements, displacement rates, strains and stresses. Later 
on, we calculated kinetic energy in the destruction zone. 
When the radius c  equaled a2 , we recorded the value of 
the kinetic energy T  and the related time t . From this 
moment, the value of r  at the false contour cr   started 
downward to zero. The calculations assumed the linear 
decrease of r . The loading drop rate was varied in the 
calculations. After the destruction zone had split off the rock 
mass, it was withdrawn from the analysis, and the elastic 
deformation zone was only studied. When loading dropped 
to zero at cr  , a “new” destruction zone began originating 
in the “old” elastic strain zone. The dynamic equation for 

)(t  was solved again under the other initial and 
boundary conditions, and the kinetic energy was again 
calculated. The critical value of the kinetic energy, related to 
the destruction zone size, was used for determining a new 
zone-to-zone interface that, broadly speaking, may differ 
from the product of 2  and the previous radius of 
excavation. In addition, we determined conditions for the 

Rock 
11

2 10 , 
Pa-1 

11
2 10   , 
Pa-1 

0
2S , 

MPa 
 , 

kg/m3 
Marble 3,7 2,9 42 2700 
Diabase 2,2 3,7 120 2900 

Sandstone 4,9 1,6 46 2700 
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loading rate to be such that geometric sequence of the 
boundaries between the zones of disintegration has 
denominator 2 ; analyzed the influence of the de-stressing 
rate and the elastic modulus to drop modulus ratio, and the 
value of the angle   on the process of the zonal 
disintegration. The calculation results are presented below. 

Figure 6a shows the split-off energy density versus the 

angle   for marble. At  3020   the energy density is 
maximum and the material is compacted under shears. 
When   is above 60 , loosening takes place in the material 
and the contour of excavations is continuously being 
crushed. Total loading time (to the formation of ruptured 
zone 3) is 310T  s. Maximum pressure at the external 
contour is 0

25.2 Sp  .  

 
On the fig. 6b dependence of the energy necessary for 

splitting off from the angle   for sandstone and diabase is 
presented. At the values of the angle   smaller than 60  
slow growth of energy is observed. 

If the values of the angle  are bigger than 60   then 
exponential energy growth takes place.  

On the fig. 7 dependence of density of the energy, 
necessary for splitting off, on speed of stress for sandstone, 
diabase and marble is shown. On external border of the 
calculated medium loading changed from 0

2
~05,1 S  to 0

2
~5S . 

Other calculations are devoted to research of influence of 
parameters of stressing (loading rate at br  , elastic 
modulus/drop modulus ratio, de-stressing rate at cr  ) on 

the formation of disintegration zones with radii to be within 
the geometric progression with denominator 2 . 

Based on the analysis of the data, the following 
conclusions have been drawn: 

● the slow loading induces continuous crushing and 
fragmentation of rocks;  

● under loading at rates higher than 40V  MPa/s, the 
disintegration zones are formed according to geometric 
progression by distance of the zone from the excavation 
center, with denominator 2 ; 

● the rate of de-stressing and the ratio of the elastic 

modulus to drop modulus have no significant influence on 
the radii of the disintegration zones in rock masses. 

IV. CONCLUSION 
The authors have proposed the calculation scheme for 

zonal disintegration phenomenon in rocks, considering 
structural properties of rocks (dilatancy, internal friction 
angle). The conditions of a “false” contour” to generate 
geometric progression with denominator 2  have been 
determined. 
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Fig. 6b. The split-off energy density against the angle  : 1—
sandstone; 2—diabase. 
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Fig. 6а. The split-off energy density against the angle   in marble. 
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Fig. 7. The split-off energy density against the loading rate: 1—
sandstone; 2—diabase; 3—marble. 
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